微積分 MA1001－A 上課筆記（精簡版） 2018．11．15．

Ching－hsiao Arthur Cheng 鄭經敘

Definition 4.22

A function F is an anti－derivative of f on an interval I if $F^{\prime}(x)=f(x)$ for all x in I ．

Theorem 4.23

If F is an anti－derivative of f on an interval I ，then G is an anti－derivative of f on the interval I if and only if G is of the form $G(x)=F(x)+C$ for all x in I ，where C is a constant．（導函數相同的函數相差一常數）

Theorem 4．24：Mean Value Theorem for Integrals－積分均值定理

Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function．Then there exists $c \in[a, b]$ such that

$$
\int_{a}^{b} f(x) d x=f(c)(b-a)
$$

Theorem 4．25：Fundamental Theorem of Calculus－微積分基本定理

Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function，and F be an anti－derivative of f on $[a, b]$ ． Then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Moreover，if $G(x)=\int_{a}^{x} f(t) d t$ for $x \in[a, b]$ ，then G is an anti－derivative of f ．
Example 4．32．Find $\frac{d}{d x} \int_{0}^{\sqrt{x}} \sin ^{100} t d t$ for $x>0$ ．
Let $F(x)=\int_{0}^{x} \sin ^{100} t d t$ ．Then by the chain rule，

$$
\frac{d}{d x} F(\sqrt{x})=F^{\prime}(\sqrt{x}) \frac{d}{d x} \sqrt{x}=\frac{1}{2 \sqrt{x}} F^{\prime}(\sqrt{x})
$$

By the Fundamental Theorem of Calculus，$F^{\prime}(x)=\sin ^{100} x$ ；thus

$$
\frac{d}{d x} \int_{0}^{\sqrt{x}} \sin ^{100} t d t=\frac{d}{d x} F(\sqrt{x})=\frac{\sin ^{100} \sqrt{x}}{2 \sqrt{x}}
$$

Theorem 4.28

Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and f is differentiable on (a, b) ．If f^{\prime} is Riemann integrable on $[a, b]$ ，then

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)
$$

Theorem 4.25 and 4.28 can be combined as follows：

Theorem 4.31

Let $f:[a, b] \rightarrow \mathbb{R}$ be a Riemann integrable function and F be an anti－derivative of f on $[a, b]$ ．Then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Moreover，if in addition f is continuous on $[a, b]$ ，then $G(x)=\int_{a}^{x} f(t) d t$ is differen－ tiable on $[a, b]$ and

$$
G^{\prime}(x)=f(x) \quad \text { for all } x \in[a, b] .
$$

Definition 4.30

An anti－derivative of f ，if exists，is denoted by $\int f(x) d x$ ，and sometimes is also called an indefinite integral of f ．
－Basic Rules of Integration：

Differentiation Formula	Anti－derivative Formula
$\frac{d}{d x} C=0$	$\int 0 d x=C$
$\frac{d}{d x} x^{r}=r x^{r-1}$	$\int x^{q} d x=\frac{x^{q+1}}{q+1}+C$ if $q \neq-1$
$\frac{d}{d x} \sin x=\cos x$	$\int \cos x d x=\sin x+C$
$\frac{d}{d x} \cos x=-\sin x$	$\int \sin x d x=-\cos x+C$
$\frac{d}{d x} \tan x=\sec ^{2} x$	$\int \sec ^{2} x d x=\tan x+C$
$\frac{d}{d x} \sec x=\sec x \tan x$	$\int \sec x \tan x d x=\sec x+C$
$\frac{d}{d x}[k f(x)+g(x)]=k f^{\prime}(x)+g^{\prime}(x)$	$\int\left[k f^{\prime}(x)+g^{\prime}(x)\right] d x=k f(x)+g(x)+C$

4．4 Integration by Substitution－變數變换

Suppose that $g:[a, b] \rightarrow \mathbb{R}$ is one－to－one and differentiable，and $f:$ range $(g) \rightarrow \mathbb{R}$ is differentiable．Then the chain rule implies that $f \circ g$ is an anti－derivative of $\left(f^{\prime} \circ g\right) g^{\prime}$ ；thus provided that

1. $(f \circ g)^{\prime}$ is Riemann integrable on $[a, b]$,
2. f^{\prime} is Riemann integrable on the range of g,
then Theorem 4.28 implies that

$$
\begin{align*}
\int_{a}^{b} f^{\prime}(g(x)) g^{\prime}(x) d x & =\int_{a}^{b}(f \circ g)^{\prime}(x) d x=(f \circ g)(b)-(f \circ g)(a) \\
& =f(g(b))-f(g(a))=\int_{g(a)}^{g(b)} f^{\prime}(u) d u \tag{4.4.1}
\end{align*}
$$

Replacing f^{\prime} by f in the identity above shows the following

Theorem 4.33

If the function $u=g(x)$ has a continuous derivative on the closed interval $[a, b]$, and f is continuous on the range of g, then

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u .
$$

The anti-derivative version of Theorem 4.33 is stated as follows.

Theorem 4.34

Let g be a function with range I and f be a continuous function on I. If g is differentiable on its domain and F is an anti-derivative of f on I, then

$$
\int f(g(x)) g^{\prime}(x) d x=F(g(x))+C
$$

Letting $u=g(x)$ gives $d u=g^{\prime}(x) d x$ and

$$
\int f(u) d u=F(u)+C
$$

Example 4.35. Find $\int\left(x^{2}+1\right)^{2}(2 x) d x$.
Let $u=x^{2}+1$. Then $d u=2 x d x$; thus

$$
\int\left(x^{2}+1\right)^{2}(2 x) d x=\int u^{2} d u=\frac{1}{3} u^{3}+C=\frac{1}{3}\left(x^{2}+1\right)^{3}+C .
$$

Example 4.36. Find $\int \cos (5 x) d x$.

Let $u=5 x$. Then $d u=5 d x$; thus

$$
\int \cos (5 x) d x=\frac{1}{5} \int \cos u d u=\frac{1}{5} \sin u+C=\frac{1}{5} \sin (5 x)+C .
$$

Example 4.37. Find $\int \sec ^{2} x(\tan x+3) d x$.
Let $u=\tan x$. Then $d u=\sec ^{2} x d x$; thus

$$
\int \sec ^{2} x(\tan x+3) d x=\int(u+3) d u=\frac{1}{2} u^{2}+3 u+C=\frac{1}{2} \tan ^{2} x+3 \tan x+C .
$$

On the other hand, let $v=\tan x+3$. Then $d v=\sec ^{2} x d x$; thus

$$
\begin{aligned}
\int \sec ^{2} x(\tan x+3) d x & =\int v d v=\frac{1}{2} v^{2}+C=\frac{1}{2}(\tan x+3)^{2}+C \\
& =\frac{1}{2} \tan ^{2} x+3 \tan x+\frac{9}{2}+C
\end{aligned}
$$

We note that even though the right-hand side of the two indefinite integrals look different, they are in fact the same since C could be any constant, and $\frac{9}{2}+C$ is also any constant.

Chapter 5. Logarithmic, Exponential, and other Transcendental Functions

5.1 Inverse Functions (課本 $\S 5.3$)

Definition 5.1

A function g is the inverse function of the function f if

$$
\begin{equation*}
f(g(x))=x \quad \text { for all } x \text { in the domain of } g \tag{5.1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
g(f(x))=x \quad \text { for all } x \text { in the domain of } f . \tag{5.1.2}
\end{equation*}
$$

The inverse function of f is usually denoted by f^{-1}.

Some important observations about inverse functions:

1. If g is the inverse function of f, then f is the inverse function of g.
2. Note that (5.1.1) implies that
(a) the domain of g is contained in the range of f,
(b) the domain of f contains the range of g,
(c) g is one-to-one since if $g\left(x_{1}\right)=g\left(x_{2}\right)$, then $x_{1}=f\left(g\left(x_{1}\right)\right)=f\left(g\left(x_{2}\right)\right)=x_{2}$
and (5.1.2) implies that
(a) the domain of f is contained in the range of g,
(b) the domain of g contains the range of f,
(c) f is one-to-one since if $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $x_{1}=g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)=x_{2}$.

According to the statements above, the domain of f^{-1} is the range of f, and the range of f^{-1} is the domain of f.

