微積分 MA1001-A 上課筆記(精簡版) 2018.11.13.

Ching-hsiao Arthur Cheng 鄭經斅

Theorem 1.45: Intermediate Value Theorem - 中間值定理

If f is continuous on the closed interval [a, b], $f(a) \neq f(b)$, and k is any number between f(a) and f(b), then there is at least one number c in [a, b] such that f(c) = k.

Theorem 3.8: Mean Value Theorem

If $f : [a, b] \to \mathbb{R}$ is continuous and f is differentiable on (a, b), then there exists a point $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Definition 4.7: Riemann Integrals - 黎曼積分

Let $f : [a, b] \to \mathbb{R}$ be a function. f is said to be Riemann integrable on [a, b] if there exists a real number A such that for every $\varepsilon > 0$, there exists $\delta > 0$ such that if \mathcal{P} is partition of [a, b] satisfying $\|\mathcal{P}\| < \delta$, then any Riemann sums for the partition \mathcal{P} belongs to the interval $(A - \varepsilon, A + \varepsilon)$. Such a number A (is unique and) is called the Riemann integral of f on [a, b] and is denoted by $\int_{[a, b]} f(x) dx$.

4.3 The Fundamental Theorem of Calculus

In this section, we develop a theory which shows a systematic way of finding integrals if the integrand is a continuous function.

Definition 4.22

A function F is an anti-derivative of f on an interval I if F'(x) = f(x) for all x in I.

Theorem 4.23

If F is an anti-derivative of f on an interval I, then G is an anti-derivative of f on the interval I if and only if G is of the form G(x) = F(x) + C for all x in I, where C is a constant. (導函數相同的函數相差一常數)

Proof. It suffices to show the " \Rightarrow " (only if) direction. Suppose that F' = G' = f on I. Then the function h = F - G satisfies h'(x) = 0 for all $x \in I$. By the mean value theorem, for any $a, b \in I$ with $a \neq b$, there exists c in between a and b such that

$$h(b) - h(a) = h'(c)(b - a).$$

Since h'(x) = 0 for all $x \in I$, h(a) = h(b) for all $a, b \in I$; thus h is a constant function.

Theorem 4.24: Mean Value Theorem for Integrals - 積分均值定理

Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Then there exists $c \in [a,b]$ such that $\int_a^b f(x) \, dx = f(c)(b-a) \, .$

Proof. By the Extreme Value Theorem, f has a maximum and a minimum on [a, b]. Let $M = f(x_1)$ and $m = f(x_2)$, where $x_1, x_2 \in [a, b]$, denote the maximum and minimum of f on [a, b], respectively. Then $m \leq f(x) \leq M$ for all $x \in [a, b]$; thus Corollary 4.20 implies that

$$m(b-a) = \int_a^b m \, dx \leqslant \int_a^b f(x) \, dx \leqslant \int_a^b M \, dx = M(b-a) \, .$$

Therefore, the number $\frac{1}{b-a} \int_{a}^{b} f(x) dx \in [m, M]$. By the Intermidiate Value Theorem, there exists c in between x_1 and x_2 such that $f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$.

Theorem 4.25: Fundamental Theorem of Calculus - 微積分基本定理

Let $f:[a,b] \to \mathbb{R}$ be a continuous function, and F be an anti-derivative of f on [a,b]. Then

$$\int_{a}^{b} f(x) dx = F(b) - F(a) .$$

Moreover, if $G(x) = \int_{a}^{x} f(t) dt$ for $x \in [a, b]$, then G is an anti-derivative of f.

We note that for $x \in [a, b]$, f is continuous on [a, x]; thus f is Riemann integrable on [a, x] which shows that $G(x) = \int_a^x f(t) dt$ is well-defined.

Proof of the Fundamental Theorem of Calculus. Note that for $h \neq 0$ such that $x + h \in [a, b]$, we have

$$\frac{G(x+h) - G(x)}{h} = \frac{1}{h} \Big[\int_{a}^{x+h} f(t) \, dt - \int_{a}^{x} f(t) \, dt \Big] = \frac{1}{h} \int_{x}^{x+h} f(t) \, dt \, .$$

By the Mean Value Theorem for Integrals, there exists c = c(h) in between x and x + h such that $\frac{1}{h} \int_{x}^{x+h} f(t) dt = f(c)$. Since f is continuous on [a, b], $\lim_{h \to 0} f(c) = \lim_{c \to x} f(c) = f(x)$; thus C(x+h) = C(x).

$$\lim_{h \to 0} \frac{G(x+h) - G(x)}{h} = \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t) \, dt = \lim_{h \to 0} f(c) = f(x)$$

which shows that G is an anti-derivative of f on [a, b].

By Theorem 4.23, G(x) = F(x) + C for all $x \in [a, b]$. By the fact that G(a) = 0, C = -F(a); thus

$$\int_{a}^{b} f(x) dx = G(b) = F(b) - F(a)$$

which concludes the theorem.

Example 4.26. Since an anti-derivative of the function $y = x^q$, where $q \neq -1$ is a rational number, is $y = \frac{x^{q+1}}{q+1}$, we find that

$$\int_{a}^{b} x^{q} dx = \frac{x^{q+1}}{q+1} \Big|_{x=b} - \frac{x^{q+1}}{q+1} \Big|_{x=a} = \frac{b^{q+1} - a^{q+1}}{q+1}.$$

Example 4.27. Since an anti-derivative of the sine function is negative of cosine, we find that

$$\int_{a}^{b} \sin x \, dx = (-\cos)(b) - (-\cos)(b) = \cos b - \cos a \, .$$

Theorem 4.28

Let $f : [a, b] \to \mathbb{R}$ be continuous and f is differentiable on (a, b). If f' is Riemann integrable on [a, b], then $\int_{a}^{b} f'(x) \, dx = f(b) - f(a) \,.$

Remark 4.29. If f' is continuous on [a, b], then the theorem above is simply a direct consequence of the Fundamental Theorem of Calculus. The theorem above can be viewed as a generalization of the Fundamental Theorem of Calculus.

Proof of Theorem 4.28. Let $\varepsilon > 0$ be given, and define $A = \int_a^b f'(x) dx$. By the definition of the integrability there exists $\delta > 0$ such that if $\mathcal{P} = \{a = x_0 < x_1 < \cdots < x_n = b\}$ is

a partition of [a, b] satisfying $||\mathcal{P}|| < \delta$, then any Riemann sums of f for \mathcal{P} belongs to the interval $(A - \varepsilon, A + \varepsilon)$.

Let $\mathcal{P} = \{a = x_0 < x_1 < \cdots < x_n = b\}$ be a partition of [a, b] satisfying that $\|\mathcal{P}\| < \delta$. Then by the mean value theorem, for each $1 \leq i \leq n$ there exists $x_{i-1} < c < x_i$ such that $f(x_i) - f(x_{i-1}) = f'(c_i)(x_i - x_{i-1})$. Since

$$\sum_{i=1}^{n} f'(c_i)(x_i - x_{i-1})$$

is a Riemann sum of f for \mathcal{P} , we must have

$$\left|\sum_{i=1}^n f'(c_i)(x_i-x_{i-1})-A\right|<\varepsilon.$$

On the other hand, by the fact that

$$\sum_{i=1}^{n} f'(c_i)(x_i - x_{i-1}) = \sum_{i=1}^{n} \left[f(x_i) - f(x_{i-1}) \right]$$

= $f(x_1) - f(x_0) + f(x_2) - f(x_1) + \dots + f(x_n) - f(x_{n-1})$
= $f(x_n) - f(x_0) = f(b) - f(a)$,

we conclude that

$$\left|f(b) - f(a) - \int_{a}^{b} f'(x) \, dx\right| < \varepsilon \,.$$

Since $\varepsilon > 0$ is chosen arbitrarily, we find that $\int_{a}^{b} f'(x) \, dx = f(b) - f(a)$.

Definition 4.30

An anti-derivative of f, if exists, is denoted by $\int f(x) dx$, and sometimes is also called an indefinite integral of f.