微積分 MA1001－A 上課筆記（精簡版） 2018．10．23．

Theorem 3．2：Extreme Value Theorem－極值定理

If f is continuous on a closed interval $[a, b]$ ，then f has both a minimum and a maximum on the interval．（連續函數在閉區間上必有最大最小值）

Definition 3.4

Let f be defined on an open interval containing c ．The number／point c is called a critical number or critical point of f if $f^{\prime}(c)=0$ or if f is not differentiable at c ．

Theorem 3.5

If f has a relative minimum or relative maximum at $x=c$ ，then c is a critical point of f ．

The way to find extrema of a continuous function f on a closed interval $[a, b]$ ：
1．Find the critical points of f in (a, b) ．
2．Evaluate f at each critical points in (a, b) ．
3．Evaluate f at the end－points of $[a, b]$ ．
4．The least of these values is the minimum，and the greatest is the maximum．

Theorem 3．7：Rolle＇s Theorem

Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function and f is differentiable on (a, b) ．If $f(a)=f(b)$ ，then there is at least one point $c \in(a, b)$ such that $f^{\prime}(c)=0$ ．

Theorem 3．8：Mean Value Theorem

If $f:[a, b] \rightarrow \mathbb{R}$ is continuous and f is differentiable on (a, b) ，then there exists a point $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} .
$$

We also prove，by the Mean Value Theorem，that

$$
\begin{array}{ll}
|\sin x-\sin y| \leqslant|x-y| & \forall x, y \in \mathbb{R}, \\
|\cos x-\cos y| \leqslant|x-y| & \forall x, y \in \mathbb{R} .
\end{array}
$$

3.3 Monotone Functions and the First Derivative Test

Definition 3.11

Let f be defined on an interval I.

1. f is said to be increasing on I if

$$
f\left(x_{1}\right) \leqslant f\left(x_{2}\right) \quad \forall x_{1}, x_{2} \in I \text { and } x_{1}<x_{2} .
$$

2. f is said to be decreasing on I if

$$
f\left(x_{1}\right) \geqslant f\left(x_{2}\right) \quad \forall x_{1}, x_{2} \in I \text { and } x_{1}<x_{2} .
$$

3. f is said to be strictly increasing on I if

$$
f\left(x_{1}\right)<f\left(x_{2}\right) \quad \forall x_{1}, x_{2} \in I \text { and } x_{1}<x_{2} .
$$

4. f is said to be strictly decreasing on I if

$$
f\left(x_{1}\right)>f\left(x_{2}\right) \quad \forall x_{1}, x_{2} \in I \text { and } x_{1}<x_{2} .
$$

When f is either increasing on I or decreasing on I, then f is said to be monotone. When f is either strictly increasing on I or strictly decreasing on I, then f is said to be strictly monotone on I.

Remark 3.12. Note that f is increasing on I if

$$
\frac{f\left(x_{1}\right)-f\left(x_{2}\right)}{x_{1}-x_{2}} \geqslant 0 \quad \forall x_{1}, x_{2} \in I \text { and } x_{1} \neq x_{2} .
$$

Therefore, f is increasing on I if the slope of each secant line of the graph of f is nonnegative. Similar conclusions hold for the other cases.

Example 3.13. The function $f(x)=x^{3}$ is strictly increasing on \mathbb{R}, and $f(x)=-x^{3}$ is strictly decreasing on \mathbb{R}.
Example 3.14. The sine function is strictly increasing on $\left[2 n \pi-\frac{\pi}{2}, 2 n \pi+\frac{\pi}{2}\right]$ for all $n \in \mathbb{Z}$, but decreasing on $\left[2 n \pi-\frac{\pi}{2}, 2 n \pi+\frac{3 \pi}{2}\right]$ for all $n \in \mathbb{Z}$. However, the sine function is not strictly increasing on $\bigcup_{n=-\infty}^{\infty}\left[2 n \pi-\frac{\pi}{2}, 2 n \pi+\frac{\pi}{2}\right]$ and is not strictly decreasing on $\bigcup_{n=-\infty}^{\infty}\left[2 n \pi-\frac{\pi}{2}, 2 n \pi+\frac{3 \pi}{2}\right]$.

Theorem 3.15

Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and f is differentiable on (a, b).

1. If $f^{\prime}(x) \geqslant 0$ for all $x \in(a, b)$, then f is increasing on $[a, b]$.
2. If $f^{\prime}(x) \leqslant 0$ for all $x \in(a, b)$, then f is decreasing on $[a, b]$.
3. If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then f is strictly increasing on $[a, b]$.
4. If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then f is strictly decreasing on $[a, b]$.

Proof. We only prove 1 since all the other conclusion can be proved in a similar fashion.
Suppose that $f^{\prime}(x) \geqslant 0$, and $x_{1}<x_{2}$. By the Mean Value Theorem, there exists $c \in\left(x_{1}, x_{2}\right)$ such that

$$
\frac{f\left(x_{1}\right)-f\left(x_{2}\right)}{x_{1}-x_{2}}=f^{\prime}(c) \geqslant 0
$$

thus $f\left(x_{1}\right) \leqslant f\left(x_{2}\right)$ if $x_{1}<x_{2}$.
Remark 3.16. The condition $f^{\prime}(x)>0$ is just a sufficient condition for that f is strictly increasing, but not a necessary condition. For example, $f(x)=x^{3}$ is strictly increasing on \mathbb{R}, but $f^{\prime}(0)=0$.

Theorem 3.17: The First Derivative Test

Let f be a continuous function defined on an open interval I containing c. If f is differentiable on I, except possibly at c, then

1. If f^{\prime} changes from negative to positive at c, then $f(c)$ is a local minimum of f.
2. If f^{\prime} changes from positive to negative at c, then $f(c)$ is a local maximum of f.
3. If f^{\prime} is sign definite on $I \backslash\{c\}$, then $f(c)$ is neither a relative minimum or relative maximum of f.

Proof. We only prove 1. Assume that f^{\prime} changes from negative to positive at c. Then there exists a and b in I such that

$$
f^{\prime}(x)<0 \text { for all } x \in(a, c) \text { and } f^{\prime}(x)>0 \text { for all } x \in(c, b) .
$$

By Theorem 3.15, f is decreasing on (a, c) and is increasing on (c, b). Therefore, $f(c)$ is a minimum on an open interval (a, b); thus is a relative minimum on I.

Example 3．18．Find the relative extrema of $f(x)=\frac{1}{2} x-\sin x$ in the interval $(0,2 \pi)$ ．
By Theorem 3.5 the relative extrema occurs at critical points．Since f is differentiable on $(0,2 \pi)$ ，a critical point x satisfies

$$
0=f^{\prime}(x)=\frac{1}{2}-\cos x
$$

which implies that $c=\frac{\pi}{3}$ and $c=\frac{5 \pi}{3}$ are the only critical points．To determine if $f\left(\frac{\pi}{3}\right)$ or $f\left(\frac{5 \pi}{3}\right)$ is a relative minimum，we apply Theorem 3.17 and found that，since f^{\prime} changes from negative to positive at $\frac{\pi}{3}$ and changes from positive to negative at $\frac{5 \pi}{3}, f\left(\frac{\pi}{3}\right)$ is a relative minimum of f on $(0,2 \pi)$ ．

3．4 Concavity（凹性）and the Second Derivative Test

Definition 3.19

Let f be differentiable on an open interval I ．The graph of f is concave upward（凹向上）on I if f^{\prime} is strictly increasing on the interval and concave downward（凹向下）on I if f^{\prime} is strictly decreasing on the interval．

Remark 3．20．It does not really matter if f^{\prime} has to be strictly monotone，instead of just monotone，in order to define the concavity of the graph of f ．Here we define the concavity by the strict monotonicity．
－Graphical interpretation of concavity：Let f be differentiable on an open interval I ．
1．If the graph of f is concave upward on I ，then the graph of f lies above all of its tangent lines on I ．

2．If the graph of f is concave downward on I ，then the graph of f lies below all of its tangent lines on I ．

The following theorem is a direct consequence of Theorem 3．15．

Theorem 3．21：Test for Concavity

Let f be a twice differentiable function on an open interval I ．
1．If $f^{\prime \prime}(x)>0$ for all x in I ，then the graph of f is concave upward on I ．
2．If $f^{\prime \prime}(x)<0$ for all x in I ，then the graph of f is concave downward on I ．

Example 3．22．Determine the open intervals on which the graph of $f(x)=\frac{6}{x^{2}+3}$ is concave upward or concave downward．

First we compute the second derivative of f ：

$$
f^{\prime}(x)=\frac{-12 x}{\left(x^{2}+3\right)^{2}} \Rightarrow f^{\prime \prime}(x)=-12 \frac{\left(x^{2}+3\right)^{2}-2\left(x^{2}+3\right)(2 x) x}{\left(x^{2}+3\right)^{4}}=\frac{36\left(x^{2}-1\right)}{\left(x^{2}+3\right)^{3}}
$$

Therefore，the graph of f is concave upward if $x>1$ and is concave downward if $x<1$ ．

Definition 3．23：Point of inflection（反曲點）

Let f be a differentiable function on an open interval containing c ．The point $(c, f(c))$ is called a point of inflection（or simply an inflection point）of the graph of f if the concavity of f changes from upward to downward or downward to upward at this point．

