微積分 MA1001-A 上課筆記(精簡版) 2018.10.18.

Ching-hsiao Arthur Cheng 鄭經斅

3.1 Extrema on an Interval

Definition 3.1

Let f be defined on an interval I containing c.

1. f(c) is the (absolute, global) minimum of f on I when $f(c) \leq f(x) \ \forall x \in I$.

2. f(c) is the (absolute, global) maximum of f on I when $f(c) \ge f(x) \ \forall x \in I$.

The minimum and maximum of a function on an interval are the extreme values, or extrema (the singular form of extrema is extremum), of the function on the interval. Extrema that occur at the end-points are called end-point extrema.

Theorem 3.2: Extreme Value Theorem - 極值定理

If f is continuous on a closed interval [a, b], then f has both a minimum and a maximum on the interval. (連續函數在閉區間上必有最大最小值)

Definition 3.3

Let f be defined on an interval I containing c.

- 1. If there is an open interval containing c on which f(c) is a maximum, then f(c) is called a relative/local maximum of f.
- 2. If there is an open interval containing c on which f(c) is a minimum, then f(c) is called a relative/local minimum of f.

Definition 3.4

Let f be defined on an open interval containing c. The number/point c is called a critical number or critical point of f if f'(c) = 0 or if f is not differentiable at c.

Theorem 3.5

If f has a relative minimum or relative maximum at x = c, then c is a critical point of f.

Proof. W.L.O.G., we assume that f is differentiable at c. If f'(c) > 0, then there exists $\delta_1 > 0$ such that

$$\left|\frac{f(x) - f(c)}{x - c} - f'(c)\right| < \frac{f'(c)}{2} \quad \text{if} \quad 0 < |x - c| < \delta_1;$$

thus

$$\frac{f'(c)}{2} < \frac{f(x) - f(c)}{x - c} < \frac{3f'(c)}{2} \qquad \text{if} \quad 0 < |x - c| < \delta_1 \,.$$

1. If $0 < x - c < \delta_1$,

$$f(c) + \frac{f'(c)}{2}(x-c) < f(x) < f(c) + \frac{3f'(c)}{2}(x-c)$$

which implies that f cannot attain a relative maximum at x = c since f(x) > f(c) on the right-hand side of c.

2. if $-\delta < x - c < 0$,

$$f(c) + \frac{f'(c)}{2}(x-c) > f(x) > f(c) + \frac{3f'(c)}{2}(x-c)$$

which implies that f cannot attain a relative minimum at x = c since f(c) > f(x) on the left-hand side of c.

Therefore, we conclude that if f'(c) > 0, then f cannot attain either a relative maximum or minimum at x = c. Similar conclusion can be drawn for the case f'(c) < 0; thus if f attains a relative extremum at x = c, then f'(c) = 0.

The way to find extrema of a continuous function f on a closed interval [a, b]:

- 1. Find the critical points of f in (a, b).
- 2. Evaluate f at each critical points in (a, b).
- 3. Evaluate f at the end-points of [a, b].
- 4. The least of these values is the minimum, and the greatest is the maximum.

Example 3.6. Find the extrema of $f(x) = 2 \sin x - \cos 2x$ on the interval $[0, 2\pi]$. Since f is differentiable on $(0, 2\pi)$, a critical point c satisfies

$$0 = f'(c) = 2\cos c + 2\sin 2c = 2\cos c(1 + 2\sin c).$$

Therefore, $c = \frac{\pi}{2}$, $c = \frac{3\pi}{2}$, $c = \frac{7\pi}{6}$ or $c = \frac{11\pi}{6}$, and the values of f at these critical points are

$$f\left(\frac{\pi}{2}\right) = 2 \cdot 1 - (-1) = 3, \qquad f\left(\frac{3\pi}{2}\right) = 2 \cdot (-1) - (-1) = -1,$$

$$f\left(\frac{7\pi}{6}\right) = 2 \cdot \left(-\frac{1}{2}\right) - \frac{1}{2} = -\frac{3}{2}, \qquad f\left(\frac{11\pi}{6}\right) = 2 \cdot \left(-\frac{1}{2}\right) - \frac{1}{2} = -\frac{3}{2}.$$

On the other hand, the values of f at the end-points are

$$f(0) = 2 \cdot 0 - 1 = -1$$
 and $f(2\pi) = 2 \cdot 0 - 1 = -1$

Therefore, $f(\frac{\pi}{2}) = 3$ is the maximum of f on $[0, 2\pi]$, while the minimum of f on $[0, 2\pi]$ occurs at $c = \frac{7\pi}{6}$ and $c = \frac{11\pi}{6}$ and the minimum is $-\frac{3}{2}$.

3.2 Rolle's Theorem and the Mean Value Theorem

Theorem 3.7: Rolle's Theorem

Let $f : [a,b] \to \mathbb{R}$ be a continuous function and f is differentiable on (a,b). If f(a) = f(b), then there is at least one point $c \in (a,b)$ such that f'(c) = 0.

Proof. If f is a constant function, then f'(x) = 0 for all $x \in (a, b)$. Now suppose that f is not a constant function on [a, b], by the Extreme Value Theorem implies that f has a maximum and a minimum on [a, b], and the maximum and the minimum of f on [a, b] are different. Therefore, there must be a point $c \in (a, b)$ at which f attains its extreme value. By Theorem 3.5, f'(c) = 0.

Theorem 3.8: Mean Value Theorem

If $f:[a,b] \to \mathbb{R}$ is continuous and f is differentiable on (a,b), then there exists a point $c \in (a,b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Proof. Define $g : [a,b] \to \mathbb{R}$ by g(x) = [f(x) - f(a)](b-a) - [f(b) - f(a)](x-a). Then $g : [a,b] \to \mathbb{R}$ is continuous and g is differentiable on (a,b). Moreover, g(a) = g(b) = 0; thus the Rolle Theorem implies that there exists $c \in (a,b)$ such that g'(c) = 0. On the other hand,

$$0 = g'(c) = (b - a)f'(c) - [f(b) - f(a)];$$

thus there exists $c \in (a, b)$ satisfying $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Remark 3.9. In fact, by modifying the proof of the mean value theorem a little bit, we can show the following: If $f, g : [a, b] \to \mathbb{R}$ are continuous, f, g are differentiable on (a, b) and $g(a) \neq g(b)$, then there exists $c \in (a, b)$ such that

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)} \,.$$

The statement above is a generalization of the mean value theorem and is called the Cauchy mean value theorem.

Example 3.10. Note that the sine function is continuous on any closed interval [a, b] and is differentiable on (a, b). Therefore, the mean value theorem implies that there exists $c \in (a, b)$ such that

$$\cos c = \frac{d}{dx}\Big|_{x=c} \sin x = \frac{\sin b - \sin a}{b-a}$$

which implies that $|\sin a - \sin b| = |\cos c||a - b| \le |a - b|$. Therefore,

 $|\sin x - \sin y| \le |x - y| \qquad \forall x, y \in \mathbb{R}.$

Similarly,

$$|\cos x - \cos y| \le |x - y| \qquad \forall x, y \in \mathbb{R}.$$