微積分 MA1001－A 上課筆記（精簡版） 2018．10．18．

3．1 Extrema on an Interval

Definition 3.1

Let f be defined on an interval I containing c ．
1．$f(c)$ is the（absolute，global）minimum of f on I when $f(c) \leqslant f(x) \forall x \in I$ ．
2．$f(c)$ is the（absolute，global）maximum of f on I when $f(c) \geqslant f(x) \forall x \in I$ ．
The minimum and maximum of a function on an interval are the extreme values，or extrema（the singular form of extrema is extremum），of the function on the interval． Extrema that occur at the end－points are called end－point extrema．

Theorem 3．2：Extreme Value Theorem－極值定理

If f is continuous on a closed interval $[a, b]$ ，then f has both a minimum and a maximum on the interval．（連續函數在閉區間上必有最大最小值）

Definition 3.3

Let f be defined on an interval I containing c ．
1．If there is an open interval containing c on which $f(c)$ is a maximum，then $f(c)$ is called a relative／local maximum of f ．

2．If there is an open interval containing c on which $f(c)$ is a minimum，then $f(c)$ is called a relative／local minimum of f ．

Definition 3.4

Let f be defined on an open interval containing c ．The number／point c is called a critical number or critical point of f if $f^{\prime}(c)=0$ or if f is not differentiable at c ．

Theorem 3.5

If f has a relative minimum or relative maximum at $x=c$ ，then c is a critical point of f ．

Proof．W．L．O．G．，we assume that f is differentiable at c ．If $f^{\prime}(c)>0$ ，then there exists $\delta_{1}>0$ such that

$$
\left|\frac{f(x)-f(c)}{x-c}-f^{\prime}(c)\right|<\frac{f^{\prime}(c)}{2} \quad \text { if } \quad 0<|x-c|<\delta_{1}
$$

thus

$$
\frac{f^{\prime}(c)}{2}<\frac{f(x)-f(c)}{x-c}<\frac{3 f^{\prime}(c)}{2} \quad \text { if } \quad 0<|x-c|<\delta_{1}
$$

1. If $0<x-c<\delta_{1}$,

$$
f(c)+\frac{f^{\prime}(c)}{2}(x-c)<f(x)<f(c)+\frac{3 f^{\prime}(c)}{2}(x-c)
$$

which implies that f cannot attain a relative maximum at $x=c$ since $f(x)>f(c)$ on the right-hand side of c.
2. if $-\delta<x-c<0$,

$$
f(c)+\frac{f^{\prime}(c)}{2}(x-c)>f(x)>f(c)+\frac{3 f^{\prime}(c)}{2}(x-c)
$$

which implies that f cannot attain a relative minimum at $x=c$ since $f(c)>f(x)$ on the left-hand side of c.

Therefore, we conclude that if $f^{\prime}(c)>0$, then f cannot attain either a relative maximum or minimum at $x=c$. Similar conclusion can be drawn for the case $f^{\prime}(c)<0$; thus if f attains a relative extremum at $x=c$, then $f^{\prime}(c)=0$.

The way to find extrema of a continuous function f on a closed interval $[a, b]$:

1. Find the critical points of f in (a, b).
2. Evaluate f at each critical points in (a, b).
3. Evaluate f at the end-points of $[a, b]$.
4. The least of these values is the minimum, and the greatest is the maximum.

Example 3.6. Find the extrema of $f(x)=2 \sin x-\cos 2 x$ on the interval $[0,2 \pi]$.
Since f is differentiable on $(0,2 \pi)$, a critical point c satisfies

$$
0=f^{\prime}(c)=2 \cos c+2 \sin 2 c=2 \cos c(1+2 \sin c)
$$

Therefore, $c=\frac{\pi}{2}, c=\frac{3 \pi}{2}, c=\frac{7 \pi}{6}$ or $c=\frac{11 \pi}{6}$, and the values of f at these critical points are

$$
\begin{array}{rlrl}
f\left(\frac{\pi}{2}\right) & =2 \cdot 1-(-1)=3, & f\left(\frac{3 \pi}{2}\right)=2 \cdot(-1)-(-1)=-1 \\
f\left(\frac{7 \pi}{6}\right) & =2 \cdot\left(-\frac{1}{2}\right)-\frac{1}{2}=-\frac{3}{2}, & & f\left(\frac{11 \pi}{6}\right)=2 \cdot\left(-\frac{1}{2}\right)-\frac{1}{2}=-\frac{3}{2} .
\end{array}
$$

On the other hand, the values of f at the end-points are

$$
f(0)=2 \cdot 0-1=-1 \quad \text { and } \quad f(2 \pi)=2 \cdot 0-1=-1 .
$$

Therefore, $f\left(\frac{\pi}{2}\right)=3$ is the maximum of f on $[0,2 \pi]$, while the minimum of f on $[0,2 \pi]$ occurs at $c=\frac{7 \pi}{6}$ and $c=\frac{11 \pi}{6}$ and the minimum is $-\frac{3}{2}$.

3.2 Rolle's Theorem and the Mean Value Theorem

Theorem 3.7: Rolle's Theorem

Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function and f is differentiable on (a, b). If $f(a)=f(b)$, then there is at least one point $c \in(a, b)$ such that $f^{\prime}(c)=0$.

Proof. If f is a constant function, then $f^{\prime}(x)=0$ for all $x \in(a, b)$. Now suppose that f is not a constant function on $[a, b]$, by the Extreme Value Theorem implies that f has a maximum and a minimum on $[a, b]$, and the maximum and the minimum of f on $[a, b]$ are different. Therefore, there must be a point $c \in(a, b)$ at which f attains its extreme value. By Theorem 3.5, $f^{\prime}(c)=0$.

Theorem 3.8: Mean Value Theorem

If $f:[a, b] \rightarrow \mathbb{R}$ is continuous and f is differentiable on (a, b), then there exists a point $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Proof. Define $g:[a, b] \rightarrow \mathbb{R}$ by $g(x)=[f(x)-f(a)](b-a)-[f(b)-f(a)](x-a)$. Then $g:[a, b] \rightarrow \mathbb{R}$ is continuous and g is differentiable on (a, b). Moreover, $g(a)=g(b)=0$; thus the Rolle Theorem implies that there exists $c \in(a, b)$ such that $g^{\prime}(c)=0$. On the other hand,

$$
0=g^{\prime}(c)=(b-a) f^{\prime}(c)-[f(b)-f(a)] ;
$$

thus there exists $c \in(a, b)$ satisfying $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

Remark 3.9. In fact, by modifying the proof of the mean value theorem a little bit, we can show the following: If $f, g:[a, b] \rightarrow \mathbb{R}$ are continuous, f, g are differentiable on (a, b) and $g(a) \neq g(b)$, then there exists $c \in(a, b)$ such that

$$
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}
$$

The statement above is a generalization of the mean value theorem and is called the Cauchy mean value theorem.

Example 3.10. Note that the sine function is continuous on any closed interval $[a, b]$ and is differentiable on (a, b). Therefore, the mean value theorem implies that there exists $c \in(a, b)$ such that

$$
\cos c=\left.\frac{d}{d x}\right|_{x=c} \sin x=\frac{\sin b-\sin a}{b-a}
$$

which implies that $|\sin a-\sin b|=|\cos c||a-b| \leqslant|a-b|$. Therefore,

$$
|\sin x-\sin y| \leqslant|x-y| \quad \forall x, y \in \mathbb{R}
$$

Similarly,

$$
|\cos x-\cos y| \leqslant|x-y| \quad \forall x, y \in \mathbb{R}
$$

