微積分 MA1001－A 上課筆記（精簡版） 2018．10．04．

1．3 Infinite Limits and Asymptotes

Definition 1.48

Let f be defined on an open interval containing c（except possible at c ）．The statement

$$
\lim _{x \rightarrow c} f(x)=\infty,
$$

read＂$f(x)$ approaches infinity as x approaches c＂，means that for every $N>0$ there exists $\delta>0$ such that

$$
f(x)>N \text { if } 0<|x-c|<\delta
$$

The statement

$$
\lim _{x \rightarrow c} f(x)=\infty
$$

read＂$f(x)$ approaches minus infinity as x approaches c＂，means that for every $N>0$ there exists $\delta>0$ such that

$$
f(x)<-N \text { if } 0<|x-c|<\delta
$$

To define the infinite limit from the left／right，replace $0<|x-c|<\delta$ by $c<x<$ $c+\delta / c-\delta<x<c$ ．To define the infinite limit as $x \rightarrow \infty / x \rightarrow-\infty$ ，replace $0<|x-c|<\delta$ by $x>\delta / x<-\delta$ ．

Note that the statement $\lim _{x \rightarrow c} f(x)=\infty$ does not mean that the limit exists．It is a simple notation for saying that the value of f becomes unbounded as x approaches c and the limit fail to exist．

Definition 1．51：Vertical Asymptotes－垂直漸近線

If f approaches infinity（or minus infinity）as x approaches c from the left or from the right，then the line $x=c$ is called a vertical asymptote of the graph of f ．

Definition 1．52：Horizontal and Slant（Oblique）Asymptotes－水平與斜漸近線

The straight line $y=m x+k$ is an asymptote of the graph of the function $y=f(x)$ if

$$
\lim _{x \rightarrow \infty}[f(x)-m x-k]=0 \quad \text { or } \quad \lim _{x \rightarrow-\infty}[f(x)-m x-k]=0
$$

The straight line $y=m x+k$ is called a horizontal asymptote of the graph of f if $m=0$ ，and is called a slant（oblique）asymptote of the graph of f if $m \neq 0$ ．

Theorem 1.55

Let f and g be continuous on an open interval containing c. If $f(c) \neq 0, g(c)=0$, and there exists an open interval containing c such that $g(x) \neq 0$ for all $x \neq c$ in the interval, then the graph of the function $h(x)=\frac{f(x)}{g(x)}$ has a vertical asymptote at $x=c$.

Example 1.56. Let $f(x)=\tan x$. Note that $\tan x=\frac{\sin x}{\cos x}$. For $n \in \mathbb{Z}$, $\sin \left(n \pi+\frac{\pi}{2}\right) \neq 0$ and $\cos \left(n \pi+\frac{\pi}{2}\right)=0$. Moreover, $\cos x \neq 0$ for every x in the open interval $\left(n \pi+\frac{\pi}{4}, n \pi+\frac{3 \pi}{4}\right)$ except $n \pi+\frac{\pi}{2}$. Therefore, by the theorem above we find that $x=n \pi+\frac{\pi}{2}$ is a vertical asymptote of the graph of the tangent function for all $n \in \mathbb{Z}$.

Theorem 1.57

If $y=m x+k$ is a slant asymptote of the graph of the function $y=f(x)$, then

$$
m=\lim _{x \rightarrow \infty} \frac{f(x)}{x} \quad \text { or } \quad m=\lim _{x \rightarrow-\infty} \frac{f(x)}{x}
$$

and

$$
k=\lim _{x \rightarrow \infty}[f(x)-m x] \quad \text { of } \quad k=\lim _{x \rightarrow-\infty}[f(x)-m x] .
$$

Proof. It suffices to shows that $m=\lim _{x \rightarrow \infty} \frac{f(x)}{x}$ or $m=\lim _{x \rightarrow-\infty} \frac{f(x)}{x}$. W.L.O.G., we assume that $\lim _{x \rightarrow \infty}[f(x)-m x-k]=0$. Then

$$
\lim _{x \rightarrow \infty} \frac{f(x)-m x-k}{x}=0 .
$$

On the other hand, $\lim _{x \rightarrow \infty} \frac{m x+k}{x}=m$. By the fact that $\frac{f(x)}{x}=\frac{f(x)-m x-k}{x}+\frac{m x+k}{x}$, we find that $\lim _{x \rightarrow \infty} \frac{f(x)}{x}$ exists and

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{x}=\lim _{x \rightarrow \infty}\left[\frac{f(x)-m x-k}{x}\right]+\lim _{x \rightarrow \infty} \frac{m x+k}{x}=m .
$$

Chapter 2. Differentiation

2.1 The Derivatives of Functions

Definition 2.1

Let f be a function defined on an open interval containing c. If the limit $\lim _{\Delta x \rightarrow 0} \frac{f(c+\Delta x)-f(c)}{\Delta x}=m$ exists, then the line passing through $(c, f(c))$ with slope m is the tangent line to the graph of f at point $((c, f(c))$.

Definition 2.2

Let f be a function defined on an open interval I containing $c . f$ is said to be differentiable at c if the limit

$$
\lim _{\Delta x \rightarrow 0} \frac{f(c+\Delta x)-f(c)}{\Delta x}
$$

exists. If the limit above exists, the limit is denoted by $f^{\prime}(c)$ and called the derivative of f at c. When the derivative of f at each point of I exists, f is said to be differentiable on I and the derivative of f is a function denoted by f^{\prime}.

Notation: The prime notation ' is associated with a function (of one variable) and is used to denote the derivative of that function. For a given function f defined on an open interval I and x being the name of the variable, the limit operation

$$
\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

is denoted by $\frac{d}{d x} f(x)$ (or $\frac{d f(x)}{d x}$ or even $\frac{d y}{d x}$ if $y=f(x)$), and the limit

$$
\lim _{\Delta x \rightarrow 0} \frac{f(c+\Delta)-f(c)}{\Delta x}
$$

is denoted by $\left.\frac{d}{d x}\right|_{x=c} f(x)$ but not $\frac{d}{d x} f(c)\left(\frac{d}{d x} f(c)\right.$ is in fact 0$)$. The operator $\frac{d}{d x}$ is a differential operator called the differentiation and is applied to functions of variable x. However, for historical (and convenient) reason, $\frac{d}{d x} f(x)$ is sometimes denoted by $(f(x))^{\prime}$ (so that ' is treated as the differential operator $\frac{d}{d x}$) and f^{\prime} is sometimes denoted by $\frac{d f}{d x}$ (so that f is always treated as a function of variable x).

Remark 2.3. Letting $x=c+\Delta x$ in the definition of the derivatives, then

$$
f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
$$

if the limit exists.
Example 2.4. Let f be a constant function. Then f^{\prime} is the zero function.
Example 2.5. Let $f(x)=x^{n}$, where n is a positive integer. Then

$$
f(x+\Delta x)=x^{n}+C_{1}^{n} x^{n-1} \Delta x+C_{2}^{n} x^{n-2}(\Delta x)^{2}+\cdots+C_{n-1}^{n} x(\Delta x)^{n-1}+(\Delta x)^{n} ;
$$

thus if $\Delta x \neq 0$,

$$
\frac{f(x+\Delta x)-f(x)}{\Delta x}=n x^{n-1}+C_{2}^{n} x^{n-2} \Delta x+\cdots+C_{n-1}^{n} x(\Delta x)^{n-2}+(\Delta x)^{n-1}
$$

The limit on the right-hand side is clearly $n x^{n-1}$, so we establish that

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

Example 2.6. Now suppose that $f(x)=x^{-n}$, where n is a positive integer. Then if $x+\Delta x \neq 0$,

$$
f(x+\Delta x)=\frac{1}{x^{n}+C_{1}^{n} x^{n-1} \Delta x+C_{2}^{n} x^{n-2}(\Delta x)^{2}+\cdots+C_{n-1}^{n} x(\Delta x)^{n-1}+(\Delta x)^{n}} ;
$$

thus if $x \neq 0, \Delta x \neq 0$, and $x+\Delta x \neq 0$ (which can be achieved if $|\Delta x| \ll 1$),

$$
\frac{f(x+\Delta x)-f(x)}{\Delta x}=\frac{-\left[C_{1}^{n} x^{n-1}+C_{2}^{n} x^{n-2} \Delta x+\cdots+C_{n-1}^{n} x(\Delta x)^{n-2}+(\Delta x)^{n-1}\right]}{x^{n}\left[x^{n}+C_{1}^{n} x^{n-1} \Delta x+C_{2}^{n} x^{n-2}(\Delta x)^{2}+\cdots+C_{n-1}^{n} x(\Delta x)^{n-1}+(\Delta x)^{n}\right]} .
$$

Therefore, if $x \neq 0$,

$$
\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=\frac{-n x^{n-1}}{x^{2 n}}=-n x^{-n-1}
$$

which shows $\frac{d}{d x} x^{-n}=-n x^{-n-1}$.
Combining the previous three examples, we conclude that

$$
\frac{d}{d x} x^{n}=\left\{\begin{array}{lll}
n x^{n-1} & \forall x \in \mathbb{R} & \text { if } n \in \mathbb{N} \cup\{0\}, \tag{2.1.1}\\
n x^{n-1} & \forall x \neq 0 & \text { if } n \in \mathbb{Z} \text { and } n<0
\end{array}\right.
$$

