微積分 MA1001－A 上課筆記（精簡版） 2018．09．27．

1.3 Continuity of Functions

Definition 1.34

Let f be a function defined on an interval I, and $c \in I$.

1. f is said to be right-continuous at c (or continuous from the right at c) if

$$
\lim _{x \rightarrow c^{+}} f(x)=f(c) .
$$

2. f is said to be left-continuous at c (or continuous from the left at c) if

$$
\lim _{x \rightarrow c^{-}} f(x)=f(c) .
$$

3. If c is the left end-point of I, f is said to be continuous at c if f is right-continuous at c.
4. If c is the right end-point of I, f is said to be continuous at c if f is left-continuous at c.
5. If c is an interior point of I; that is, c is neither the left end-point nor the right end-point of I, then f is said to be continuous at c if $\lim _{x \rightarrow c} f(x)=f(c)$.
f is said to be discontinuous at c if f is not continuous at c, and in this case c is called a point of discontinuity (or simply a discontinuity) of $f . f$ is said to be continuous (or a continuous function) on I if f is continuous at each point of I.

Example 1.35. Consider the the greatest integer function (also known as the Gauss function or the floor function) $\llbracket \rrbracket \rrbracket: \mathbb{R} \rightarrow \mathbb{R}$ defined by
$\llbracket x \rrbracket=$ the greatest integer which is not greater than x.

Figure 1.8: The greatest integer function $y=\llbracket x \rrbracket$

For example, $\llbracket 2.5 \rrbracket=2$ and $\llbracket-2.5 \rrbracket=-3$. If c is not an integer, $\lim _{x \rightarrow c} \llbracket x \rrbracket=c$, while if c is an integer, we have

$$
\lim _{x \rightarrow c^{+}} \llbracket x \rrbracket=c \quad \text { and } \quad \lim _{x \rightarrow c^{-}} \llbracket x \rrbracket=c-1
$$

Let $f:[0,2] \rightarrow \mathbb{R}$ be given by $f(x)=\llbracket x \rrbracket$. Then the conclusion above shows that f is continuous at every non-integer number, while f is not continuous at 1 (since $\lim _{x \rightarrow 1} f(x)$ does not exist) and 2 (since $\left.\lim _{x \rightarrow 2^{-}} f(x) \neq f(2)\right)$. On the other hand, $\lim _{x \rightarrow 0^{+}} f(x)=f(0)$, so f is continuous at 0 .

Therefore, f is continuous at c if c is not an integer, and f is right-continuous at c if c is an integer.

Example 1.36. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
f(x)=\left\{\begin{array}{cl}
x & \text { if } x \in \mathbb{Q} \\
-x & \text { if } x \notin \mathbb{Q}
\end{array}\right.
$$

By the fact that $|f(x)| \leqslant|x|$ for all $x \in \mathbb{R}$, we find that $-|x| \leqslant f(x) \leqslant|x|$ for all $x \in \mathbb{R}$. By the Squeeze Theorem, $\lim _{x \rightarrow 0} f(x)=0=f(0)$; thus f is continuous at 0 . Is f continuous at other numbers?

Example 1.37. Recall the Dirichlet function $f: \mathbb{R} \rightarrow \mathbb{R}$ in Example 1.5 given by

$$
f(x)= \begin{cases}0 & \text { if } x \in \mathbb{Q} \\ 1 & \text { if } x \notin \mathbb{Q}\end{cases}
$$

We have explained (but not proven) that the limit $\lim _{x \rightarrow c} f(x)$ does not exist for all $c \in(0, \infty)$; thus f is discontinuous at all real numbers.

Example 1.38. Let $f(x)=x^{n}$, where n is a positive integer. We have shown that $\lim _{x \rightarrow c} x^{n}=$ c^{n} for all real numbers c; thus f is continuous on \mathbb{R}.

Example 1.39. Recall the function $f:(0, \infty) \rightarrow \mathbb{R}$ in Example 1.6 given by

$$
f(x)= \begin{cases}\frac{1}{p} & \text { if } x=\frac{q}{p}, \text { where } p, q \in \mathbb{N} \text { and }(p, q)=1 \\ 0 & \text { if } x \text { is irrational }\end{cases}
$$

We have explained (but not proven) that $\lim _{x \rightarrow c} f(x)=0$ for all $c \in(0, \infty)$. Therefore, f is continuous at all irrational numbers but is discontinuous at all rational numbers.

Remark 1.40. Let I be an interval, $c \in I$, and $f: I \rightarrow \mathbb{R}$ be a function. The continuity of f at c is equivalent to that for every $\varepsilon>0$, there exists $\delta>0$ such that

$$
|f(x)-f(c)|<\varepsilon \text { if }|x-c|<\delta \text { and } x \in I
$$

To see this, we first consider the case that c is an interior point of I. Then by the definition, f is continuous at c if for every $\varepsilon>0$ there exists $\delta>0$ such that

$$
|f(x)-f(c)|<\varepsilon \text { if } 0<|x-c|<\delta
$$

Since $|f(x)-f(c)|<\varepsilon$ automatically holds if $|x-c|=0$, the statement above is equivalent to that

$$
|f(x)-f(c)|<\varepsilon \text { if }|x-c|<\delta .
$$

Now let us look at the case when c is the left end-point of I (so in this case $c \in I$). Then by definition, f is continuous at c if for every $\varepsilon>0$ there exists $\delta>0$ such that

$$
|f(x)-f(c)|<\varepsilon \text { if } 0<x-c<\delta
$$

Again $|f(x)-f(c)|<\varepsilon$ automatically holds if $x-c=0$, the statement above is equivalent to that

$$
|f(x)-f(c)|<\varepsilon \text { if } c \leqslant x<c+\delta .
$$

Note that since c is the left end-point, the set $\{x \mid c \leqslant x<c+\delta\}$ is the same as $\{x||x-c|<$ $\delta, x \in I\}$; thus the statement above is equivalent to that

$$
|f(x)-f(c)|<\varepsilon \text { if }|x-c|<\delta \text { and } x \in I .
$$

Similar argument can be applied to the case when c is the right end-point of I.
Remark 1.41. Discontinuities of functions can be classified into different categories: removable discontinuities and non-removable discontinuities. Let c be a discontinuity of a function f. Then either (1) $\lim _{x \rightarrow c} f(x)$ exists but $\lim _{x \rightarrow c} f(x) \neq f(c)$ or (2) $\lim _{x \rightarrow c} f(x)$ does not exist. If it is the first case, then c is called a removable discontinuity and that means we can adjust/re-define the value of f at c to make it continuous at c. For the second case, no matter what $f(c)$ is, f cannot be continuous at c.

If $\lim _{x \rightarrow c^{+}} f(x)$ and $\lim _{x \rightarrow c^{-}} f(x)$ both exist but are not identical, c is also called a jump discontinuity.

Proposition 1.42

Let f, g be defined on an interval $I, c \in I$, and f, g be continuous at c. Then

1. $f \pm g$ is continuous at c.
2. $f g$ is continuous at c.
3. $\frac{f}{g}$ is continuous at c if $g(c) \neq 0$.

Corollary 1.43

Let f, g be continuous functions on an interval I. Then

1. $f \pm g$ is continuous on I.
2. $f g$ is continuous on I
3. $\frac{f}{g}$ is continuous (on its domain).
