微積分 MA1001－A 上課筆記（精簡版） 2018．09．11．

Ching－hsiao Arthur Cheng 鄭經敘

Chapter 0

Preliminary

0.1 Functions and Their Graphs

Definition 0.1: Real-Valued Functions of a Real Variable

Let $X, Y \subseteq \mathbb{R}$ be subsets of real numbers. A real-valued function f of a real variable x from X to Y is a correspondence that assigns to each element x in X exactly one number y in Y. Here X is called the domain of f and is usually denoted by $\operatorname{Dom}(f)$, Y is called "the" co-domain of f, the number y is called the image of x under f and is usually denoted by $f(x)$, which is called the value of f at x. The range of f, denoted by $\operatorname{Ran}(f)$, is a subset of Y consisting of all images of numbers in X. In other words,

$$
\operatorname{Ran}(f) \equiv \text { the range of } f \equiv\{f(x) \mid x \in X\}
$$

Remark 0.2. Given a way of assignment $x \mapsto f(x)$ without specifying where x is chosen from, we still treat f as a function and $\operatorname{Dom}(f)$ is considered as the collection of all $x \in \mathbb{R}$ such that $f(x)$ is well-defined. For example, $f(x)=x+1$ and $g(x)=\frac{x^{2}-1}{x-1}$ are both considered as functions with

$$
\operatorname{Dom}(f)=\mathbb{R} \quad \text { and } \quad \operatorname{Dom}(g)=\mathbb{R} \backslash\{1\} .
$$

Since $\operatorname{Dom}(f) \neq \operatorname{Dom}(g), f$ and g are considered as different functions even though $f(x)=$ $g(x)$ for all $x \neq 1$.

Terminologies:

1. Explicit form of a function: $y=f(x)$;

2．Implicit form of a function：$F(x, y)=0$ ．（參考影片）

Definition 0.3

A function f is a polynomial function if f takes the form

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

where $a_{0}, a_{1}, a_{2}, \cdots, a_{n}$ are real numbers，called coefficients of the polynomial，and n is a non－negative integer．If $a_{n} \neq 0$ ，then a_{n} is called the leading coefficient，and n is called the degree of the polynomial．A rational function is the quotient of two polynomials．

Definition 0.4

The graph of the function $y=f(x)$ consists of all points $(x, f(x))$ ，where x is in the domain of f ．In other words，

$$
\mathrm{G}(f) \equiv \text { the graph of } f \equiv\{(x, f(x)) \mid x \in \operatorname{Dom}(f)\}
$$

Definition 0．5：Composite Functions

Let f and g be functions．The function $f \circ g$ ，read f circle g ，is the function defined by $(f \circ g)(x)=f(g(x))$ ．The domain of $f \circ g$ is the set of all x in the domain of g such that $g(x)$ is in the domain of f ．In other words，

$$
\operatorname{Dom}(f \circ g)=\{x \in \operatorname{Dom}(g) \mid g(x) \in \operatorname{Dom}(f)\}
$$

Chapter 1

Limits and Continuity

1.1 Limits of Functions

Goal: Given a function f defined "near c ", find the value of f at x when x is "arbitrarily close" to c.

Example 1.1. Consider the function $g(x)=\frac{x^{2}-1}{x-1}$ given in Remark 0.2, and

$$
h(x)=\left\{\begin{array}{cl}
\frac{x^{2}-1}{x-1} & \text { if } x \neq 1 \\
0 & \text { if } x=1
\end{array}\right.
$$

Then the limit of g at 1 should be the same as the limit of h at 1 . Therefore, to consider the limit of a function at a point c, the value of the function at c is not important at all.

