微積分 MA1001－A 上課筆記（精簡版） 2019．01．11．

Ching－hsiao Arthur Cheng 鄭經敘

Chapter 7

Applications of Integration

7.1 Area of a Region between Two Curves

The motivation of integration of functions is finding areas. Let us recall that if $f:[a, b] \rightarrow \mathbb{R}$ is non-negative, then the area A of the region bounded by the graph of f, the x-axis and vertical lines $x=a$ and $x=b$ is the integral of f on $[a, b]$ or in notation,

$$
A=\int_{a}^{b} f(x) d x
$$

The idea above can be extended to the following statement: Let $f, g:[a, b] \rightarrow \mathbb{R}$ be continuous and $g(x) \leqslant f(x)$ for all $x \in[a, b]$, then the area of the region bounded by the graphs of f and g and the vertical lines $x=a$ and $x=b$ is

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

- How about if the graphs of two continuous functions intersect?

Suppose that $f, g:[a, b] \rightarrow \mathbb{R}$ are continuous functions but neither $g(x) \leqslant f(x)$ for all $x \in[a, b]$ nor $f(x) \leqslant g(x)$ for all $x \in[a, b]$. In other words, the graphs of f and g intersect (and transverse). In this case, the area of the region bounded by the graphs of f and g, as well as the vertical lines $x=a$ and $x=b$, is given by

$$
A=\int_{a}^{b}|f(x)-g(x)| d x
$$

To find this integral, in general we need to find all the zeros of the function $h(x)=f(x)-g(x)$ and write the integral as sum of integrals on sub-intervals. To be more precise, suppose that
the distinct zeros of h is given by $\left\{c_{k}\right\}_{k=1}^{n}$ ，where $a \leqslant c_{1}<c_{2}<\cdots<c_{n} \leqslant b$ ，then

$$
\begin{aligned}
A & =\int_{a}^{b}|f(x)-g(x)| d x \\
& =\int_{a}^{c_{1}}|f(x)-g(x)| d x+\sum_{k=1}^{n} \int_{c_{k-1}}^{c_{k}}|f(x)-g(x)| d x+\int_{c_{n}}^{b}|f(x)-g(x)| d x \\
& =\left|\int_{a}^{c_{1}}[f(x)-g(x)] d x\right|+\sum_{k=1}^{n}\left|\int_{c_{k-1}}^{c_{k}}[f(x)-g(x)] d x\right|+\left|\int_{c_{n}}^{b}[f(x)-g(x)] d x\right| .
\end{aligned}
$$

When f, g are continuous function on \mathbb{R} and $h=f-g$ has finitely many distinct zeros $\left\{c_{k}\right\}_{k=1}^{n}$ ，we can also talk about the area of the（bounded）region bounded by the graph of f and g ．This area is given by

$$
A=\sum_{k=1}^{n}\left|\int_{c_{k-1}}^{c_{k}}[f(x)-g(x)] d x\right|
$$

7．2 Volume：The Disk Method（圓盤法）

In the following two sections，the main focus is to develop ways of finding the volume of the so－called solids of revolution（旋轉體），a solid formed by revolving a certain region about a line called the axis of revolution（and usually a line parallel to the x－axis or y－axis）．
Example 7．1．The ball centered at the origin with radius r（usually denoted by $B(0, r)$ or $\left.B_{r}(0)\right)$ ，is a solid of revolution．It can be formed by revolving the region

$$
\mathrm{R}=\left\{(x, y) \mid 0 \leqslant y \leqslant \sqrt{r^{2}-x^{2}}\right\}
$$

about the x－axis．
Example 7．2．A solid torus can be formed by revolving a disk

$$
\mathrm{D}=\left\{(x, y) \mid(x-a)^{2}+y^{2}=r^{2}\right\} \quad(\text { where } 0<a<r)
$$

about the y－axis．

Figure 7．1：A solid torus

Consider the volume of a solid D formed by revolving a region R about the line $y=y_{0}$, where the region R is given by

$$
\mathrm{R}=\left\{(x, y) \mid x \in[a, b], y_{0} \leqslant y \leqslant f(x)\right\}
$$

for some continuous function $f:[a, b] \rightarrow \mathbb{R}$ with $\min _{x \in[a, b]} f(x) \geqslant y_{0}$. Note that the function $y=\pi[f(x)-c]^{2}$ is also continuous on $[a, b]$ thus integrable on $[a, b]$.

Figure 7.2: Disk method
Let $\mathcal{P}=\left\{a=x_{0}<x_{1}<\cdots<x_{n}=b\right\}$ be a partition of $[a, b]$, and $\Delta x_{i}=x_{i}-x_{i-1}$. Then the volume of D is approximated by

$$
\sum_{i=1}^{n} \pi\left[f\left(\xi_{i}\right)-y_{0}\right]^{2} \Delta x_{i}
$$

where $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$ for each $1 \leqslant i \leqslant n$. Note that the sum above is a Riemann sum of the function $y=\pi\left[f(x)-y_{0}\right]^{2}$ for partition \mathcal{P}.

When $\|\mathcal{P}\|$ approaches 0 , we expect that the sum above approaches the volume of D . Since f is continuous on $[a, b]$, the function $y=\pi\left[f(x)-y_{0}\right]^{2}$ is Riemann integrable on $[a, b]$; thus for any given $\varepsilon>0$, there exists $\delta>0$ such that if $\|P\|<\delta$, then any Riemman sum of the function $y=\pi\left[f(x)-y_{0}\right]^{2}$ for \mathcal{P} lies in the interval

$$
\left(\int_{a}^{b} \pi\left[f(x)-y_{0}\right]^{2} d x-\varepsilon, \int_{a}^{b} \pi\left[f(x)-y_{0}\right]^{2} d x+\varepsilon\right) .
$$

In particular, if $\max \left\{x_{i}-x_{i-1} \mid 1 \leqslant i \leqslant n\right\}<\delta$,

$$
\left|\sum_{i=1}^{n} \pi\left[f\left(\xi_{i}\right)-y_{0}\right]^{2} \Delta x_{i}-\int_{a}^{b} \pi\left[f(x)-y_{0}\right]^{2} d x\right|<\varepsilon .
$$

Since $\varepsilon>0$ is arbitrary, we conclude that the volume of D can be computed by

$$
\pi \int_{a}^{b}\left[f(x)-y_{0}\right]^{2} d x
$$

Example 7.3. The volume of the ball $B(0, r)$ is given by

$$
\pi \int_{-r}^{r}\left(\sqrt{r^{2}-x^{2}}\right)^{2} d x=\pi \int_{-r}^{r}\left(r^{2}-x^{2}\right) d x=\left.\pi\left[r^{2} x-\frac{1}{3} x^{3}\right]\right|_{x=-r} ^{x=r}=\frac{4}{3} \pi r^{3}
$$

Example 7.4. The volume of the solid formed by revolving the region bounded by the graphs of $f(x)=2-x^{2}$ and $g(x)=1$ about the line $y=1$ is given by

$$
\begin{aligned}
\pi \int_{-1}^{1}\left[\left(2-x^{2}\right)-1\right]^{2} d x & =\pi \int_{-1}^{1}\left(1-x^{2}\right)^{2} d x=\pi \int_{-1}^{1}\left(1-2 x^{2}+x^{4}\right) d x \\
& =\left.\pi\left[x-\frac{2}{3} x^{3}+\frac{1}{5} x^{5}\right]\right|_{x=-1} ^{x=1}=\frac{16 \pi}{15}
\end{aligned}
$$

Similarly, if D is a solid formed by revolving a region R about the line $x=x_{0}$, where R is given by

$$
\mathrm{R}=\left\{(x, y) \mid y \in[c, d], x_{0} \leqslant x \leqslant g(y)\right\}
$$

for some continuous function $g:[c, d] \rightarrow \mathbb{R}$ with $\min _{y \in[c, d]} g(y) \geqslant x_{0}$, then the volume of D is

$$
\pi \int_{c}^{d}\left[g(y)-x_{0}\right]^{2} d y
$$

A solid of revolution may be formed by revolving a region away from the axis of revolution. In this case, the solid will have holes and the volume of

Suppose that the region R is given by

$$
\mathrm{R}=\left\{(x, y) \mid a \leqslant x \leqslant b, y_{0} \leqslant g(x) \leqslant y \leqslant f(x)\right\}
$$

where $f, g:[a, b] \rightarrow \mathbb{R}$ are continuous functions with $\max _{x \in[a, b]} g(x) \leqslant \min _{x \in[a, b]} f(x)$. Let R_{1} and R_{2} be given by

$$
\mathrm{R}_{1}=\left\{(x, y) \mid a \leqslant x \leqslant b, y_{0} \leqslant y \leqslant f(x)\right\} \quad \text { and } \quad \mathrm{R}_{2}=\left\{(x, y) \mid a \leqslant x \leqslant b, y_{0} \leqslant y \leqslant g(x)\right\}
$$

Then the volume of the solid formed by revolving R about the line $y=y_{0}$ is the volume of the solid formed by revolving R_{1} about the line $y=y_{0}$ minus the volume of the solid formed by revolving R_{2} about the line $y=y_{0}$ and is given by

$$
\pi \int_{a}^{b}\left[\left(f(x)-y_{0}\right)^{2}-\left(g(x)-y_{0}\right)^{2}\right] d x
$$

Similarly, if R is given by

$$
\mathrm{R}=\left\{(x, y) \mid c \leqslant y \leqslant d, x_{0} \leqslant g(y) \leqslant x \leqslant f(y)\right\}
$$

where $f, g:[c, d] \rightarrow \mathbb{R}$ are continuous functions with $\max _{y \in[c, d]} g(y) \leqslant \min _{y \in[c, d]} f(y)$.. Then the volume of the solid formed by revolving R about the line $x=x_{0}$ is given by

$$
\pi \int_{c}^{d}\left[\left(f(y)-x_{0}\right)^{2}-\left(g(y)-x_{0}\right)^{2}\right] d y .
$$

Example 7.5. Find the volume of the solid formed by revolving the region bounded by the graphs of $y=\sqrt{x}$ and $y=x^{2}$ about the x-axis.

The points of intersection of the graphs of the two functions are $x=0$ and $x=1$, and $0 \leqslant x^{2} \leqslant x$ on $[0,1]$. Therefore, the volume of the solid described above is given by

$$
\pi \int_{0}^{1}\left[\sqrt{x}^{2}-\left(x^{2}\right)^{2}\right] d x=\pi \int_{0}^{1}\left(x-x^{4}\right) d x=\left.\pi\left(\frac{1}{2} x^{2}-\frac{1}{5} x^{4}\right)\right|_{x=0} ^{x=1}=\frac{3 \pi}{10}
$$

Example 7.6. The volume of the solid torus given in Example 7.2 is given by

$$
\begin{gathered}
\pi \int_{-r}^{r}\left[\left(a+\sqrt{r^{2}-y^{2}}-0\right)^{2}-\left(a-\sqrt{r^{2}-y^{2}}-0\right)^{2}\right] d y \\
\quad=4 a \pi \int_{-r}^{r} \sqrt{r^{2}-y^{2}} d y=4 a \pi \cdot \frac{\pi r^{2}}{2}=2 \pi^{2} a r^{2}
\end{gathered}
$$

Example 7.7. Find the volume of the solid formed by a ball with 5 inch radius having a cylindrical hole as shown in the following figure.

The volume of the solid described above is given by

$$
\pi \int_{-4}^{4}\left[\left(\sqrt{25-x^{2}}-0\right)^{2}-(3-0)^{2}\right] d x=\frac{256 \pi}{3}
$$

In general, the disk method can be used to compute a solid whose area of cross sections along a particular axis is known. Let D be a solid lies between two planes $x=a$ and $x=b$ $(a<b)$, and the area of the cross section of D taken perpendicular to the x-axis is $A(x)$, then

$$
\text { the volume of } \mathrm{D}=\int_{a}^{b} A(x) d x
$$

Similarly, if D lies between $y=c$ and $y=d(c<d)$, and the area of the cross section of D taken perpendicular to the y-axis is $A(y)$, then

$$
\text { the volume of } \mathrm{D}=\int_{c}^{d} A(y) d y
$$

(a) Cross sections perpendicular to x-axis

(b) Cross sections perpendicular to y-axis

Example 7.8. The volume of a cone with height h and base area A is given by

$$
\int_{0}^{h} \frac{A(h-y)^{2}}{h^{2}} d y=-\left.\frac{A}{h^{2}} \frac{1}{3}(h-y)^{3}\right|_{y=0} ^{y=h}=\frac{1}{3} A h
$$

Example 7.9. Find the volume of the solid of intersection of the two right circular cylinders of radius r whose axes meet at right angles.

Two intersecting cylinders

Solid of intersection

The area of cross sections taken perpendicular to the z-axis is given by

$$
A(z)=\left(2 \sqrt{r^{2}-z^{2}}\right)^{2}=4\left(r^{2}-z^{2}\right) .
$$

Therefore, the volume of the solid of intersection is given by

$$
\int_{-r}^{r} 4\left(r^{2}-z^{2}\right) d z=\frac{16}{3} r^{3} .
$$

