Calculus MA1001－A Sample Midterm 1

National Central University，Oct．29， 2018

Problem 1．定義題或定理敘述題共兩小題！

Problem 2．Compute the following limits（without using L＇Hôpistal＇s rule in Problem 3）．
（1） $\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)}{|x|}$
（2） $\lim _{x \rightarrow 0} \frac{\sqrt[3]{1+x^{2}}-1}{\sin \left(x^{2}\right)}$ ．

Problem 3．Let $f:(-\pi, \pi) \rightarrow \mathbb{R}$ be defined by $f(x)=\left\{\begin{array}{cl}\sin \left(x^{2}\right) \cos (\cot x) & \text { if } x \neq 0, \\ 0 & \text { if } x=0 .\end{array}\right.$ Find the derivatives of f ．

Problem 4．Complete the following．
（1）Show the Cauchy mean value theorem：Let $f, g:[a, b] \rightarrow \mathbb{R}$ be continuous and f, g are differ－ entiable on (a, b) ．Show that if $g(a) \neq g(b)$ and $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$ ，then there exists $c \in(a, b)$ such that

$$
\frac{f(a)-f(b)}{g(a)-g(b)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}
$$

（2）Show that if $f:[a, b] \rightarrow \mathbb{R}$ is continuous and f is twice differentiable on（ a, b ）（that is，$f^{\prime \prime}(x)$ exists for all $x \in(a, b))$ ，then there exists $c \in(a, b)$ such that

$$
f(b)=f(a)+f^{\prime}(a)(b-a)+\frac{f^{\prime \prime}(c)}{2}(b-a)^{2} .
$$

（3）Show that L＇Hôpistal＇s rule：Let $f, g:(a, b) \rightarrow \mathbb{R}$ be differentiable，$c \in(a, b)$ ，and $f(c)=g(c)=$ 0 ．Suppose that $\frac{f(x)}{g(x)}$ and $\frac{f^{\prime}(x)}{g^{\prime}(x)}$ are both defined on (a, b) ，except possibly at c ．Show that if the limit $\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists，then $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$ exists and

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

（4）Use L＇Hôpistal＇s rule to compute the the limit in Problem 1.
Problem 5．Suppose that $f:(0, \infty) \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow(0, \infty)$ are two strictly increasing，differen－ tiable functions satisfying

$$
f(g(x))=x \quad \forall x \in \mathbb{R}, \quad g(f(x))=x \quad \forall x \in(0, \infty)
$$

and $f(a b)=f(a)+f(b)$ for all $a, b>0$ ．Show that $x f^{\prime}(x) g^{\prime}(x)=g(x)$ for all $x>0$ ．
Hint：Differentiate the relation $f(c x)=f(x)+f(c)$ and then let $c=\frac{g(x)}{x}$ ．
Problem 6．Suppose that x and y satisfy the relation $1+x=\sin \left(x+y^{2}\right)$ ．Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at the point $(-1,1)$ using the implicit differentiation．

Problem 7. Let $f:[0,2 \pi] \rightarrow \mathbb{R}$ be given by $f(x)=-2 \cos x-\frac{1}{2} \sin (2 x)$.
(1) Find the inflection points of the graph of f.
(2) Use the second derivative test to find all the relative extrema of f^{\prime}.
(3) Show that $|f(x)-f(y)| \leqslant 3|x-y|$ for all $x, y \in[0,2 \pi]$.

