Calculus II Midterm 3

National Central University, Summer Session 2012, Aug. 28, 2012
Problem 1. (20\%) Find the local maximum and minimum values and saddle points of the function $f(x, y)=e^{y}\left(y^{2}-x^{2}\right)$.

Sol: Since $f_{x}(x, y)=-2 x e^{y}$ and $f_{y}(x, y)=e^{y}\left(y^{2}-x^{2}\right)+2 y e^{y}=e^{y}\left(y^{2}+2 y-x^{2}\right)$, the critical points of f are $(0,0)$ and $(0,-2)$. Moreover, since

$$
\begin{aligned}
& f_{x x}(x, y)=-2 e^{y}, \quad f_{x y}(x, y)=f_{y x}(x, y)=-2 x e^{y} \\
& f_{y y}(x, y)=e^{y}\left(y^{2}+2 y-x^{2}\right)+e^{y}(2 y+2)=e^{y}\left(y^{2}+4 y+2-x^{2}\right),
\end{aligned}
$$

we have

$$
\begin{aligned}
& f_{x x}(0,0)=-2, \quad f_{x y}(0,0)=f_{y x}(0,0)=0, \quad f_{y y}(0,0)=2 \text {; } \\
& f_{x x}(0,-2)=-2 e^{-2}, \quad f_{x y}(0,-2)=f_{y x}(0,-2)=0, \quad f_{y y}(0,-2)=-2 e^{-2} .
\end{aligned}
$$

Let $D(x, y)=f_{x x}(x, y) f_{y y}(x, y)-f_{x y}(x, y)^{2}$,

1. Since $D(0,0)<0,(0,0)$ is a saddle point.
2. Since $D(0,-2)=4 e^{-4}>0$ and $f_{x x}(0,-2)<0, \underline{f \text { attains its local maximum } f(0,-2)=4 e^{-2} \text { at }}$ $(0,-2)$.
3. Since there is no other critical point, there is no local minimum of f.

Problem 2. (20\%) Find the extreme values of $f(x, y, z)=x+2 y$ subject to the constraints $x+y+z=$ 1 and $y^{2}+z^{2}=4$.

Sol: Let $g(x, y, z)=x+y+z-1$ and $h(x, y, z)=y^{2}+z^{2}-4$. Suppose that f attains its extreme value (subject to the constraints) at (x, y, z). Then there exist two constants λ and μ such that

$$
\begin{aligned}
(\nabla f)(x, y, z) & =\lambda(\nabla g)(x, y, z)+\mu(\nabla h)(x, y, z) \\
g(x, y, z) & =0, \quad h(x, y, z)=0
\end{aligned}
$$

or equivalently,

$$
\begin{align*}
1 & =\lambda, \tag{0.1a}\\
2 & =\lambda+2 \mu y, \tag{0.1b}\\
0 & =\lambda+2 \mu z, \tag{0.1c}\\
x+y+z & =1, \tag{0.1d}\\
y^{2}+z^{2} & =4 . \tag{0.1e}
\end{align*}
$$

Using (0.1a) in (0.1b, c), we find that

$$
2 \mu y=-2 \mu z=1
$$

which implies that $y=-z$. Therefore, (0.1e) suggests that $y= \pm \sqrt{2}$ and $z=\mp \sqrt{2}$; thus $x=1$.

1. For $(x, y, z)=(1, \sqrt{2},-\sqrt{2}), f(1, \sqrt{2},-\sqrt{2})=1+2 \sqrt{2}$.
2. For $(x, y, z)=(1,-\sqrt{2}, \sqrt{2}), f(1,-\sqrt{2}, \sqrt{2})=1-2 \sqrt{2}$.

Therefore, the maximum of f subject to $g=h=0$ is $1+2 \sqrt{2}$, and the minimum is $1-2 \sqrt{2}$.

Problem 3. Suppose that the double integral $\iint_{D} 3 x^{2} d A$ can be computed by the iterated integral $\int_{1}^{2} \int_{0}^{\ln x} 3 x^{2} d y d x$. Complete the following.

1. (10%) Directly evaluate the iterated integral.
2. (10%) Sketch the region of integration D.
3. (10%) Evaluate the double integral by reversing the order of integration.

Sol:

1. Integrating in y first:

$$
\int_{1}^{2} \int_{0}^{\ln x} 3 x^{2} d y d x=\left.\int_{1}^{2} 3 x^{2} y\right|_{y=0} ^{y=\ln x} d x=\int_{1}^{2} 3 x^{2} \ln x d x .
$$

Let $u=\ln x$ and $d v=3 x^{2}$. Then $d u=\frac{1}{x} d x$ and $v=x^{3}$. Integrating by parts,

$$
\int_{1}^{2} 3 x^{2} \ln x d x=\left.x^{3} \ln x\right|_{x=1} ^{x=2}-\int_{1}^{2} x^{3} \frac{1}{x} d x=8 \ln 2-\left.\frac{1}{3} x^{3}\right|_{x=1} ^{x=2}=8 \ln 2-\frac{7}{3} .
$$

2. Since $1 \leq x \leq 2,0 \leq y \leq \ln x$, the region is

3. $y=\ln x$ if and only if $x=e^{y}$. Therefore,

$$
\begin{aligned}
\int_{1}^{2} \int_{0}^{\ln x} 3 x^{2} d y d x & =\left.\int_{0}^{\ln 2} x^{3}\right|_{x=e^{y}} ^{x=2} d y=\int_{0}^{\ln 2} 8-e^{3 y} d y=\left.\left(8 y-\frac{1}{3} e^{3 y}\right)\right|_{y=0} ^{y=\ln 2} \\
& =8 \ln 2-\frac{1}{3}\left(e^{3 \ln 2}-1\right)=8 \ln 2-\frac{7}{3}
\end{aligned}
$$

Problem 4. (20\%) Evaluate the double integral $\iint_{D} \arctan \frac{y}{x} d A$ using the polar coordinate, where

$$
D=\left\{(x, y) \mid 1 \leq x^{2}+y^{2} \leq 4,0 \leq y \leq x\right\}
$$

Sol: The region D in polar coordinate can be written as $D=\left\{(r, \theta) \mid 1 \leq r \leq 2,0 \leq \theta \leq \frac{\pi}{4}\right\}$. Therefore,

$$
\iint_{D} \arctan \frac{y}{x} d A=\int_{0}^{\frac{\pi}{4}} \int_{1}^{2} \arctan \frac{r \sin \theta}{r \cos \theta} r d r d \theta=\int_{0}^{\frac{\pi}{4}} \int_{1}^{2} r \theta d r d \theta=\left(\int_{0}^{\frac{\pi}{4}} \theta d \theta\right)\left(\int_{1}^{2} r d r\right)=\frac{3 \pi^{2}}{64}
$$

Problem 5. (20\%) The boundary of a lamina consists of the semicircles $y=\sqrt{1-x^{2}}$ and $y=$ $\sqrt{4-x^{2}}$ together with the portions of the x-axis that join them. Find the center of mass of the lamina if the density ρ at (x, y) is given by $\rho(x, y)=\sqrt{x^{2}+y^{2}}$.
Sol: Let $D=\{(r, \theta) \mid 1 \leq r \leq 2,0 \leq \theta \leq \pi\}$. Then the mass M is

$$
M=\iint_{D} \rho(x, y) d A=\int_{0}^{\pi} \int_{1}^{2} r^{2} d r d \theta=\frac{7 \pi}{3}
$$

and the moment about the x and y-axis are

$$
\begin{aligned}
& M_{x}=\iint_{D} y \rho(x, y) d A=\int_{0}^{\pi} \int_{1}^{2} r^{3} \sin \theta d r d \theta=\frac{15}{2} \\
& M_{y}=\iint_{D} x \rho(x, y) d A=\int_{0}^{\pi} \int_{1}^{2} r^{3} \cos \theta d r d \theta=0
\end{aligned}
$$

Therefore, the center of mass is $\left(\frac{M_{y}}{M}, \frac{M_{x}}{M}\right)=\left(0, \frac{45}{14 \pi}\right)$.
Problem 6. Let D be the intersection of two solid cylinders $x^{2}+y^{2} \leq 1$ and $x^{2}+z^{2} \leq 1$.

1. (20%) Find the volume of D.
2. (20%) Find the surface area of the boundary of D.

Sol: Let $z=f(x, y)=\sqrt{1-x^{2}}$, and $R=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$.

1. The volume of D is

$$
\begin{aligned}
2 \iint_{R} f(x, y) d A & =2 \int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \sqrt{1-x^{2}} d y d x=2 \int_{-1}^{1}\left[\left.\sqrt{1-x^{2}} y\right|_{y=-\sqrt{1-x^{2}}} ^{y=\sqrt{1-x^{2}}}\right] d x \\
& =4 \int_{-1}^{1}\left(1-x^{2}\right) d x=\left.4\left[x-\frac{1}{3} x^{3}\right]\right|_{x=-1} ^{x=1}=\frac{16}{3}
\end{aligned}
$$

2. Since $f_{x}(x, y)=-\frac{x}{\sqrt{1-x^{2}}}$ and $f_{y}(x, y)=0$, we have

$$
\sqrt{1+f_{x}(x, y)^{2}+f_{y}(x, y)^{2}}=\sqrt{1+\frac{x^{2}}{1-x^{2}}}=\frac{1}{\sqrt{1-x^{2}}}
$$

thus the surface area of the boundary of D is

$$
\begin{aligned}
4 \iint_{R} \frac{1}{\sqrt{1-x^{2}}} d A & =4 \int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \frac{1}{\sqrt{1-x^{2}}} d y d x=4 \int_{-1}^{1}\left[\left.\frac{y}{\sqrt{1-x^{2}}}\right|_{y=-\sqrt{1-x^{2}}} ^{y=\sqrt{1-x^{2}}}\right] d x \\
& =4 \int_{-1}^{1} 2 d x=16
\end{aligned}
$$

