Calculus II Midterm 2

National Central University, Summer Session 2012, Aug. 21, 2012

Problem 1. Parametrize the curve

$$
\stackrel{\rightharpoonup}{\mathbf{r}}(t)=\left(e^{2 t} \cos 2 t, 2, e^{2 t} \sin 2 t\right)=e^{2 t} \cos 2 t \stackrel{\rightharpoonup}{\mathbf{i}}+2 \overrightarrow{\mathbf{j}}+e^{2 t} \sin 2 t \stackrel{\rightharpoonup}{\mathbf{k}}
$$

with respect to the arc-length measured from the point where $t=0$ in the direction of increasing t, by completing the following:

1. (5%) Compute $\overrightarrow{\mathbf{r}}^{\prime}(t)$.
2. (10%) Compute the arc-length function $s(t)$.
3. (10%) Invert the arc-length function and derive the arc-length parametrization of $\overrightarrow{\mathbf{r}}(t)$.

Sol:

1. By the definition of the derivative of a vector-valued function,

$$
\begin{aligned}
\stackrel{\rightharpoonup}{\mathbf{r}}^{\prime}(t) & =\left(2 e^{2 t}(\cos 2 t-\sin 2 t), 0,2 e^{2 t}(\sin 2 t+\cos 2 t)\right) \\
& =2 e^{2 t}(\cos 2 t-\sin 2 t) \overrightarrow{\mathbf{i}}+2 e^{2 t}(\sin 2 t+\cos 2 t) \overrightarrow{\mathbf{k}}
\end{aligned}
$$

2. Since $\left|\overrightarrow{\mathbf{r}}^{\prime}(t)\right|=2 e^{2 t} \sqrt{(\cos 2 t-\sin 2 t)^{2}+(\sin 2 t+\cos 2 t)^{2}}=2 \sqrt{2} e^{2 t}$, the arc-length function $s(t)$ is

$$
s(t)=\int_{0}^{t}\left|\overrightarrow{\mathbf{r}}^{\prime}\left(t^{\prime}\right)\right| d t^{\prime}=2 \sqrt{2} \int_{0}^{t} e^{2 t^{\prime}} d t^{\prime}=\left.\sqrt{2} e^{2 t^{\prime}}\right|_{t^{\prime}=0} ^{t^{\prime}=t}=\sqrt{2}\left(e^{2 t}-1\right)
$$

3. Let $s=\sqrt{2}\left(e^{2 t}-1\right)$. Then $t=\frac{1}{2} \ln \left(\frac{s}{\sqrt{2}}+1\right)=\frac{1}{2} \ln \frac{s+\sqrt{2}}{\sqrt{2}}$. Therefore, the arc-length parametrization of $\overrightarrow{\mathbf{r}}(t)$ is

$$
\stackrel{\rightharpoonup}{\mathbf{r}}_{1}(s)=\overrightarrow{\mathbf{r}}\left(\frac{1}{2} \ln \frac{s+\sqrt{2}}{\sqrt{2}}\right)=\left(\frac{s+\sqrt{2}}{\sqrt{2}} \cos \ln \frac{s+\sqrt{2}}{\sqrt{2}}, 2, \frac{s+\sqrt{2}}{\sqrt{2}} \sin \ln \frac{s+\sqrt{2}}{\sqrt{2}}\right) .
$$

Problem 2. (15\%) Let S be the graph of $f(x, y)=x^{2}-4 x y-2 y^{2}+12 x-12 y-1$. What horizontal plane is tangent to the surface S and what is the point of tangency.

Sol: Since $f_{x}(x, y)=2 x-4 y+12$ and $f_{y}(x, y)=-4 x-4 y-12,(x, y)=(-4,1)$ is the only critical point of f. At this point, the tangent plane is horizontal, and the tangent plane is $z=f(-4,1)=-31$.

Problem 3. Let $f(x, y)=\left\{\begin{array}{cl}\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0), \\ 0 & \text { if }(x, y)=(0,0) .\end{array}\right.$

1. (12%) Find the first partial derivative f_{x} and f_{y} for all $(x, y) \in \mathbb{R}^{2}$.
2. (10%) Show that f is differentiable at the origin $(0,0)$.
3. (8%) Show that $f_{x y}(0,0) \neq f_{y x}(0,0)$.
4. (5%) Let $\overrightarrow{\mathbf{u}}=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$. Compute the directional derivative of f_{x} at $(0,0)$ in the direction $\overrightarrow{\mathbf{u}}$. Proof.
5. If $(x, y) \neq(0,0)$, by the quotient rule we find that

$$
\begin{aligned}
f_{x}(x, y) & =\frac{\left[y\left(x^{2}-y^{2}\right)+2 x^{2} y\right]\left(x^{2}+y^{2}\right)-2 x^{2} y\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{y\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)+2 x^{2} y\left[\left(x^{2}+y^{2}\right)-\left(x^{2}-y^{2}\right)\right]}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{x^{4} y-y^{5}+4 x^{2} y^{3}}{\left(x^{2}+y^{2}\right)^{2}} .
\end{aligned}
$$

On the other hand,

$$
f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0-0}{h}=0 .
$$

Therefore,

$$
f_{x}(x, y)=\left\{\begin{array}{cl}
\frac{x^{4} y-y^{5}+4 x^{2} y^{3}}{\left(x^{2}+y^{2}\right)^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

Since $f(x, y)=-f(y, x), f_{y}(x, y)=-f_{x}(y, x)$; thus

$$
f_{y}(x, y)=\left\{\begin{array}{cl}
\frac{-x y^{4}+x^{5}-4 x^{3} y^{2}}{\left(x^{2}+y^{2}\right)^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

2. In order to show that f is differentiable at $(0,0)$, we need to compute the limit

$$
\lim _{(h, k) \rightarrow(0,0)} \frac{f(h, k)-\left[f(0,0)+f_{x}(0,0) h+f_{y}(0,0)\right]}{\sqrt{h^{2}+k^{2}}}=0 .
$$

Nevertheless, letting $h=r \cos \theta$ and $k=r \sin \theta$, we find that

$$
\begin{aligned}
& \lim _{(h, k) \rightarrow(0,0)} \frac{f(h, k)-\left[f(0,0)+f_{x}(0,0) h+f_{y}(0,0)\right]}{\sqrt{h^{2}+k^{2}}}=\lim _{r \rightarrow 0} \frac{f(r \cos \theta, r \sin \theta)}{r} \\
& \quad=\lim _{r \rightarrow 0} \frac{\frac{r^{4}\left(\cos ^{3} \theta \sin \theta-\cos \theta \sin ^{3} \theta\right)}{r^{2}}}{r}=\lim _{r \rightarrow 0} r\left(\cos ^{3} \theta \sin \theta-\cos \theta \sin ^{3} \theta\right)=0 .
\end{aligned}
$$

3. By definition,

$$
f_{x y}(0,0)=\lim _{k \rightarrow 0} \frac{f_{x}(0, k)-f_{x}(0,0)}{k}=\lim _{k \rightarrow 0} \frac{-k^{5} / k^{4}}{k}=-1,
$$

while on the other hand,

$$
f_{y x}(0,0)=\lim _{h \rightarrow 0} \frac{f_{y}(h, 0)-f_{y}(0,0)}{h}=\lim _{h \rightarrow 0} \frac{h^{5} / h^{4}}{h}=1 .
$$

As a consequence, $f_{x y}(0,0) \neq f_{y x}(0,0)$.
4. By definition,

$$
\left(D_{\overrightarrow{\mathbf{u}}} f_{x}\right)\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)=\lim _{h \rightarrow 0} \frac{f_{x}\left(h \frac{\sqrt{2}}{2}, h \frac{\sqrt{2}}{2}\right)-f_{x}(0,0)}{h}=\lim _{h \rightarrow 0} \frac{2 h^{5}\left(\frac{\sqrt{2}}{2}\right)^{3}}{h^{5}}=\frac{\sqrt{2}}{2} .
$$

Problem 4. Let C be the plane curve $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{3}+2 y^{3}=-3 x y\right\}$ (see figure 1 for reference).

Figure 1

1. (10%) Find the line tangent to the curve C at the point $(2,-1)$.
2. (10%) Find the point at which the line tangent to the curve C is horizontal.
3. (10%) Find the point at which the line tangent to the curve C is vertical.

Sol: Let $F(x, y)=x^{3}+2 y^{3}+3 x y$. By the implicit differentiation,

$$
\frac{d y}{d x}=-\frac{F_{x}}{F_{y}}=-\frac{3 x^{2}+3 y}{6 y^{2}+3 x}=-\frac{x^{2}+y}{2 y^{2}+x} .
$$

1. At $(x, y)=(2,-1), \frac{d y}{d x}=-\frac{4-1}{2+2}=-\frac{3}{4}$ which is the slope of the tangent line. Therefore, the tangent line at $(2,-1)$ is

$$
y=-\frac{3}{4}(x-2)-1=-\frac{3}{4} x+\frac{1}{2} .
$$

2. If the tangent line at (a, b) is horizontal, then $a^{2}+b=0$. Moreover, (a, b) being on the curve C suggests that $a^{3}+2 b^{3}+3 a b=0$. Therefore, $a^{3}-2 a^{6}-3 a^{3}=0$ which implies that $a=0$ or $a=-1$. Since (according to the figure) there is no tangent line at the origin, $a=-1$ (and thus $\left.b=-a^{2}=-1\right)$. Therefore, the point at which the line tangent to C is horizontal is $(-1,-1)$.
3. If the tangent line at (a, b) is vertical, then $2 b^{2}+a=0$. Moreover, (a, b) being on the curve C suggests that $a^{3}+2 b^{3}+3 a b=0$. Therefore, $-8 b^{6}+2 b^{3}-6 b^{3}=0$ which implies that $b=0$ or $b=-\frac{1}{\sqrt[3]{2}}$. Since (according to the figure) there is no tangent line at the origin, $b=-\frac{1}{\sqrt[3]{2}}$ (and thus $a=-2 b^{2}=-\sqrt[3]{2}$). Therefore, the point at which the line tangent to C is vertical is $\left(-\sqrt[3]{2},-\frac{1}{\sqrt[3]{2}}\right)$.

Problem 5. Use the chain rule to compute the following partial derivatives.

1. (15%) Let $f(x, y)=\int_{x-y}^{x^{2}+y} \cos \left(t^{2}\right) d t$. Find $f_{x y}$.
2. (15%) Let $z=\sin ^{-1}(x-y)$, and $x=s^{2}+t^{2}$ and $y=1-2 s t$. Show that

$$
\frac{\partial z}{\partial t}=-\frac{2}{\sqrt{2-(s+t)^{2}}} \quad \text { if }-\sqrt{2}<s+t<0
$$

Sol:

1. Let $F(x)=\int_{a}^{x} \cos \left(t^{2}\right) d t$. Then $f(x, y)=F\left(x^{2}+y\right)-F(x-y)$. By the chain rule,

$$
\begin{aligned}
f_{x}(x, y) & =\frac{\partial}{\partial x} F\left(x^{2}+y\right)-\frac{\partial}{\partial x} F(x-y) \\
& =F^{\prime}\left(x^{2}+y\right) \cdot \frac{\partial\left(x^{2}+y\right)}{\partial x}-F^{\prime}(x-y) \cdot \frac{\partial(x-y)}{\partial x} \\
& =2 x \cos \left(x^{2}+y\right)^{2}-\cos (x-y)^{2},
\end{aligned}
$$

where we use the fundamental theorem of calculus to obtain $F^{\prime}(x)=\cos \left(x^{2}\right)$ to proceed the computation. Therefore,

$$
\begin{aligned}
f_{x y}(x, y) & =-2 x \sin \left(x^{2}+y\right)^{2} \cdot \frac{\partial\left(x^{2}+y\right)^{2}}{\partial y}+\sin (x-y)^{2} \cdot \frac{\partial(x-y)^{2}}{\partial y} \\
& =-4 x\left(x^{2}+y\right) \sin \left(x^{2}+y\right)^{2}-2(x-y) \sin (x-y)^{2} .
\end{aligned}
$$

2. Since $\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}}$,

$$
\frac{\partial z}{\partial x}=\frac{1}{\sqrt{1-(x-y)^{2}}} \quad \text { and } \quad \frac{\partial z}{\partial y}=\frac{-1}{\sqrt{1-(x-y)^{2}}}
$$

Therefore, for $s+t<0$,

$$
\begin{aligned}
\frac{\partial z}{\partial t} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t} \\
& =\frac{2 t}{\sqrt{1-\left(s^{2}+t^{2}-1+2 s t\right)^{2}}}-\frac{2 s}{\sqrt{1-\left(s^{2}+t^{2}-1+2 s t\right)^{2}}} \\
& =\frac{2(s+t)}{\sqrt{1^{2}-\left[(s+t)^{2}-1\right]^{2}}}=\frac{2(s+t)}{\sqrt{(s+t)^{2}\left[2-(s+t)^{2}\right]}} \\
& =\frac{2(s+t)}{|s+t| \sqrt{2-(s+t)^{2}}}=-\frac{2}{\sqrt{2-(s+t)^{2}}} .
\end{aligned}
$$

Problem 6. (15\%) Show that the equation of the tangent plane to the elliptic paraboloid $\frac{z}{c}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$ at the point $\left(x_{0}, y_{0}, z_{0}\right)$ can be written as

$$
\begin{equation*}
\frac{2 x x_{0}}{a^{2}}+\frac{2 y y_{0}}{b^{2}}=\frac{z+z_{0}}{c} . \tag{0.1}
\end{equation*}
$$

Proof. Let $F(x, y, z)=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z}{c}$. Since

$$
(\nabla F)(x, y, z)=\left(\frac{2 x}{a^{2}}, \frac{2 y}{b^{2}},-\frac{1}{c}\right)
$$

the normal direction at the point $\left(x_{0}, y_{0}, z_{0}\right)$ is $(\nabla F)\left(x_{0}, y_{0}, z_{0}\right)=\left(\frac{2 x_{0}}{a^{2}}, \frac{2 y_{0}}{b^{2}},-\frac{1}{c}\right)$; thus the tangent plane at $\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
\left(\frac{2 x_{0}}{a^{2}}, \frac{2 y_{0}}{b^{2}}-\frac{1}{c}\right) \cdot\left(x-x_{0}, y-y_{0}, z-z_{0}\right)=0
$$

or

$$
\begin{equation*}
\frac{2 x_{0} x}{a^{2}}+\frac{2 y_{0} y}{b^{2}}-\frac{z}{c}=\frac{2 x_{0}^{2}}{a^{2}}+\frac{2 y_{0}^{2}}{b^{2}}-\frac{z_{0}}{c} . \tag{0.2}
\end{equation*}
$$

Since $\left(x_{0}, y_{0}, z_{0}\right)$ is on the elliptic paraboloid,

$$
\frac{x_{0}^{2}}{a^{2}}+\frac{y_{0}^{2}}{b^{2}}-\frac{z_{0}}{c}=0
$$

thus (0.2) implies that the tangent plane at $\left(x_{0}, y_{0}, z_{0}\right)$ is given by (0.1).

