Calculus II Midterm 2, Sample

National Central University, Spring 2012, May. 5, 2012
Problem 1. (Gradients and directional derivatives) Let a function f of two variables be defined by

$$
f(x, y)=\left\{\begin{array}{cc}
x+y & \text { if } x=0 \text { or } y=0 \\
0 & \text { otherwise }
\end{array}\right.
$$

and $\vec{u}=(\cos \theta, \sin \theta)$ be a unit vector.

1. Compute $D_{\vec{u}} f(0,0)$, the directional derivative of f in the direction \vec{u} at the point $(0,0)$.
2. Compute the gradient of f at the point $(0,0)$.
3. Is $D_{\vec{u}} f(0,0)$ the same as $\nabla f(0,0) \cdot \vec{u}$?
4. Does the existence of the directional derivatives of a function in every direction imply the continuity of this function? Why?

Problem 2. (Chain rule) Let $w=f(x, y, z)$, and (r, θ, z) be the cylindrical coordinate. Show that

$$
\|\nabla f\|^{2}=\left(\frac{\partial w}{\partial \rho}\right)^{2}+\frac{1}{r}\left(\frac{\partial w}{\partial \theta}\right)^{2}+\left(\frac{\partial w}{\partial z}\right)^{2}
$$

Problem 3. (Tangent planes) Let $F(x, y, z)=\cos \left(x+y^{2}+z^{3}\right)-e^{x^{3}+y^{2}+z}$.

1. Find the tangent plane P_{1} for the zero level surface of F at the origin.
2. Let P_{2} be the tangent plane for the zero level surfae of F at the point $(1,0,-1)$. Find the angle between P_{1} and P_{2}.

Problem 4. (Extreme values and saddle points) Find all relative extrema and saddle points of $F(x, y)=2 x y-\frac{1}{2}\left(x^{4}+y^{4}\right)+1$.

Problem 5. (Lagrange multiplier) Let R be the region bounded by the circle $r=1$ and outside the lemniscate $r^{2}=-2 \cos 2 \theta$, and is located on the right half plane (see the shaded region in the graph).

Find the minimum value of the function $f(x, y)=y^{4}+2 x^{2} y^{2}-2 y^{2}$ with (x, y) located in the region R.

Problem 6. (Applications) Let $P_{1}=(0,1), P_{2}=(0,0), P_{3}=(0,-1), P_{4}=(-1,1), P_{5}=(-1,0)$, and $P_{6}=(-1,-1)$ be six points on the plane.

1. Find a straight line L so that the sum of the squared distance

$$
S=\sum_{i=1}^{6} \operatorname{dist}\left(P_{i}, L\right)^{2}
$$

is smallest, where $\operatorname{dist}(P, L)$ denotes the distance from a point P to line L.
2. Fine the least square regression line.

