Calculus II Final Sample

National Central University, Spring 2012, Jun. 17, 2012

Problem 1. Complete the following.

1. Find $\iint_{\Sigma} x d S$ over the part of the parabolic cylinder $z=x^{2} / 2$ that lies inside the first octant part of the cylinder $x^{2}+y^{2}=1$.
2. Find the area of the part of the cylinder $x^{2}+y^{2}=2 a y$ that lies outside the cone $z^{2}=x^{2}+y^{2}$.

Problem 2. Let C the Cardioid with polar representation $r=(1-\sin \theta), 0 \leq \theta \leq 2 \pi$.

1. Use the area formula

$$
A=\frac{1}{2} \oint_{C} x d y-y d x
$$

to compute the area enclosed by the Cardioid by computing the line integral directly.
2. Let $\vec{F}(x, y)=(3 x y, 2 y)$ be a vector field on the plane. Use Green's theorem to compute the line integral $\oint_{C} \stackrel{\rightharpoonup}{F} \cdot d \stackrel{\rightharpoonup}{r}$.
3. Let C_{1} be part of the Cardioid C with $\frac{\pi}{2} \leq \theta \leq \frac{3 \pi}{2}$. Use the fundamental theorem of line integrals to compute the line integral $\int_{C} \vec{G} \cdot d \vec{r}$ where $\vec{G}(x, y)=\left(y e^{x y}, x e^{x y}+2 y\right)$.

Problem 3. Complete the following.

1. Suppose f is a scalar function which has continuous partial derivatives. Use the divergence theorem to show that

$$
\begin{equation*}
\iiint_{D} \frac{\partial f}{\partial x}(x, y, z) d V=\iint_{\Sigma} f(x, y, z) \mathrm{N}_{1}(x, y, z) d S \tag{0.1}
\end{equation*}
$$

where Σ is the boundary of D (or D is enclosed by Σ), and $\overrightarrow{\mathrm{N}}=\left(\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}\right)$ is the outward pointing unit normal to Σ.
2. Let \mathbb{S}^{2} denote the unit sphere centered at the origin. Use (0.1) to compute

$$
\iint_{\mathbb{S}^{2}} x^{2} e^{2 z} d S
$$

You can use the formula $\int x e^{a x} d x=\left(\frac{x}{a}-\frac{1}{a^{2}}\right) e^{a x}$ to reduce the computation.
Problem 4. Let D be the solid given by

$$
\begin{aligned}
(x, y, z) & =\Phi(u, v, w) \\
& =((2+w \cos v) \cos u,(2+w \cos v) \sin u, w \sin v), \quad 0 \leq u \leq 2 \pi, 0 \leq v \leq 2 \pi, 0 \leq w \leq 1
\end{aligned}
$$

whose surface \mathbb{T}^{2} is a torus obtained by rotating the curve $\vec{r}(t)=(2+\cos t, \sin t), 0 \leq \theta \leq 2 \pi$, on the $x z$-plane about the z-axis.

1. Compute the volume of D.
2. Let $\vec{r}(u, v)=\Phi(u, v, 1)$. Then $\vec{r}(u, v)$ with $(u, v) \in[0,2 \pi] \times\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ is a parametrization of Σ. Compute $\vec{r}_{u} \times \vec{r}_{v}$, as well as $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\|$.
3. There are two unit normal vectors $\frac{\stackrel{\rightharpoonup}{r}_{u} \times \vec{r}_{v}}{\left\|\stackrel{\rightharpoonup}{r}_{u} \times \vec{r}_{v}\right\|}$ and $-\frac{\vec{r}_{u} \times \vec{r}_{v}}{\left\|\stackrel{\rightharpoonup}{r}_{u} \times \stackrel{\rightharpoonup}{r}_{v}\right\|}$ at each point $\vec{r}(u, v)$ on Σ. Determine which one is compatible with the outward pointing orientation.
4. Let $\vec{F}(x, y, z)=\left(\ln \left(x^{2}+y^{2}\right), \ln \left(x^{2}+y^{2}\right), \ln \left(x^{2}+y^{2}\right)\right)$. Use the divergence theorem to compute the surface integral $\iint_{\mathbb{T}^{2}} \vec{F} \cdot \overrightarrow{\mathrm{~N}} d S$, where $\stackrel{\rightharpoonup}{\mathrm{N}}$ is the outward point unit normal to \mathbb{T}^{2}.
Problem 5. Let C be a smooth curve on the unit sphere parametrized by

$$
\stackrel{\rightharpoonup}{r}(t)=(\cos (\sin t) \sin t, \sin (\sin t) \sin t, \cos t), \quad 0 \leq t \leq 2 \pi
$$

1. Show that the corresponding curve of $\vec{r}(t)$ on $\theta \phi$-plane consists of two curves C_{1} and C_{2} given by

$$
C_{1}=\{(\theta, \phi) \mid \theta=\sin \phi, 0 \leq \phi \leq \pi\}, \quad C_{2}=\{(\theta, \phi) \mid \theta=\pi-\sin \phi, 0 \leq \phi \leq \pi\}
$$

2. Plot C_{1} and C_{2} on the $\theta \phi$-plane. The curve C divides the unit sphere into two parts, and let Σ be the part containing the point $(0,1,0)$. Identify the corresponding region of Σ on $\theta \phi$-plane.
3. Find the surface area of Σ.
4. Let $\vec{F}(x, y, z)=(y,-x, 0)$ be a vector field in the space. Compute the line integral $\oint_{C} \vec{F} \cdot \vec{T} d s$ by the definition of the line integral.
5. Use Stokes's Theorem to find the line integral $\oint_{C} \vec{F} \cdot \vec{T} d s$.

