Calculus Review 1

National Central University, Spring semester 2012
Problem 1. Compute the following limits.
(1) $\lim _{x \rightarrow 0^{+}} \frac{1-\cos \sqrt{x}}{x}$
(2) $\lim _{x \rightarrow 0^{+}} \frac{\sqrt[3]{1+x}-1}{1-\cos \sqrt{x}}$.

Problem 2. Complete the following.
(1) Let f and g be two functions, and $f(0)=g(0)=0$ for some number $a \in \mathbb{R}$. Suppose that f and g are differentiable at 0 , and $g^{\prime}(0) \neq 0$. Show that

$$
\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\frac{f^{\prime}(0)}{g^{\prime}(0)}
$$

The same conclusion can be drawn if the limit is changed to the right-hand limit or the left-hand limit, as long as f and g are differentiable from the right or the left at 0 .
(2) Use (1) to compute the following limits:
(a) $\lim _{x \rightarrow 0} \frac{\sqrt[3]{1+x^{2}}-1}{\sin x}$
(b) $\lim _{x \rightarrow 0} \frac{\sqrt[3]{1+x^{2}}-1}{x^{2}}$.
(3) Suppose that f is twice continuously differentiable. Use (1) to show that

$$
\lim _{h \rightarrow 0} \frac{f(a+3 h)-4 f(a)+3 f(a-h)}{h^{2}}=6 f^{\prime \prime}(a)
$$

Caution: For (2b) and (3), you cannot simply assign $g(x)=x^{2}$ or $g(h)=h^{2}$ since $g^{\prime}(0)=0$ which is not allowed in order to apply (1).
Problem 3. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be defined by $f(x)=\left\{\begin{array}{cl}x^{\frac{3}{2}} \sin \frac{1}{\sqrt{x}} & \text { if } x \neq 0, \\ 0 & \text { if } x=0 .\end{array}\right.$ Find the derivatives of f.

Problem 4. Suppose that $f:(0, \infty) \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow(0, \infty)$ are two strictly increasing, differentiable functions satisfying

$$
f(g(x))=x \quad \forall x \in \mathbb{R}, \quad g(f(x))=x \quad \forall x \in(0, \infty)
$$

and $f(a b)=f(a)+f(b)$ for all $a, b>0$.
(1) Show that $f^{\prime}(1) g^{\prime}(0)=1$.
(2) Show that $x f^{\prime}(x) g^{\prime}(x)=g(x)$ for all $x>0$.

Problem 5. Suppose that x and y satisfy the relation $1+x=\sin \left(x y^{2}\right)$.
(1) Find $\frac{d y}{d x}$ using the implicit differentiation.
(2) Find the tangent line to the curve at the point $(-1 / 2, \sqrt{7 \pi / 3})$.

Problem 6. Suppose that $f(x)=-\left(2+\frac{\pi}{4}\right) \sin x+x \cos x$ is defined on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
(1) Show that

$$
|f(x)-f(y)| \leq\left(1+\frac{\pi}{2}\right) \frac{\sqrt{2}}{2}|x-y| \quad \forall x, y \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] .
$$

(2) Sketch the graph of f defined in (2) with the information of
(a) intercepts;
(b) interval of increase and decrease;
(c) extreme values and critical points; and
(d) concavity and inflection points.

Problem 7. Show that $x^{3}+x+1=0$ has exactly one solution, and use Newton's method to compute the approximated solution x_{2} with the initial guess $x_{0}=0$.

Problem 8. Find an anti-derivative of $g(x)=x \sin x$.
Hint: Check the derivative of f defined in Problem 1 (2).

