
Calculus Homework 1
National Central University, Spring semester 2012

Problem 1. (10%) Compute the following limits.

(1) lim
x→0

1− cos x

|x| (2) lim
x→0

3
√
1 + x2 − 1

1− cos x
.

Sol.

(1) In class we have shown that lim
x→0

1− cosx

x2
=

1

2
. Therefore,

lim
x→0

1− cosx

|x| = lim
x→0

[1− cosx

x2
|x|

]

= lim
x→0

1− cosx

x2
· lim
x→0

|x| = 1

2
· 0 = 0 .

(2) Since a3 − b3 = (a− b)(a2 + ab+ b2) ,

lim
x→0

3
√
1 + x2 − 1

1− cosx
= lim

x→0

(1 + x2)− 1

(1− cosx)( 3
√

(1 + x2)2 + 3
√
1 + x2 + 1)

= lim
x→0

x2

1− cosx
· lim
x→0

1

( 3
√

(1 + x2)2 + 3
√
1 + x2 + 1)

= 2 · 1
3
=

2

3
. �

Problem 2. Complete the following.

(1) (5%) Let f and g be two functions, and f(a) = g(a) = 0 for some number a ∈ R . Suppose

that f and g are differentiable at a , and g ′(a) 6= 0 . Show that

lim
x→a

f(x)

g(x)
=

f ′(a)

g ′(a)
.

The same conclusion can be drawn if the limit is changed to the right-hand limit or the left-hand

limit, as long as f and g are differentiable from the right or the left at 0 .

(2) (10%) Use (1) to compute the following limits:

(a) lim
x→1

x
3

2 − 1

sin(πx)
(b) lim

x→0

3
√
1 + x2 − 1

1− cosx
.

(3) (5%) Suppose that f is twice continuously differentiable. Use (1) to show that

lim
h→0

f(a+ h)− 2f(a) + f(a− h)

h2
= f ′′(a) .

Hint: For (2b), you cannot simply assign g(x) = 1 − cos x since g ′(0) = 0 which is not allowed in

order to apply (1). However, you can make a slight modification of the limit by letting y = x2 . Then

the original limit becomes the limit of some function of y as y → 0+ . You will have to use similar

technique to compute the limit in (3).



Proof.

(1) Since f(a) = g(a) = 0 , f and g are differentiable at a, and g′(a) 6= 0, by the properties of

limits, we find that

lim
x→a

f(x)

g(x)
= lim

x→a

f(x)−f(a)
x−a

g(x)−g(a)
x−a

=
lim
x→a

f(x)−f(a)
x−a

lim
x→a

g(x)−g(a)
x−a

=
f ′(a)

g′(a)
.

(2) (a) Let f(x) = 3
√
1 + x2 − 1 and g(x) = sin x . Then f ′(0) = 2x

3 3
√

(1+x2)2

∣

∣

∣

x=0
= 0 and g ′(0) =

cos 0 = 1 ; thus

lim
x→0

3
√
1 + x2 − 1

sin x
= 0 .

(b) Let y = x2 . Then lim
x→0

3
√
1 + x2 − 1

1− cos x
= lim

y→0+

3
√
1 + y − 1

1 − cos
√
y
. Let f(y) = 3

√
1 + y − 1 and

g(y) = 1− cos
√
y . Then f ′(0) =

1

3
(1 + y)−

2

3

∣

∣

∣

y=0
= 1/3 and

g ′(0) = lim
h→0+

1− cos
√
h

h
= lim

h→0

1− cos k

k2
=

1

2
.

Therefore,

lim
x→0

3
√
1 + x2 − 1

1− cosx
=

2

3
.

(3) Let k = h2 . Then

lim
h→0

f(a+ h)− 2f(a) + f(a− h)

h2
= lim

k→0+

f(a+
√
k)− 2f(a) + f(a−

√
k)

k

= lim
k→0+

f ′(a+
√
k)

2
√
k

− f ′(a−
√
k)

2
√
k

1
= lim

k→0+

f ′(a+
√
k)− f ′(a−

√
k)

2
√
k

= lim
h→0

f ′(a+ h)− f ′(a− h)

2h
=

1

2
lim
h→0

f ′(a+ h)− f ′(a)

h
+

1

2
lim
h→0

f ′(a)− f ′(a− h)

h

=
1

2
f ′′(a) +

1

2
f ′′(a) = f ′′(a) . �

Problem 3. (10%) Let f :
(

− π

2
,
π

2

)

→ R be defined by f(x) =

{

(1− cos x) sin(cot x) if x 6= 0 ,

0 if x = 0 .
Find the derivatives of f .

Sol. If x 6= 0 ,

f ′(x) = (1− cosx) ′ sin(cotx) + (1− cosx)
[

sin(cotx)
] ′

= sin x sin(cotx) + (1− cos x) cos(cot x)
[

cot x
] ′

= sin x sin(cotx)− (1− cosx) cot x csc x cos(cot x) .



The derivative of f at 0 is f ′(0) = lim
h→0

(1− cosh) sin(cot h)

h
. However, since

−1− cosh

|h| ≤ (1− cosh) sin(cot h)

h
≤ 1− cos h

|h| if h 6= 0 ,

by the Squeeze Theorem and Problem 1(1) , we find that f ′(0) = 0 . Therefore,

f ′(x) =

{

sin x sin(cot x)− (1− cos x) cotx csc x cos(cotx) if x 6= 0 ,

0 if x = 0 .
�

Problem 4. Suppose that f : (0,∞) → R and g : R → (0,∞) are two strictly increasing, differen-

tiable functions satisfying

f(g(x)) = x ∀ x ∈ R , g(f(x)) = x ∀x ∈ (0,∞) ,

and f(ab) = f(a) + f(b) for all a, b > 0 .

(1) (5%) Show that f ′(x) =
f ′(1)

x
for all x > 0 .

(2) (5%) Show that f ′(1)g ′(0) = 1 .

(3) (5%) Show that g ′(x) = g(x)g ′(0) for all x ∈ R .

Proof.

(1) For any c > 0 , f(cx) = f(c) + f(x) . Differentiate both sides with respect to x , we find that

cf ′(cx) = f ′(x) ∀ x > 0 .

This relation holds for all fixed c > 0 ; hence in particular letting c = 1/x we conclude that

f ′(x) =
f ′(1)

x
for all x > 0 .

(2) First of all, we observe that f(1 · 1) = f(1) + f(1) ; hence f(1) = 0 . By letting x = 1 in the

relation g(f(x)) = x , we obtain that g(0) = 1 . By differentiating f(g(x)) = x , we find that

f ′(g(x))g ′(x) = 1 .

Letting x = 0 in the relation above gives us f ′(1)g ′(0) = 1 .

(3) Similarly, since g(f(x)) = x ,

g ′(f(x))f ′(x) = 1 ⇒ g ′(f(x)) =
x

f ′(1)
= g ′(0)x .

Replacing x by g(x) in the relation above, we then conclude that g ′(x) = g ′(0)g(x) . �

Problem 5. Suppose that x and y satisfy the relation y sin(x2) = x sin(y2) .

(1) (5%) Find
dy

dx
using the implicit differentiation.



(2) (5%) Find the tangent line to the curve at the point (1, 0) .

Sol.

(1) Differentiate both sides of y sin(x2) = x sin(y2) with respect to x , we find that

sin(x2)
dy

dx
+ 2xy cos(x2) = sin(y2) + 2xy cos(y2)

dy

dx

⇒
[

sin(x2)− 2xy cos(y2)
]dy

dx
= sin(y2)− 2xy cos(x2)

⇒ dy

dx
=

sin(y2)− 2xy cos(x2)

sin(x2)− 2xy cos(y2)
.

(2) At (1, 0) ,
dy

dx
= 0 ; hence the tangent line to the curve at (1, 0) is y = 0 . �

Problem 6. Complete the following.

(1) (5%) Suppose that f is continuous on [a, b] and is differentiable on (a, b) with |f ′(x)| ≤ M for

all x ∈ (a, b) . Show that

|f(x)− f(y)| ≤ M |x− y| ∀ x, y ∈ [a, b] .

(2) (5%) Suppose that f(x) =
(

2− π

4

)

sin x− x cosx is defined on the interval
[

−π

2
,
π

2

]

. Use (1)

to show that

|f(x)− f(y)| ≤ π

2
|x− y| ∀ x, y ∈

[

−π

2
,
π

2

]

.

(3) (7%) Sketch the graph of f defined in (2) with the information of

(a) intercepts;

(b) interval of increase and decrease;

(c) extreme values and critical points; and

(d) concavity and inflection points.

Proof. (1) By the mean value theorem, there exists z between x and y such that

f(x)− f(y) = f ′(z)(x− y) ⇒ |f(x)− f(y)| = |f ′(z)||x− y| ≤ M |x− y| .

(2) It suffices to show that |f ′(x)| ≤ π

2
for all x ∈

(

−π

2
,
π

2

)

. First of all,

f ′(x) =
(

2− π

4

)

cos x− cosx+ x sin x =
(

1− π

4

)

cosx+ x sin x .

The extreme values of |f | can be obtained by the extreme values of f . In order to find the

extreme values of f ′ , we compute the second derivative of f and obtain that

f ′′(x) = −
(

1− π

4

)

sin x+ sin x+ x cosx =
π

4
sin x+ x cosx ;



hence the critical points of f ′ satisfies
π

4
sin x + x cos x = 0 . In

(

−π

2
,
π

2

)

, there is only one

critical point which is 0 . Comparing the values of f ′ at the critical point and the endpoints,

we find that the absolute maximum of |f ′(x)| occurs at − π

2
or

π

2
; thus

|f ′(x)| ≤
∣

∣f ′
(π

2

)
∣

∣ =
π

2
∀ x ∈

(

−π

2
,
π

2

)

.

(3) There is only one intercept (0,0) since the only solution to tanx = x/c for c > 1 in
(

−π/2, π/2
)

is 0 . There is no critical point since there is no solution to tan x = c/x in
(

− π/2, π/2
)

if

c < 0 . Moreover, f ′ > 0 in
(

−π/2, π/2
)

; hence f is increasing in the interval of interest. (0, 0)

is the inflection point since f ′′ changes sign at x = 0 . f ′′ > 0 if 0 < x < π/2 , and f ′′ < 0 if

−π/2 < x < 0 . Therefore, the graph is concave upward in (0, π/2) , and concave downward in

(−π/2, 0) . In a nutshell, we have the following table

x −π/2 0 π/2
f −(2− π/4) 0 (2− π/4)
f ′ + + +
f ′′ − 0 +

and the graph of f is

O

y

x

y = f (x)

�

Problem 7. (10%) Price elasticity of demand (Ed) is a measure used in economics to show

the responsiveness, or elasticity, of the quantity demanded of a good or service to a change in its

price. More precisely, it gives the percentage change in quantity demanded in response to a one

percent change in price (holding constant all the other determinants of demand, such as income).

For example, if 1% change of the price of certain good results in 1.5% change of the quantity demand

of that good, then the price elasticity of demand is 1.5.

The formula for the coefficient of price elasticity of demand for a good is

Ed = −% change in quantity demand

% change in price
= −∆Qd/Qd

∆P/P
,

where Qd is the quantity demand, and P is the price. The point price elasticity is defined using

Calculus by

Ed = − lim
∆Qd→0

∆Qd/Qd

∆P/P
= − P

Qd
× 1

P ′(Qd)
,



here we treat the price as a function of the quantity demand, and common sense suggests that an

increase of quantity demand results in price drop, that is, P ′(Qd) < 0 for all Qd > 0 .

Elasticities of demand are interpreted as follows:

(1) Perfectly inelastic demand if Ed = 0 ;

(2) Inelastic or relatively inelastic demand if 0 < Ed < 1 ;

(3) Unit elastic, unit elasticity, unitary elasticity, or unitarily elastic demand if Ed = 1 ;

(4) Elastic or relatively elastic demand if 1 < Ed < ∞ ;

(5) Perfectly elastic demand if Ed = ∞ .

Show that the total revenue is maximized at the combination of price and quantity demanded where

the elasticity of demand is unitary.

Hint: The total revenue function R is defined by Qd × P .����� ���������	 
� ������ �������	����� ���� �������
� �
��� ����� ���������	

��� � � �

���� � �����
Proof. The total revenue function R(x) is the same as xP(x) ; thus

R ′(x) = P(x) + xP ′(x) .



At the critical point x0 , P(x0) = −x0P
′(x0) ; hence Ed = 1 at x0 . �

Problem 8. (8%) Show that cosx = 2x has exactly one solution, and use Newton’s method to

compute the approximated solution x2 with the initial guess x0 = 0 .

Proof. Let f(x) = cosx− 2x . Then f(−1) > 0 while f(1) < 0 . By the immediate value theorem we

know that there exists x ∈ [−1, 1] such that f(x) = 0 .

Suppose there are two distinct solutions a and b with a < b (that is, f(a) = f(b) = 0). By the

Rolle theorem, there exists a < c < b such that f ′(c) = 0 . However, f ′(c) = − sin c − 2 < 0 for all

c ∈ R ; hence it is impossible to have two solutions.

Newton’s method gives us the scheme

xn+1 = xn −
f(xn)

f ′(xn)
= xn +

cosxn − 2xn

sin xn + 2

to compute approximated solutions to f(x) = 0 . When x0 = 0 , then x1 = 1/2 ; thus

x2 =
1

2
+

cos 0.5− 1

sin 0.5 + 2
. �

Problem 9. (5%) Find an anti-derivative G(x) of g(x) = x sin x satisfying G
(

π
2

)

= 0 .

Hint: Check the derivative of f defined in Problem 1 (2).

Sol: If f(x) = −
(

2 +
π

4

)

sin x+ x cosx ,

f ′(x) = −
(

2 +
π

4

)

cosx+ cos x− x sin x = −
(

1 +
π

4

)

cosx− x sin x .

Therefore,

f ′(x) +G ′(x) = −
(

1 +
π

4

)

cosx .

However, an anti-derivative of the right-hand side of the equation above is −
(

1 +
π

4

)

sin x ; hence

f(x) +G(x) = −
(

1 +
π

4

)

sin x+ C

for some constant C . This suggests that

G(x) = −
(

1 +
π

4

)

sin x− f(x) + C = sin x− x cosx+ C .

Since G
(

π
2

)

= 0 , C = −1 ; thus G(x) = −
(

1 +
π

4

)

sin x− f(x) + C = sin x− x cosx− 1 . �


