Calculus Quiz 6

1. (5 pts) Suppose that the edge lengths x, y and z of a closed rectangular box are changing at the following rates:

$$
\frac{d x}{d t}=1 \mathrm{~m} / \mathrm{sec}, \quad \frac{d y}{d t}=-2 \mathrm{~m} / \mathrm{sec}, \quad \frac{d z}{d t}=1 \mathrm{~m} / \mathrm{sec}
$$

Find the rates at which the box's a. volume V, b. surface area S, and c. diagonal length $\ell=\sqrt{x^{2}+y^{2}+z^{2}}$ are changing at the instant when $x=4, y=3$, and $z=2$.
Sol.
a. Since $V=x y z$, then

$$
\frac{d V}{d t}=y z \frac{d x}{d t}+x z \frac{d y}{d t}+x y \frac{d z}{d t}
$$

Hence $\left.\frac{d V}{d t}\right|_{(x, y, z)=(4,3,2)}=2 \mathrm{~m}^{3} / \mathrm{sec}$
b. Since $S=2 x y+2 y z+2 x z$, then

$$
\begin{aligned}
& \qquad \frac{d S}{d t}=2(y+z) \frac{d x}{d t}+2(x+z) \frac{d y}{d t}+2(x+y) \frac{d z}{d t} \\
& \text { Hence }\left.\frac{d S}{d t}\right|_{(x, y, z)=(2,3,4)}=0 \mathrm{~m}^{2} / \mathrm{sec} \\
& \text { c. Since } \ell=\sqrt{x^{2}+y^{2}+z^{2}}, \text { then }
\end{aligned}
$$

$$
\begin{aligned}
\frac{d \ell}{d t} & =\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}} \frac{d x}{d t}+\frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}} \frac{d y}{d t}+\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} \frac{d z}{d t} \\
& =\frac{x}{\ell} \frac{d x}{d t}+\frac{y}{\ell} \frac{d y}{d t}+\frac{z}{\ell} \frac{d z}{d t}
\end{aligned}
$$

Since $\left.\ell\right|_{(x, y, z)=(4,3,2)}=\sqrt{29}$, so $\left.\frac{d \ell}{d t}\right|_{(x, y, z)=(4,3,2)}=0 \mathrm{~m} / \mathrm{sec}$.
2. (5 pts)
a. If a and b are positive numbers, find the maximum value of $f(x)=x^{a}(1-x)^{b}, 0 \leq x \leq 1$.
b. Prove that the function $\bar{f}(x)=x^{101}+x^{51}+x+1$ has neither a local maximum nor a local minimum.

Proof.
a. Since $f(x)=x^{a}(1-x)^{b}$, so

$$
\begin{aligned}
f^{\prime}(x) & =a x^{a-1}(1-x)^{b}-b x^{a}(1-x)^{b-1} \\
& =x^{a-1}(1-x)^{b-1}(a-a x-b x)
\end{aligned}
$$

Thus, $f^{\prime}(x)=0 \Leftrightarrow x=0,1$ or $x=\frac{a}{a+b}$. Note that $f(1)=f(0)=0$, and

$$
f\left(\frac{a}{a+b}\right)=\frac{a^{a}}{(a+b)^{a}} \frac{b^{b}}{(a+b)^{b}} \cdot=\frac{a^{a} b^{b}}{(a+b)^{a+b}}>0
$$

since $a, b>0$. Hence the absolute maximum of $f(x)$ is $\frac{a^{a} b^{b}}{(a+b)^{a+b}}$.
b. Suppose there is a local maximum of local minimum of f, then there exists $\alpha \in \mathbb{R}$ such that $f^{\prime}(\alpha)=0$. Thus,
$f^{\prime}(\alpha)=101 \alpha^{100}+51 \alpha^{50}+1=0 \Rightarrow 101 \alpha^{100}+51 \alpha^{50}=-1$ which leads to a contradiction. Therefore f has neither a local maximum nor a local minimum.

