§5．3 Countable Sets

Theorem

The union of denumerable denumerable sets is denumerable．In other words，if \mathcal{F} is a denumerable collection of denumerable sets， then $\bigcup_{A \in \mathcal{F}} A$ is denumerable．

Proof．

Let $\mathcal{F}=\left\{A_{i} \mid i \in \mathbb{N}, A_{i}\right.$ is denumerable $\}$ be an indexed family of denumerable sets，and define $A=\bigcup_{i=1}^{\infty} A_{i}$ ．Since A_{i} is denumerable， we write $A_{i}=\left\{x_{i 1}, x_{i 2}, x_{i 3}, \cdots\right\}$ ．Then $A=\left\{x_{i j} \mid i, j \in \mathbb{N}\right\}$ ．Let $f: \mathbb{N} \times \mathbb{N} \rightarrow A$ be defined by $f(i, j)=x_{i j}$ ．Then $f: \mathbb{N} \times \mathbb{N} \rightarrow A$ is a surjection．Moreover，since $\mathbb{N} \times \mathbb{N} \approx \mathbb{N}$ ，there exists a bijection $g: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$ ；thus $h=f \circ g: \mathbb{N} \rightarrow A$ is a surjection which implies that A is countable．Since $A_{1} \subseteq A, A$ is infinite；thus A is denumerable．

§5．3 Countable Sets

Corollary

The union of countable countable sets is countable（可數個可數集的聯集是可數的）．

Proof．

By adding empty sets into the family or adding \mathbb{N} into a finite set if necessary，we find that the union of countable countable sets is a subset of the union of denumerable denumerable sets．Since a （non－empty）subset of a countable set is countable，we find that the union of countable countable sets is countable．

§5．3 Countable Sets

Corollary

The set of rational numbers \mathbb{Q} is countable．

Proof．

Let \mathbb{Q}^{+}and \mathbb{Q}^{-}denote the collection of positive and negative ra－ tional numbers，respectively．We have shown that the set \mathbb{Q}^{+}is countable．Since $\mathbb{Q}^{+} \approx \mathbb{Q}^{-}$（between them there exists a one－to－ one correspondence $f(x)=-x), \mathbb{Q}^{-}$is also countable．Therefore， the previous theorem $\mathbb{Q}=\mathbb{Q}^{+} \cup \mathbb{Q}^{-} \cup\{0\}$ is countable．

§5．3 Countable Sets

Corollary

（1）If \mathcal{F} is a finite pairwise disjoint family of denumerable sets，then $\bigcup_{A \in \mathcal{F}} A$ is countable．
（2）If A and B are countable sets，then $A \cup B$ is countable．
（3）If \mathcal{F} is a finite collection of countable sets，then $\bigcup_{A \in \mathcal{F}} A$ is count－ able．
（1）If \mathcal{F} is a denumerable family of countable sets，then $\bigcup_{A \in \mathcal{F}} A$ is countable．

