Theorem

The union of denumerable denumerable sets is denumerable. In other words, if \mathcal{F} is a denumerable collection of denumerable sets, then $\bigcup_{A \in \mathcal{F}} A$ is denumerable.

Proof.

Let $\mathcal{F} = \{A_i \mid i \in \mathbb{N}, A_i \text{ is denumerable}\}$ be an indexed family of denumerable sets, and define $A = \bigcup_{i=1}^{\infty} A_i$. Since A_i is denumerable, we write $A_i = \{x_{i1}, x_{i2}, x_{i3}, \dots\}$. Then $A = \{x_{ij} \mid i, j \in \mathbb{N}\}$. Let $f : \mathbb{N} \times \mathbb{N} \to A$ be defined by $f(i, j) = x_{ij}$. Then $f : \mathbb{N} \times \mathbb{N} \to A$ is a surjection. Moreover, since $\mathbb{N} \times \mathbb{N} \approx \mathbb{N}$, there exists a bijection $g : \mathbb{N} \to \mathbb{N} \times \mathbb{N}$; thus $h = f \circ g : \mathbb{N} \to A$ is a surjection which implies that A is countable. Since $A_1 \subseteq A$, A is infinite; thus A is denumerable.

Corollary

The union of countable countable sets is countable(可數個可數集的聯集是可數的).

Proof.

By adding empty sets into the family or adding \mathbb{N} into a finite set if necessary, we find that the union of countable countable sets is a subset of the union of denumerable denumerable sets. Since a (non-empty) subset of a countable set is countable, we find that the union of countable countable sets is countable.

Corollary

The set of rational numbers \mathbb{Q} is countable.

Proof.

Let \mathbb{Q}^+ and \mathbb{Q}^- denote the collection of positive and negative rational numbers, respectively. We have shown that the set \mathbb{Q}^+ is countable. Since $\mathbb{Q}^+ \approx \mathbb{Q}^-$ (between them there exists a one-to-one correspondence f(x) = -x), \mathbb{Q}^- is also countable. Therefore, the previous theorem $\mathbb{Q} = \mathbb{Q}^+ \cup \mathbb{Q}^- \cup \{0\}$ is countable.

Corollary

- If 𝔅 is a finite pairwise disjoint family of denumerable sets, then
 ∪ A is countable.
 A∈𝔅
- **2** If A and B are countable sets, then $A \cup B$ is countable.
- If \mathcal{F} is a finite collection of countable sets, then $\bigcup_{A \in \mathcal{F}} A$ is countable.
- If \mathcal{F} is a denumerable family of countable sets, then $\bigcup_{A \in \mathcal{F}} A$ is countable.

· • @ • • = • • = •