§5．3 Countable Sets

Theorem

Let S be a non－empty set．The following statements are equivalent：
（1）S is countable；
（2）there exists a surjection $f: \mathbb{N} \rightarrow S$ ；
（3）there exists an injection $f: S \rightarrow \mathbb{N}$ ．

Proof．

＂（1）\Rightarrow（2）＂First suppose that $S=\left\{x_{1}, \cdots, x_{n}\right\}$ is finite．Define $f: \mathbb{N} \rightarrow S$ by

$$
f(k)= \begin{cases}x_{k} & \text { if } k<n, \\ x_{n} & \text { if } k \geqslant n .\end{cases}
$$

Then $f: \mathbb{N} \rightarrow S$ is a surjection．Now suppose that S is denumerable．Then by definition of countability，there exists $f: \mathbb{N} \xrightarrow[\text { onto }]{\frac{1-1}{\longrightarrow}} S$ ．

§5．3 Countable Sets

（1）S is countable；
（2）there exists a surjection $f: \mathbb{N} \rightarrow S$ ；

Proof．（Cont＇d）．

＂（1）$\Leftarrow(2)$＂W．L．O．G．we assume that S is an infinite set．Let $k_{1}=1$ ． Since $\#(S)=\infty, S_{1} \equiv S-\left\{f\left(k_{1}\right)\right\} \neq \varnothing$ ；thus $N_{1} \equiv f^{-1}\left(S_{1}\right)$ is a non－empty subset of \mathbb{N} ．By the well－ordered principle（WOP）of \mathbb{N}, N_{1} has a smallest element denoted by k_{2} ．Since $\#(S)=\infty$ ， $S_{2}=S-\left\{f\left(k_{1}\right), f\left(k_{2}\right)\right\} \neq \varnothing$ ；thus $N_{2} \equiv f^{-1}\left(S_{2}\right)$ is a non－empty subset of \mathbb{N} and possesses a smallest element denoted by k_{3} ． We continue this process and obtain a set $\left\{k_{1}, k_{2}, \cdots\right\} \subseteq \mathbb{N}$ ， where $k_{1}<k_{2}<\cdots$ ，and k_{j} is the smallest element of $N_{j-1} \equiv$ $f^{-1}\left(S-\left\{f\left(k_{1}\right), f\left(k_{2}\right), \cdots, f\left(k_{j-1}\right)\right\}\right)$ ．

§5．3 Countable Sets

Proof．（Cont＇d）．

Claim：$f:\left\{k_{1}, k_{2}, \cdots\right\} \rightarrow S$ is one－to－one and onto．
Proof of claim：The injectivity of f is easy to see since $f\left(k_{j}\right) \notin\left\{f\left(k_{1}\right), f\left(k_{2}\right), \cdots, f\left(k_{j-1}\right)\right\}$ for all $j \geqslant 2$ ．For sur－ jectivity，assume the contrary that there is $s \in S$ such that $s \notin f\left(\left\{k_{1}, k_{2}, \cdots\right\}\right)$ ．Since $f: \mathbb{N} \rightarrow \mathbb{S}$ is onto，$f^{-1}(\{s\})$ is a non－ empty subset of \mathbb{N} ；thus possesses a smallest element k ．Since $s \notin f\left(\left\{k_{1}, k_{2}, \cdots\right\}\right)$ ，there exists $\ell \in \mathbb{N}$ such that $k_{\ell}<k<k_{\ell+1}$ ． Therefore，$k \in N_{\ell}$ and $k<k_{\ell+1}$ which contradicts to the fact that $k_{\ell+1}$ is the smallest element of N_{ℓ} ．

Let $g: \mathbb{N} \rightarrow\left\{k_{1}, k_{2}, \cdots\right\}$ be defined by $g(j)=k_{j}$ ．Then g is one－to－one and onto；thus $h=g \circ f: \mathbb{N} \xrightarrow[\text { onto }]{1-1} S$ ．

§5．3 Countable Sets

（1）S is countable；
（3）there exists an injection $f: S \rightarrow \mathbb{N}$ ．

Proof．（Cont＇d）．

＂（1）\Rightarrow（3）＂If $S=\left\{x_{1}, \cdots, x_{n}\right\}$ is finite，we simply let $f: S \rightarrow \mathbb{N}$ be $f\left(x_{n}\right)=n$ ．Then f is clearly an injection．If S is denumerable， by definition there exists $g: \mathbb{N} \xrightarrow[\text { onto }]{1-1} S$ which implies that $f=$ $g^{-1}: S \rightarrow \mathbb{N}$ is an injection．

§5．3 Countable Sets

（1）S is countable；
（3）there exists an injection $f: S \rightarrow \mathbb{N}$ ．

Proof．（Cont＇d）．

＂（1）$\Leftarrow(3) "$ Let $f: S \rightarrow \mathbb{N}$ be an injection．If f is also surjective，then $f: S \xrightarrow[\text { onto }]{\stackrel{1-1}{\longrightarrow}} \mathbb{N}$ which implies that S is denumerable．Now suppose that $f(S) \subsetneq \mathbb{N}$ ．Since S is non－empty，there exists $s \in S$ ．Let $g: \mathbb{N} \rightarrow S$ be defined by

$$
g(n)=\left\{\begin{array}{cc}
f^{-1}(n) & \text { if } n \in f(S) \\
s & \text { if } n \notin f(S)
\end{array}\right.
$$

Then clearly $g: \mathbb{N} \rightarrow S$ is surjective；thus the equivalence between（1）and（2）implies that S is countable．

§5．3 Countable Sets

Example

We have seen that the set $\mathbb{N} \times \mathbb{N}$ is countable．Now consider the $\operatorname{map} f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(m, n)=2^{m} 3^{n}$ ．This map is not a bijection；however，it is an injection；thus the theorem above implies that $\mathbb{N} \times \mathbb{N}$ is countable．

Example

The set \mathbb{Q}^{+}of positive rational numbers is denumerable．Since \mathbb{Q}^{+} is infinite，it suffice to check the countability of \mathbb{Q}^{+}．Consider the map $f: \mathbb{N}^{2} \rightarrow \mathbb{Q}^{+}$defined by $f(m, n)=\frac{m}{n}$ ．Then f is onto \mathbb{Q}^{+}；thus the theorem above implies that \mathbb{Q}^{+}is countable．

§5．3 Countable Sets

Theorem

Any non－empty subset of a countable set is countable．

Proof．

Let S be a countable set，and A be a non－empty subset of S ．Since S is countable，by the previous theorem there exists a surjection $f: \mathbb{N} \rightarrow S$ ．On the other hand，since A is a non－empty subset of S ， there exists $a \in A$ ．Define

$$
g(x)= \begin{cases}x & \text { if } x \in A, \\ a & \text { if } x \notin A .\end{cases}
$$

Then $g: S \rightarrow A$ is a surjection；thus $h=g \circ f: \mathbb{N} \rightarrow A$ is also a surjection．The previous theorem shows that A is countable．

Corollary

A set A is countable if and only if $A \approx S$ for some $S \subseteq \mathbb{N}$ ．

