Theorem

Let S be a non-empty set. The following statements are equivalent:

S is countable;

onto

2 there exists a surjection $f : \mathbb{N} \to S$;

() there exists an injection $f: S \to \mathbb{N}$.

Proof.

"(1) \Rightarrow (2)" First suppose that $S = \{x_1, \dots, x_n\}$ is finite. Define $f: \mathbb{N} \to S$ by $f(k) = \begin{cases} x_k & \text{if } k < n, \\ x_n & \text{if } k \ge n. \end{cases}$ Then $f: \mathbb{N} \to S$ is a surjection. Now suppose that S is denumerable. Then by definition of countability, there exists $f: \mathbb{N} \xrightarrow{1-1} S$

イロト イヨト イヨト イヨト

- S is countable;
- **2** there exists a surjection $f: \mathbb{N} \to S$;

Proof. (Cont'd).

"(1) \leftarrow (2)" W.L.O.G. we assume that S is an infinite set. Let $k_1 = 1$. Since $\#(S) = \infty$, $S_1 \equiv S - \{f(k_1)\} \neq \emptyset$; thus $N_1 \equiv f^{-1}(S_1)$ is a non-empty subset of \mathbb{N} . By the well-ordered principle (**WOP**) of N, N_1 has a smallest element denoted by k_2 . Since $\#(S) = \infty$, $S_2 = S - \{f(k_1), f(k_2)\} \neq \emptyset$; thus $N_2 \equiv f^{-1}(S_2)$ is a non-empty subset of \mathbb{N} and possesses a smallest element denoted by k_3 . We continue this process and obtain a set $\{k_1, k_2, \dots\} \subseteq \mathbb{N}$, where $k_1 < k_2 < \cdots$, and k_i is the smallest element of $N_{i-1} \equiv$ $f^{-1}(S - \{f(k_1), f(k_2), \cdots, f(k_{i-1})\}).$

Proof. (Cont'd).

Claim: $f: \{k_1, k_2, \dots\} \rightarrow S$ is one-to-one and onto. **Proof of claim**: The injectivity of f is easy to see since $f(k_i) \notin \{f(k_1), f(k_2), \cdots, f(k_{i-1})\}$ for all $j \ge 2$. For surjectivity, assume the contrary that there is $s \in S$ such that $s \notin f(\{k_1, k_2, \dots\})$. Since $f \colon \mathbb{N} \to \mathbb{S}$ is onto, $f^{-1}(\{s\})$ is a nonempty subset of \mathbb{N} ; thus possesses a smallest element k. Since $s \notin f(\{k_1, k_2, \dots\})$, there exists $\ell \in \mathbb{N}$ such that $k_{\ell} < k < k_{\ell+1}$. Therefore, $k \in N_{\ell}$ and $k < k_{\ell+1}$ which contradicts to the fact that $k_{\ell+1}$ is the smallest element of N_{ℓ} .

Let
$$g : \mathbb{N} \to \{k_1, k_2, \dots\}$$
 be defined by $g(j) = k_j$. Then g is one-to-one and onto; thus $h = g \circ f : \mathbb{N} \xrightarrow[onto]{1-1} S$.

イロト イヨト イヨト イヨト

Э

• *S* is countable;

() there exists an injection $f: S \to \mathbb{N}$.

Proof. (Cont'd).

"(1) \Rightarrow (3)" If $S = \{x_1, \dots, x_n\}$ is finite, we simply let $f: S \to \mathbb{N}$ be $f(x_n) = n$. Then f is clearly an injection. If S is denumerable, by definition there exists $g: \mathbb{N} \xrightarrow[onto]{1-1} S$ which implies that $f = g^{-1}: S \to \mathbb{N}$ is an injection.

・ 「 ・ ・ ヨ ・ ・ ヨ ・

- S is countable;
- **()** there exists an injection $f: S \to \mathbb{N}$.

Proof. (Cont'd).

"(1) \Leftarrow (3)" Let $f: S \to \mathbb{N}$ be an injection. If f is also surjective, then $f: S \xrightarrow[onto]{1-1} \mathbb{N}$ which implies that S is denumerable. Now suppose that $f(S) \subsetneq \mathbb{N}$. Since S is non-empty, there exists $s \in S$. Let $g: \mathbb{N} \to S$ be defined by

$$g(n) = \begin{cases} f^{-1}(n) & \text{if } n \in f(S), \\ s & \text{if } n \notin f(S). \end{cases}$$

Then clearly $g : \mathbb{N} \to S$ is surjective; thus the equivalence between (1) and (2) implies that S is countable.

イロト イヨト イヨト イヨト

Example

We have seen that the set $\mathbb{N} \times \mathbb{N}$ is countable. Now consider the map $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined by $f(m, n) = 2^m 3^n$. This map is not a bijection; however, it is an injection; thus the theorem above implies that $\mathbb{N} \times \mathbb{N}$ is countable.

Example

The set \mathbb{Q}^+ of positive rational numbers is denumerable. Since \mathbb{Q}^+ is infinite, it suffice to check the countability of \mathbb{Q}^+ . Consider the map $f: \mathbb{N}^2 \to \mathbb{Q}^+$ defined by $f(m, n) = \frac{m}{n}$. Then f is onto \mathbb{Q}^+ ; thus the theorem above implies that \mathbb{Q}^+ is countable.

() < </p>

Theorem

Any non-empty subset of a countable set is countable.

Proof.

Let *S* be a countable set, and *A* be a non-empty subset of *S*. Since *S* is countable, by the previous theorem there exists a surjection $f: \mathbb{N} \to S$. On the other hand, since *A* is a non-empty subset of *S*, there exists $a \in A$. Define

$$g(x) = \begin{cases} x & \text{if } x \in A, \\ a & \text{if } x \notin A. \end{cases}$$

Then $g: S \to A$ is a surjection; thus $h = g \circ f : \mathbb{N} \to A$ is also a surjection. The previous theorem shows that A is countable.

Corollary

A set A is countable if and only if $A \approx S$ for some $S \subseteq \mathbb{N}$.