§5.2 Infinite Sets

Theorem

- $\textbf{0} \quad \textit{Even open interval} (a, b) \textit{ is uncountable and has cardinality } \textbf{c}.$
- The set R of all real numbers is uncountable and has cardinality c.

Proof.

- The function f(x) = a+(b-a)x maps from (0,1) to (a, b) and is a one-to-one correspondence.
- Using (1), $(0,1) \approx \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Moreover, the function $f(x) = \tan x$ maps from $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ to \mathbb{R} and is a one-to-one correspondence; thus $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \approx \mathbb{R}$. Since \approx is an equivalence relation, $(0,1) \approx \mathbb{R}$.

・ロン ・回 と ・ ヨ と ・ ヨ と

§5.2 Infinite Sets

Example

The circle with the north pole removed is equivalent to the real line.

Example

The set $A=(0,2)\cup[5,6)$ has cardinality ${\bf c}$ since the function $f\colon (0,1)\to A$ given by

$$f(x) = \begin{cases} 4x & \text{if } 0 < x < \frac{1}{2}, \\ 2x + 4 & \text{if } \frac{1}{2} \le x < 1 \end{cases}$$

is a one-to-one correspondence from (0,1) to A.

イロト イヨト イヨト イヨト

§5.3 Countable Sets

Theorem

Let S be a non-empty set. The following statements are equivalent:

- S is countable;
- **2** there exists a surjection $f : \mathbb{N} \to S$;
- **()** there exists an injection $f: S \to \mathbb{N}$.

Proof.

"(1)
$$\Rightarrow$$
 (2)" First suppose that $S = \{x_1, \dots, x_n\}$ is finite. Define
 $f: \mathbb{N} \to S$ by
 $f(k) = \begin{cases} x_k & \text{if } k < n, \\ x_n & \text{if } k \ge n. \end{cases}$
Then $f: \mathbb{N} \to S$ is a surjection. Now suppose that S is

Then $f : \mathbb{N} \to S$ is a surjection. Now suppose that S is denumerable. Then by definition of countability, there exists $f : \mathbb{N} \xrightarrow[onto]{1-1} S$.

§5.3 Countable Sets

- S is countable;
- **2** there exists a surjection $f: \mathbb{N} \to S$;

Proof. (Cont'd).

"(1) \leftarrow (2)" W.L.O.G. we assume that S is an infinite set. Let $k_1 = 1$. Since $\#(S) = \infty$, $S_1 \equiv S - \{f(k_1)\} \neq \emptyset$; thus $N_1 \equiv f^{-1}(S_1)$ is a non-empty subset of \mathbb{N} . By the well-ordered principle (**WOP**) of N, N_1 has a smallest element denoted by k_2 . Since $\#(S) = \infty$, $S_2 = S - \{f(k_1), f(k_2)\} \neq \emptyset$; thus $N_2 \equiv f^{-1}(S_2)$ is a non-empty subset of \mathbb{N} and possesses a smallest element denoted by k_3 . We continue this process and obtain a set $\{k_1, k_2, \dots\} \subseteq \mathbb{N}$, where $k_1 < k_2 < \cdots$, and k_i is the smallest element of $N_{i-1} \equiv$ $f^{-1}(S - \{f(k_1), f(k_2), \cdots, f(k_{i-1})\}).$

§5.3 Countable Sets

Proof. (Cont'd).

Claim: $f: \{k_1, k_2, \dots\} \rightarrow S$ is one-to-one and onto. **Proof of claim**: The injectivity of f is easy to see since $f(k_i) \notin \{f(k_1), f(k_2), \cdots, f(k_{i-1})\}$ for all $j \ge 2$. For surjectivity, assume the contrary that there is $s \in S$ such that $s \notin f(\{k_1, k_2, \dots\})$. Since $f \colon \mathbb{N} \to \mathbb{S}$ is onto, $f^{-1}(\{s\})$ is a nonempty subset of \mathbb{N} ; thus possesses a smallest element k. Since $s \notin f(\{k_1, k_2, \dots\})$, there exists $\ell \in \mathbb{N}$ such that $k_{\ell} < k < k_{\ell+1}$. Therefore, $k \in N_{\ell}$ and $k < k_{\ell+1}$ which contradicts to the fact that $k_{\ell+1}$ is the smallest element of N_{ℓ} .

Let
$$g : \mathbb{N} \to \{k_1, k_2, \dots\}$$
 be defined by $g(j) = k_j$. Then g is one-to-one and onto; thus $h = g \circ f : \mathbb{N} \xrightarrow[onto]{1-1} S$.

イロト イヨト イヨト イヨト

Э