§5．2 Infinite Sets

Theorem

（1）Even open interval (a, b) is uncountable and has cardinality \mathbf{c} ．
（2）The set \mathbb{R} of all real numbers is uncountable and has cardinality c．

Proof．

（1）The function $f(x)=a+(b-a) x$ maps from $(0,1)$ to (a, b) and is a one－to－one correspondence．
（2）Using（1），$(0,1) \approx\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ ．Moreover，the function $f(x)=$ $\tan x$ maps from $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ to \mathbb{R} and is a one－to－one correspon－ dence；thus $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \approx \mathbb{R}$ ．Since \approx is an equivalence relation， $(0,1) \approx \mathbb{R}$ ．

§5．2 Infinite Sets

Example

The circle with the north pole removed is equivalent to the real line．

Example

The set $A=(0,2) \cup[5,6)$ has cardinality \mathbf{c} since the function $f:(0,1) \rightarrow A$ given by

$$
f(x)=\left\{\begin{array}{cc}
4 x & \text { if } 0<x<\frac{1}{2} \\
2 x+4 & \text { if } \frac{1}{2} \leqslant x<1
\end{array}\right.
$$

is a one－to－one correspondence from $(0,1)$ to A ．

§5．3 Countable Sets

Theorem

Let S be a non－empty set．The following statements are equivalent：
（1）S is countable；
（2）there exists a surjection $f: \mathbb{N} \rightarrow S$ ；
（3）there exists an injection $f: S \rightarrow \mathbb{N}$ ．

Proof．

＂（1）\Rightarrow（2）＂First suppose that $S=\left\{x_{1}, \cdots, x_{n}\right\}$ is finite．Define $f: \mathbb{N} \rightarrow S$ by

$$
f(k)= \begin{cases}x_{k} & \text { if } k<n, \\ x_{n} & \text { if } k \geqslant n .\end{cases}
$$

Then $f: \mathbb{N} \rightarrow S$ is a surjection．Now suppose that S is denumerable．Then by definition of countability，there exists $f: \mathbb{N} \xrightarrow[\text { onto }]{\underline{1-1}} S$ ．

§5．3 Countable Sets

（1）S is countable；
（2）there exists a surjection $f: \mathbb{N} \rightarrow S$ ；

Proof．（Cont＇d）．

＂（1）$\Leftarrow(2)$＂W．L．O．G．we assume that S is an infinite set．Let $k_{1}=1$ ． Since $\#(S)=\infty, S_{1} \equiv S-\left\{f\left(k_{1}\right)\right\} \neq \varnothing$ ；thus $N_{1} \equiv f^{-1}\left(S_{1}\right)$ is a non－empty subset of \mathbb{N} ．By the well－ordered principle（WOP）of \mathbb{N}, N_{1} has a smallest element denoted by k_{2} ．Since $\#(S)=\infty$ ， $S_{2}=S-\left\{f\left(k_{1}\right), f\left(k_{2}\right)\right\} \neq \varnothing$ ；thus $N_{2} \equiv f^{-1}\left(S_{2}\right)$ is a non－empty subset of \mathbb{N} and possesses a smallest element denoted by k_{3} ． We continue this process and obtain a set $\left\{k_{1}, k_{2}, \cdots\right\} \subseteq \mathbb{N}$ ， where $k_{1}<k_{2}<\cdots$ ，and k_{j} is the smallest element of $N_{j-1} \equiv$ $f^{-1}\left(S-\left\{f\left(k_{1}\right), f\left(k_{2}\right), \cdots, f\left(k_{j-1}\right)\right\}\right)$ ．

§5．3 Countable Sets

Proof．（Cont＇d）．

Claim：$f:\left\{k_{1}, k_{2}, \cdots\right\} \rightarrow S$ is one－to－one and onto．
Proof of claim：The injectivity of f is easy to see since $f\left(k_{j}\right) \notin\left\{f\left(k_{1}\right), f\left(k_{2}\right), \cdots, f\left(k_{j-1}\right)\right\}$ for all $j \geqslant 2$ ．For sur－ jectivity，assume the contrary that there is $s \in S$ such that $s \notin f\left(\left\{k_{1}, k_{2}, \cdots\right\}\right)$ ．Since $f: \mathbb{N} \rightarrow \mathbb{S}$ is onto，$f^{-1}(\{s\})$ is a non－ empty subset of \mathbb{N} ；thus possesses a smallest element k ．Since $s \notin f\left(\left\{k_{1}, k_{2}, \cdots\right\}\right)$ ，there exists $\ell \in \mathbb{N}$ such that $k_{\ell}<k<k_{\ell+1}$ ． Therefore，$k \in N_{\ell}$ and $k<k_{\ell+1}$ which contradicts to the fact that $k_{\ell+1}$ is the smallest element of N_{ℓ} ．

Let $g: \mathbb{N} \rightarrow\left\{k_{1}, k_{2}, \cdots\right\}$ be defined by $g(j)=k_{j}$ ．Then g is one－to－one and onto；thus $h=g \circ f: \mathbb{N} \xrightarrow[\text { onto }]{1-1} S$ ．

