## §5．1 Equivalent Sets；Finite Sets

## Lemma

Suppose that $A, B, C$ and $D$ are sets with $A \approx C$ and $B \approx D$ ．
（1）If $A$ and $B$ are disjoint and $C$ and $D$ are disjoint，then $A \cup B \approx$ $C \cup D$ ．
（2）$A \times B \approx C \times D$ ．

## Proof．

Suppose that $\phi: A \xrightarrow[\text { onto }]{1-1} C$ and $\psi: B \xrightarrow[\text { onto }]{1-1} D$ ．
（1）Then $\phi \cup \psi: A \cup B \rightarrow C \cup D$ is an one－to－one correspondence．
（2）Let $f: A \times B \rightarrow C \times D$ be given by

$$
f(a, b)=(\phi(a), \psi(b)) .
$$

Then $f$ is an one－to－one correspondence from $A \times B$ to $C \times D$ ．

## §5．1 Equivalent Sets；Finite Sets

## Definition

For each natural number $k$ ，let $\mathbb{N}_{k}=\{1,2, \cdots, k\}$ ．A set $S$ is finite if $S=\varnothing$ or $S \approx \mathbb{N}_{k}$ for some $k \in \mathbb{N}$ ．A set $S$ is infinite if $S$ is not a finite set．

## Theorem

For $k, j \in \mathbb{N}, \mathbb{N}_{j} \approx \mathbb{N}_{k}$ if and only if $k=j$ ．

## Proof．

It suffices to prove the $\Rightarrow$ direction．Suppose that $\phi: \mathbb{N}_{k} \rightarrow \mathbb{N}_{j}$ is a one－to－one correspondence．W．L．O．G．we can assume that $k \leqslant j$ ．If $k<j$ ，then $\phi\left(\mathbb{N}_{k}\right)=\{\phi(1), \phi(2), \cdots, \phi(k)\} \neq \mathbb{N}_{j}$ since the number of elements in $\phi\left(\mathbb{N}_{k}\right)$ and $\mathbb{N}_{j}$ are different．In other words，if $k<j$ ， $\phi: \mathbb{N}_{k} \rightarrow \mathbb{N}_{j}$ cannot be surjective．This implies that $\mathbb{N}_{k} \approx \mathbb{N}_{j}$ if and only if $k=j$ ．

## §5．1 Equivalent Sets；Finite Sets

## Definition

Let $S$ be a finite set．If $S=\varnothing$ ，then $S$ has cardinal number 0 （or cardinality 0 ），and we write $\# S=0$ ．If $S \approx \mathbb{N}_{k}$ for some natural number $k$ ，then $S$ has cardinal number $k$（or cardinality $k$ ），and we write $\# S=k$ ．

Remark：The cardinality of a set $S$ can also be denoted by $n(S), \overline{\bar{S}}$ ， $\operatorname{card}(S)$ as well．

## Theorem

If $A$ is finite and $B \approx A$ ，then $B$ is finite．

## Lemma

If $S$ is a finite set with cardinality $k$ and $x$ is any object not in $S$ ， then $S \cup\{x\}$ is finite and has cardinality $k+1$ ．

## §5．1 Equivalent Sets；Finite Sets

## Lemma

For every $k \in \mathbb{N}$ ，every subset of $\mathbb{N}_{k}$ is finite．

## Proof．

Let $S=\left\{k \in \mathbb{N} \mid\right.$ the statement＂every subset of $\mathbb{N}_{k}$ is finite＂holds $\}$
（1）There are only two subsets of $\mathbb{N}_{1}$ ，namely $\varnothing$ and $\mathbb{N}_{1}$ ．Since $\varnothing$ and $\mathbb{N}_{1}$ are both finite，we have $1 \in S$ ．
（2）Suppose that $k \in S$ ．Then every subset of $\mathbb{N}_{k}$ is finite．Since $\mathbb{N}_{k+1}=\mathbb{N}_{k} \cup\{k+1\}$ ，every subset of $\mathbb{N}_{k+1}$ is either a subset of $\mathbb{N}_{k}$ ，or the union of a subset of $\mathbb{N}_{k}$ and $\{k+1\}$ ．By the fact that $k \in S$ ，we conclude from the previous lemma that every subset of $\mathbb{N}_{k+1}$ is finite．
Therefore，PMI implies that $S=\mathbb{N}$ ．

## §5．1 Equivalent Sets；Finite Sets

## Theorem

Every subset of a finite set is finite．

## Proof．

Let $A \subseteq B$ and $B$ is a finite set．
（1）If $A=\varnothing$ ，then $A$ is a finite set（and $\# A=0$ ）．
（2）If $A \neq \varnothing$ ，then $B \neq \varnothing$ ．Since $B$ is finite，there exists $k \in \mathbb{N}$ such that $B \approx N_{k}$ ；thus there exists a one－to－one correspondence $\phi: \mathbb{N}_{k} \rightarrow B$ ．Therefore，$\phi^{-1}(A)$ is a non－empty subset of $\mathbb{N}_{k}$ ， and the previous lemma implies that $\phi^{-1}(A)$ is finite．Since $A \approx \phi^{-1}(A)$ ，we conclude that $A$ is a finite set．

## §5．1 Equivalent Sets；Finite Sets

## Theorem

（1）If $A$ and $B$ are disjoint finite sets，then $A \cup B$ is finite，and

$$
\#(A \cup B)=\# A+\# B
$$

（2）If $A$ and $B$ are finite sets，then $A \cup B$ is finite，and

$$
\#(A \cup B)=\# A+\# B-\#(A \cap B)
$$

（3）If $A_{1}, A_{2}, \cdots, A_{n}$ are finite sets，then $\bigcup_{k=1}^{n} A_{k}$ is finite．

## Proof．

（1）W．L．O．G．，we assume that $A \approx \mathbb{N}_{k}$ and $B \approx \mathbb{N}_{\ell}$ for some $k, \ell \in \mathbb{N}$ ．Let $H=\{k+1, k+2, \cdots, k+\ell\}$ ．Then $\mathbb{N}_{\ell} \approx H$ since $\phi(x)=k+x$ is a one－to－one correspondence from $\mathbb{N}_{\ell} \rightarrow$ $\{k+1, k+2, \cdots, k+\ell\}$ ．Therefore，$A \cup B \approx \mathbb{N}_{k} \cup H=\mathbb{N}_{k+\ell}$ ； thus $\#(A \cup B)=\# A+\# B$ ．

## §5．1 Equivalent Sets；Finite Sets

## Proof of

（2）Note that $A \cup B$ is the disjoint union of $A$ and $B-A$ ，where $B-A$ is a subset of a finite set $B$ which makes $B-A$ a finite set．Therefore，$A \cup B$ is finite．

To see $\#(A \cup B)=\# A+\# B-\#(A \cap B)$ ，using（1）it suffices to show that $\#(B-A)=\# B-\#(A \cap B)$ ．Nevertheless，note that $B=(B-A) \cup(A \cap B)$ in which the union is in fact a disjoint union；thus（1）implies that

$$
\# B=\#(B-A)+\#(A \cap B)
$$

or equivalently，

$$
\#(B-A)=\# B-\#(A \cap B)
$$

## §5．1 Equivalent Sets；Finite Sets

## Proof．

（3）Let $A_{1}, A_{2}, \cdots$ be finite sets，and

$$
S=\left\{n \in \mathbb{N} \mid \bigcup_{k=1}^{n} A_{k} \text { is finite }\right\}
$$

Then $1 \in S$ by assumption．Suppose that $n \in S$ ．Then $n+1 \in S$ because of（2）．PMI then implies that $S=\mathbb{N}$ ．

## §5．1 Equivalent Sets；Finite Sets

## Lemma

Let $k \geqslant 2$ be a natural number．For $x \in \mathbb{N}_{k}, \mathbb{N}_{k} \backslash\{x\} \approx \mathbb{N}_{k-1}$ ．

## Theorem（Pigeonhole Principle－鳪籠原理）

Let $n, r \in \mathbb{N}$ and $f: \mathbb{N}_{n} \rightarrow \mathbb{N}_{r}$ be a function．If $n>r$ ，then $f$ is not injective．

## Corollary

If \＃A $=n, \# B=r$ and $r<n$ ，then there is no one－to－one function from $A$ to $B$ ．

## Corollary

If $A$ is finite，then $A$ is not equivalent to any of its proper subsets．

## §5．2 Infinite Sets

Recall that a set $A$ is infinite if $A$ is not finite．By the last corollary in the previous section，if a set is equivalent to one of its proper subset， then that set cannot be finite．Therefore， $\mathbb{N}$ is not finite since there is a one－to－one correspondence from $\mathbb{N}$ to the set of even numbers．

The set of natural numbers $\mathbb{N}$ is a set with infinite cardinality．The standard symbol for the cardinality of $\mathbb{N}$ is $\aleph$ ．There are two kinds of infinite sets，denumerable（無窮可數）sets and uncountable（不可數）sets．

## Definition

A set $S$ is said to be denumerable if $S \approx \mathbb{N}$ ．For a denumerable set $S$ ，we say $S$ has cardinal number $\aleph_{0}$（or cardinality $\aleph_{0}$ ）and write $\# S=\aleph_{0}$ ．

## §5．2 Infinite Sets

## Example

The set of even numbers and the set of odd numbers are denumer－ able．

## Example

The set $\{p, q, r\} \cup\{n \in \mathbb{N} \mid n \neq 5\}$ is denumerable．

## Theorem

The set $\mathbb{Z}$ is denumerable．

## Proof．

Consider the function $f: \mathbb{N} \rightarrow \mathbb{Z}$ given by

$$
f(x)=\left\{\begin{array}{cl}
\frac{x}{2} & \text { if } x \text { is even } \\
\frac{1-x}{2} & \text { if } x \text { is odd }
\end{array}\right.
$$

## §5．2 Infinite Sets

## Theorem

（1）The set $\mathbb{N} \times \mathbb{N}$ is denumerable．
（2）If $A$ and $B$ are denumerable sets，then $A \times B$ is denumerable．

## Proof．

（1）Consider the function $F: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ defined by $F(m, n)=$ $2^{m-1}(2 n-1)$ ．Then $F: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ is bijective．
（2）If $A$ and $B$ are denumerable sets，then $A \approx \mathbb{N}$ and $B \approx \mathbb{N}$ ．Then $A \times B \approx \mathbb{N} \times \mathbb{N}$ ；thus $A \times B \approx \mathbb{N}$ since $\approx$ is an equivalence relation．

## Definition

A set $S$ is said to be countable if $S$ is finite or denumerable．We say $S$ is uncountable if $S$ is not countable．

## §5．2 Infinite Sets

## Theorem

The open interval $(0,1)$ is uncountable．

## Proof．

Assume the contrary that there exists a bijection $f: \mathbb{N} \rightarrow(0,1)$ ． Write $f(k)$ in decimal expansion（十進位展開）；that is，

$$
\begin{gathered}
f(1)=0 . d_{11} d_{21} d_{31} \cdots \\
f(2)=0 . d_{12} d_{22} d_{32} \cdots \\
\vdots
\end{gathered}
$$

Here we note that repeated 9＇s are chosen by preference over ter－ minating decimals；that is，for example，we write $\frac{1}{4}=0.249999 \ldots$ instead of $\frac{1}{4}=0.250000 \cdots$ ．

## §5．2 Infinite Sets

## Proof．（Cont＇d）．

Let $x \in(0,1)$ be such that $x=0 . d_{1} d_{2} \cdots$ ，where

$$
d_{k}=\left\{\begin{array}{lll}
5 & \text { if } & d_{k k} \neq 5 \\
3 & \text { if } & d_{k k}=5
\end{array}\right.
$$

（建構一個 $x$ 使其小數點下第 $k$ 位數與 $f(k)$ 的小數點下第 $k$ 位數不相等）。Then $x \neq f(k)$ for all $k \in \mathbb{N}$ ，a contradiction；thus $(0,1)$ is uncountable．

## Definition

A set $S$ has cardinal number（or cardinality $\mathbf{c}$ ）if $S$ is equivalent to $(0,1)$ ．We write $\# S=\mathbf{c}$ ，which stands for continuum．

