§4．5 Set Images

Definition

Let $f: A \rightarrow B$ be a function，and $X \subseteq A, Y \subseteq B$ ．The image of X （under f ）or image set of X ，denoted by $f(X)$ ，is the set

$$
f(X)=\{y \in B \mid y=f(x) \text { for some } x \in X\}=\{f(x) \mid x \in X\},
$$

and the pre－image of Y（under f ）or the inverse image of Y ， denoted by $f^{-1}(Y)$ ，is the set

$$
f^{-1}(Y)=\{x \in A \mid f(x) \in Y\} .
$$

Remark：Here are some facts about images of sets that follow from the definitions：
（a）If $a \in D$ ，then $f(a) \in f(D)$ ．
（b）If $a \in f^{-1}(E)$ ，then $f(a) \in E$ ．
（c）If $f(a) \in E$ ，then $a \in f^{-1}(E)$ ．
（d）If $f(a) \in f(D)$ and f is one－to－one，then $a \in D$ ．

§4．5 Set Images

Theorem

Let $f: A \rightarrow B$ be a function．Suppose that C, D are subsets of A ， and E, F are subsets of B ．Then
（1）$f(C \cap D) \subseteq f(C) \cap f(D)$ ．In particular，if $C \subseteq D$ ，then $f(C) \subseteq$ $f(D)$ ．
（2）$f(C \cup D)=f(C) \cup f(D)$ ．
（3）$f^{-1}(E \cap F)=f^{-1}(E) \cap f^{-1}(F)$ ．In particular，if $E \subseteq F$ ，then $f^{-1}(E) \subseteq f^{-1}(F)$ ．
（9）$f^{-1}(E \cup F)=f^{-1}(E) \cup f^{-1}(F)$ ．
（5）$C \subseteq f^{-1}(f(C))$ ．
（0）$f\left(f^{-1}(E)\right) \subseteq E$ ．

§4．5 Set Images

Proof of

Let $y \in f(C \cap D)$ ．Then there exists $x \in C \cap D$ such that $y=f(x)$ ． Therefore，$y \in f(C)$ and $y \in f(D)$ ；thus $y \in f(C) \cap f(D)$ ．

Remark：It is possible that $f(C \cap D) \subsetneq f(C) \cap f(D)$ ．For example， $f(x)=x^{2}, C=(-\infty, 0)$ and $D=(0, \infty)$ ．Then $C \cap D=\varnothing$ which implies that $f(C \cap D)=\varnothing$ ；however，$f(C)=f(D)=(0, \infty)$ ．

Proof of $f(C \cup D)=f(C)$ Let $y \in B$ be given．Then

$$
\begin{aligned}
y \in f(C \cup D) & \Leftrightarrow(\exists x \in C \cup D)(y=f(x)) \\
& \Leftrightarrow(\exists x \in C)(y=f(x)) \vee(\exists x \in D)(y=f(x)) \\
& \Leftrightarrow(y \in f(C)) \vee(y \in f(D)) \\
& \Leftrightarrow y \in f(C) \cup f(D) .
\end{aligned}
$$

§4．5 Set Images

Proof of

Let $x \in A$ be given．Then

$$
\begin{aligned}
x \in f^{-1}(E \cap F) & \Leftrightarrow f(x) \in E \cap F \\
& \Leftrightarrow(f(x) \in E) \wedge(f(x) \in F) \\
& \Leftrightarrow\left(x \in f^{-1}(E)\right) \wedge\left(x \in f^{-1}(F)\right) \\
& \Leftrightarrow x \in f^{-1}(E) \cap f^{-1}(F)
\end{aligned}
$$

Proof of
Let $x \in A$ be given．Then

$$
\begin{aligned}
x \in f^{-1}(E \cup F) & \Leftrightarrow f(x) \in E \cup F \\
& \Leftrightarrow(f(x) \in E) \vee(f(x) \in F) \\
& \Leftrightarrow\left(x \in f^{-1}(E)\right) \vee\left(x \in f^{-1}(F)\right) \\
& \Leftrightarrow x \in f^{-1}(E) \cup f^{-1}(F)
\end{aligned}
$$

§4．5 Set Images

Proof of

Let $x \in C$ ．Then $f(x) \in f(C)$ ；thus $x \in f^{-1}(f(C))$ ．Therefore， $C \subseteq f^{-1}(f(C))$ ．

Remark：It is possible that $C \subsetneq f^{-1}(f(C))$ ．For example，if $f(x)=$ x^{2} and $C=[0,1]$ ，then $f^{-1}(f(C))=f^{-1}([0,1])=[-1,1] \supsetneq[0,1]$ ．

Proof of

Suppose that $y \in f\left(f^{-1}(E)\right)$ ．Then there exists $x \in f^{-1}(E)$ such that $f(x)=y$ ．Since $x \in f^{-1}(E)$ ，there exists $z \in E$ such that $f(x)=z$ ． Then $y=z$ which implies that $y \in E$ ．Therefore，$f\left(f^{-1}(E)\right) \subseteq E$ ．

Remark：It is possible that $f\left(f^{-1}(E)\right) \subsetneq E$ ．For example，if $f(x)=$ x^{2} and $E=[-1,1]$ ，then $f\left(f^{-1}(E)\right)=f([0,1])=[0,1] \subsetneq[-1,1]$ ．

Chapter 5．Cardinality

§5．1 Equivalent Sets；Finite Sets

§5．2 Infinite Sets
§5．3 Countable Sets

§5．1 Equivalent Sets；Finite Sets

Definition

Two sets A and B are equivalent if there exists a one－to－one func－ tion from A onto B ．The sets are also said to be in one－to－one correspondence，and we write $A \approx B$ ．In notation，

$$
A \approx B \Leftrightarrow(\exists f: A \rightarrow B)(f \text { is a bijection }) .
$$

If A and B are not equivalent，we write $A \not \approx B$ ．

Example

The set of even integers is equivalent to the set of odd integers：the function $f(x)=x+1$ does the job．

Example

The set of even numbers is equivalent to the set of integers：the function $f(x)=\frac{x}{2}$ does the job．

§5．1 Equivalent Sets；Finite Sets

Example

The set of natural numbers is equivalent to the set of integers．

Example

For $a, b, c, d \in \mathbb{R}$ ，with $a<b$ and $c<d$ ，the open intervals (a, b) and (c, d) are equivalent．Therefore，any two open intervals are equivalent，even when the intervals have different length．

Example

Let \mathcal{F} be the set of all binary sequences；that is，the set of all functions from $\mathbb{N} \rightarrow\{0,1\}$ ．Then $\mathcal{F} \approx \mathcal{P}(\mathbb{N})$ ，the power set of \mathbb{N} ． To see this，we define $\phi: \mathcal{F} \rightarrow \mathcal{P}(\mathbb{N})$ by $\phi(x) \equiv\left\{k \in \mathbb{N} \mid x_{k}=1\right\}$ for all $x \in \mathcal{F}$ ．Then ϕ is well－defined and $\phi: \mathcal{F} \xrightarrow[\text { onto }]{1-1} \mathcal{P}(\mathbb{N})$ ．

§5．1 Equivalent Sets；Finite Sets

Theorem

Equivalence of sets is an equivalence relation on the class of all sets．

Proof．

（1）Reflexivity：for all sets A ，the identity map I_{A} is an one－to－one correspondence on A ．
（2）Symmetry：Suppose that $A \approx B$ ；that is，there exists a one－to－ one correspondence ϕ from A to B ．Then ϕ^{-1} is an one－to－one correspondence from B to A ；thus $B \approx A$ ．
（3）Transitivity：Suppose that $A \approx B$ and $B \approx C$ ．Then there exist one－to－one correspondences $\phi: A \xrightarrow[\text { onto }]{1-1} B$ and $\psi: B \xrightarrow[\text { onto }]{1-1} C$ ． Then $\psi \circ \phi: A \rightarrow C$ is an one－to－one correspondence；thus $A \approx C$ ．

