Theorem

If $f : A \to B$, $g : B \to C$ are bijections, then $g \circ f : A \to C$ is a bijection.

Theorem

Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions.

- **1** If $g \circ f$ is onto C, then g is onto C.
- 2 If $g \circ f$ is one-to-one, then f is one-to-one.

Proof.

- Let $c \in C$. Since $g \circ f$ is onto C, there exists $a \in A$ such that $(g \circ f)(a) = c$. Let b = f(a). Then $g(b) = g(f(a)) = (g \circ f)(a) = c$.
- Suppose that f(x) = f(y). Then $(g \circ f)(x) = g(f(x)) = g(f(y)) = (g \circ f)(y)$, and the injectivity of $g \circ f$ implies that x = y.

Remark:

- In part ① of the theorem above, we cannot conclude that f is also onto B since there might be a proper subset B ⊊ B such that f: A → B, g: B → C and g ∘ f is onto C. For example, Let A = B = ℝ, C = ℝ⁺ ∪ {0}, and f(x) = g(x) = x². Then clearly f is not onto B but g ∘ f is onto C.
- In part (2) of the theorem above, we cannot conclue that g is one-to-one since it might happen that g is one-to-one on Rng(f) ⊊ B but g is not one-to-one on B. For example, let A = C = ℝ⁺ ∪ {0}, B = ℝ, and f(x) = x², g(x) = log(1 + |x|). Then clearly g is not one-to-one, but g ∘ f is one-to-one.

・ (山) ・ 四) ・ 回) ・ 日)

Theorem

If $f: A \rightarrow B$ is one-to-one, then every restriction of f is one-to-one.

In the following we consider the function $f \cup g$. Recall that if $Dom(f) \cap Dom(g) = \emptyset$, then $(f \cup g)(x) \stackrel{(\star)}{=} \begin{cases} f(x) & \text{if } x \in Dom(f) , \\ g(x) & \text{if } x \in Dom(g) . \end{cases}$

Theorem

Let $f : A \to C$ and $g : B \to D$ be functions. Suppose that A and B are disjoint sets.

- If f is onto C and g is onto D, then $f \cup g : A \cup B \rightarrow C \cup D$ is onto $C \cup D$.
- **2** If f is one-to-one, g is one-to-one, and C and D are disjoint, then $f \cup g : A \cup B \rightarrow C \cup D$ is one-to-one.

・ロト ・回ト ・ヨト ・ヨト

E

Proof.

We note that $f \cup g : A \cup B \rightarrow C \cup D$ is a function.

• Let $y \in C \cup D$. Then $y \in C$ or $y \in D$. W.L.O.G., we can assume that $y \in C$. Since $f : A \to C$ is onto C, there exists $x \in A$ such that $(x, y) \in f$. Using (\star) , $(f \cup g)(x) = f(x) = y$. Therefore, $f \cup g$ is onto $C \cup D$.

Suppose that (x₁, y), (x₂, y) ∈ f ∪ g ⊆ (A × C) ∪ (B × D). Then (x₁, y) ∈ f or (x₁, y) ∈ g. W.L.O.G., we can assume that (x₁, y) ∈ f. Since f ⊆ A × C and g ⊆ B × D, by the fact that C ∩ D = Ø we must have (x₂, y) ∈ f for otherwise y ∈ C ∩ D, a contradiction. Now, since (x₁, y), (x₂, y) ∈ f, the injectivity of f then implies that x₁ = x₂.

Recall that the inverse of a relation $f: A \rightarrow B$ is the relation f^{-1} satisfying

$$yf^{-1}x \quad \Leftrightarrow \quad xfy \quad \Leftrightarrow \quad (x,y) \in f \quad \Leftrightarrow \quad y = f(x).$$

This relation is a function, called the inverse function of f, if the relation itself is a function with certain domain.

Definition

A function $f: A \rightarrow B$ is said to be a **one-to-one correspondence** if f is a bijection.

(ロ) (日) (日) (日) (日)

Theorem

- Let $f: A \rightarrow B$ be a function.
 - f^{-1} is a function from $\operatorname{Rng}(f)$ to A if and only if f is one-to-one.
 - **2** If f^{-1} is a function, then f^{-1} is one-to-one.

Proof.

- " \Rightarrow " If $(x_1, y), (x_2, y) \in f$, then $(y, x_1), (y, x_2) \in f^{-1}$. Since f^{-1} is a function, we must have $x_1 = x_2$. Therefore, f is one-to-one. " \Leftarrow " If $(y, x_1), (y, x_2) \in f^{-1}$, then $(x_1, y), (x_2, y) \in f$, and the injectivity of f implies that $x_1 = x_2$. Therefore, by the fact that $\operatorname{Rng}(f) = \operatorname{Dom}(f^{-1}), f^{-1}$ is a function with domain $\operatorname{Rng}(f)$.
- Suppose that f⁻¹ is a function, and (y₁, x), (y₂, x) ∈ f⁻¹. Then (x, y₁), (x, y₂) ∈ f which, by the fact that f is a function, implies that y₁ = y₂. Therefore, f⁻¹ is one-to-one.

æ

Corollary

The inverse of a one-to-one correspondence is a one-to-one correspondence.

Theorem

Let $f: A \rightarrow B$, $g: B \rightarrow A$ be functions. Then

- $g = f^{-1}$ if and only if $g \circ f = I_A$ and $f \circ g = I_B$ (if and only if $f = g^{-1}$).
- 2 If f is surjective, and $g \circ f = I_A$, then $g = f^{-1}$.
- **()** If f is injective, and $f \circ g = I_B$, then $g = f^{-1}$.

Recall that "If $C = \operatorname{Rng}(f)$ and $f^{-1} : C \to A$ is a function, then $f^{-1} \circ f = I_A$ and $f \circ f^{-1} = I_C$ ". Therefore, the \Rightarrow direction in (1) has already been proved.

イロト イヨト イヨト イヨト

Proof.

We first prove the following two claims:

(a) If $g \circ f = I_A$, then $f^{-1} \subseteq g$. (b) If $f \circ g = I_B$, then $g \subseteq f^{-1}$. To see (a), let $(y, x) \in f^{-1}$ be given. Then $(x, y) \in f$ or y = f(x). Since $(g \circ f) = I_A$, we must have

$$g(y) = g(f(x)) = (g \circ f)(x) = I_A(x) = x$$

or equivalently, $(y, x) \in g$. Therefore, $f^{-1} \subseteq g$.

To see (b), let $(y, x) \in g$ be given. Then x = g(y); thus the fact that $(f \circ g) = I_B$ implies that

$$f(x) = f(g(y)) = (f \circ g)(y) = I_B(y) = y$$

or equivalently, $(x, y) \in f$. Therefore, $(y, x) \in f^{-1}$; thus $g \subseteq f^{-1}$.

$$\mathbf{D} \quad "\Rightarrow" \text{ Done.}$$

" \Leftarrow " This direction is a direct consequence of the claims.

イロン 人間 とくほ とくほ とう

Proof. (Cont'd).

Suppose that f: A → B is surjective and g ∘ f = I_A. Then claim
(a) implies that f⁻¹ ⊆ g; thus it suffices to show that g ⊆ f⁻¹. Let (y, x) ∈ g. Then by the surjectivity of f there exists x₁ ∈ A such that y = f(x₁) or equivalently, (y, x₁) ∈ f⁻¹. On the other hand,

$$x = g(y) = g(f(x_1)) = (g \circ f)(x_1) = I_A(x_1) = x_1.$$

Therefore, $g \subseteq f^{-1}$.

Now suppose that f: A → B is injective and f ∘ g = I_B. Then claim (b) implies that g ⊆ f⁻¹; thus it suffices to show that f⁻¹ ⊆ g. Let (y, x) ∈ f⁻¹ or equivalently, (x, y) ∈ f or y = f(x). By the fact that f ∘ g = I_B, we have f(g(y)) = y; thus the injectivity of f implies that g(y) = x or (y, x) ∈ g. Therefore, f⁻¹ ⊆ g which completes the proof.

Since we have shown in the previous theorem that for functions $f: A \rightarrow B$ and $g: B \rightarrow A$,

2 If f is surjective, and $g \circ f = I_A$, then $g = f^{-1}$,

③ If f is injective, and $f \circ g = I_B$, then $g = f^{-1}$,

we can conclude the following

Corollary

If $f: A \to B$ is an one-to-one correspondence, and $g: B \to A$ be a function. Then $g = f^{-1}$ if and only if $g \circ f = I_A$ or $f \circ g = I_B$.

Example

Let $A = \mathbb{R}$ and $B = \{x | x \ge 0\}$. Define $f : A \to B$ by $f(x) = x^2$ and $g : B \to A$ by $g(y) = \sqrt{y}$. Then $f \circ g = I_B$ but g is not inverse function of f since $(g \circ f)(x) = |x|$ for all $x \in A$.

Definition

Let A be a non-empty set. A **permutation** of A is a one-to-one correspondence from A onto A.

Theorem

Let A be a non-empty set. Then

- **1** the identity map I_A is a permutation of A.
- **2** the composite of permutations of A is a permutation of A.
- **(3)** the inverse of a permutation of A is a permutation of A.
- if f is a permutation of A, then $f \circ I_A = I_A \circ f = f$.
- **(**) *if* f *is a permutation of* A*, then* $f \circ f^{-1} = f^{-1} \circ f = I_A$ *.*
- if f and g are permutations of A, then $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

イロト イヨト イヨト イヨト

§4.5 Set Images

Definition

Let $f: A \to B$ be a function, and $X \subseteq A$, $Y \subseteq B$. The *image* of X (under f) or *image set* of X, denoted by f(X), is the set

$$f(X) = \{ y \in B \mid y = f(x) \text{ for some } x \in X \} = \{ f(x) \mid x \in X \},\$$

and the **pre-image** of Y (under f) or the **inverse image** of Y, denoted by $f^{-1}(Y)$, is the set

$$f^{-1}(Y) = \{x \in A \mid f(x) \in Y\}.$$

Remark: Here are some facts about images of sets that follow from the definitions: