§4．3 Functions that are Onto；One－to－One Functions

Theorem

If $f: A \rightarrow B, g: B \rightarrow C$ are bijections，then $g \circ f: A \rightarrow C$ is a bijection．

Theorem

Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions．
（1）If $g \circ f$ is onto C ，then g is onto C ．
（2）If $g \circ f$ is one－to－one，then f is one－to－one．

Proof．

（1）Let $c \in C$ ．Since $g \circ f$ is onto C ，there exists $a \in A$ such that $(g \circ f)(a)=c$ ．Let $b=f(a)$ ．Then $g(b)=g(f(a))=$ $(g \circ f)(a)=c$ ．
（2）Suppose that $f(x)=f(y)$ ．Then $(g \circ f)(x)=g(f(x))=$ $g(f(y))=(g \circ f)(y)$ ，and the injectivity of $g \circ f$ implies that $x=y$ ．

§4．3 Functions that are Onto；One－to－One Functions

Remark：

（1）In part（1）of the theorem above，we cannot conclude that f is also onto B since there might be a proper subset $\widetilde{B} \subsetneq B$ such that $f: A \rightarrow \widetilde{B}, g: \widetilde{B} \rightarrow C$ and $g \circ f$ is onto C ．For example， Let $A=B=\mathbb{R}, C=\mathbb{R}^{+} \cup\{0\}$ ，and $f(x)=g(x)=x^{2}$ ．Then clearly f is not onto B but $g \circ f$ is onto C ．
（2）In part（2）of the theorem above，we cannot conclue that g is one－to－one since it might happen that g is one－to－one on $\operatorname{Rng}(f) \subsetneq B$ but g is not one－to－one on B ．For example，let $A=C=\mathbb{R}^{+} \cup\{0\}, B=\mathbb{R}$ ，and $f(x)=x^{2}, g(x)=\log (1+|x|)$ ． Then clearly g is not one－to－one，but $g \circ f$ is one－to－one．

§4．3 Functions that are Onto；One－to－One Functions

Theorem

If $f: A \rightarrow B$ is one－to－one，then every restriction of f is one－to－one．
In the following we consider the function $f \cup g$ ．Recall that if
$\operatorname{Dom}(f) \cap \operatorname{Dom}(g)=\varnothing$ ，then $(f \cup g)(x) \stackrel{(\star)}{=} \begin{cases}f(x) & \text { if } x \in \operatorname{Dom}(f), \\ g(x) & \text { if } x \in \operatorname{Dom}(g) .\end{cases}$

Theorem

Let $f: A \rightarrow C$ and $g: B \rightarrow D$ be functions．Suppose that A and B are disjoint sets．
（1）If f is onto C and g is onto D ，then $f \cup g: A \cup B \rightarrow C \cup D$ is onto $C \cup D$ ．
（2）If f is one－to－one，g is one－to－one，and C and D are disjoint， then $f \cup g: A \cup B \rightarrow C \cup D$ is one－to－one．

§4．3 Functions that are Onto；One－to－One Functions

Proof．

We note that $f \cup g: A \cup B \rightarrow C \cup D$ is a function．
（1）Let $y \in C \cup D$ ．Then $y \in C$ or $y \in D$ ．W．L．O．G．，we can assume that $y \in C$ ．Since $f: A \rightarrow C$ is onto C ，there exists $x \in A$ such that $(x, y) \in f$ ．Using $(\star),(f \cup g)(x)=f(x)=y$ ．Therefore， $f \cup g$ is onto $C \cup D$ ．
（2）Suppose that $\left(x_{1}, y\right),\left(x_{2}, y\right) \in f \cup g \subseteq(A \times C) \cup(B \times D)$ ． Then $\left(x_{1}, y\right) \in f$ or $\left(x_{1}, y\right) \in g$ ．W．L．O．G．，we can assume that $\left(x_{1}, y\right) \in f$ ．Since $f \subseteq A \times C$ and $g \subseteq B \times D$ ，by the fact that $C \cap D=\varnothing$ we must have $\left(x_{2}, y\right) \in f$ for otherwise $y \in C \cap D$ ， a contradiction．Now，since $\left(x_{1}, y\right),\left(x_{2}, y\right) \in f$ ，the injectivity of f then implies that $x_{1}=x_{2}$ ．

§4．4 Inverse Functions

Recall that the inverse of a relation $f: A \rightarrow B$ is the relation f^{-1} satisfying

$$
y f^{-1} x \quad \Leftrightarrow \quad x f y \quad \Leftrightarrow \quad(x, y) \in f \quad \Leftrightarrow \quad y=f(x) .
$$

This relation is a function，called the inverse function of f ，if the relation itself is a function with certain domain．

Definition

A function $f: A \rightarrow B$ is said to be a one－to－one correspondence if f is a bijection．

§4．4 Inverse Functions

Theorem

Let $f: A \rightarrow B$ be a function．
（1）f^{-1} is a function from $\operatorname{Rng}(f)$ to A if and only if f is one－to－one．
（2）If f^{-1} is a function，then f^{-1} is one－to－one．

Proof．

（1）＂\Rightarrow＂If $\left(x_{1}, y\right),\left(x_{2}, y\right) \in f$ ，then $\left(y, x_{1}\right),\left(y, x_{2}\right) \in f^{-1}$ ．Since f^{-1} is a function，we must have $x_{1}=x_{2}$ ．Therefore，f is one－to－one． $" \Leftarrow$＂If $\left(y, x_{1}\right),\left(y, x_{2}\right) \in f^{-1}$ ，then $\left(x_{1}, y\right),\left(x_{2}, y\right) \in f$ ，and the injectivity of f implies that $x_{1}=x_{2}$ ．Therefore，by the fact that $\operatorname{Rng}(f)=\operatorname{Dom}\left(f^{-1}\right), f^{-1}$ is a function with domain $\operatorname{Rng}(f)$ ．
（2）Suppose that f^{-1} is a function，and $\left(y_{1}, x\right),\left(y_{2}, x\right) \in f^{-1}$ ．Then $\left(x, y_{1}\right),\left(x, y_{2}\right) \in f$ which，by the fact that f is a function，implies that $y_{1}=y_{2}$ ．Therefore，f^{-1} is one－to－one．

§4．4 Inverse Functions

Corollary

The inverse of a one－to－one correspondence is a one－to－one corre－ spondence．

Theorem

Let $f: A \rightarrow B, g: B \rightarrow A$ be functions．Then
（1）$g=f^{-1}$ if and only if $g \circ f=I_{A}$ and $f \circ g=I_{B}$（if and only if $\left.f=g^{-1}\right)$ ．
（2）If f is surjective，and $g \circ f=I_{A}$ ，then $g=f^{-1}$ ．
（3）If f is injective，and $f \circ g=I_{B}$ ，then $g=f^{-1}$ ．
Recall that＂If $C=\operatorname{Rng}(f)$ and $f^{-1}: C \rightarrow A$ is a function，then $f^{-1} \circ f=I_{A}$ and $f \circ f^{-1}=I_{C}$＂．Therefore，the \Rightarrow direction in（1）has already been proved．

§4．4 Inverse Functions

Proof．

We first prove the following two claims：
（a）If $g \circ f=I_{A}$ ，then $f^{-1} \subseteq g$ ．（b）If $f \circ g=I_{B}$ ，then $g \subseteq f^{-1}$ ．
To see（a），let $(y, x) \in f^{-1}$ be given．Then $(x, y) \in f$ or $y=f(x)$ ． Since $(g \circ f)=I_{A}$ ，we must have

$$
g(y)=g(f(x))=(g \circ f)(x)=I_{A}(x)=x
$$

or equivalently，$(y, x) \in g$ ．Therefore，$f^{-1} \subseteq g$ ．
To see（b），let $(y, x) \in g$ be given．Then $x=g(y)$ ；thus the fact that $(f \circ g)=I_{B}$ implies that

$$
f(x)=f(g(y))=(f \circ g)(y)=I_{B}(y)=y
$$

or equivalently，$(x, y) \in f$ ．Therefore，$(y, x) \in f^{-1}$ ；thus $g \subseteq f^{-1}$ ．
（1）＂\Rightarrow＂Done．
$" \Leftarrow$＂This direction is a direct consequence of the claims．

§4．4 Inverse Functions

Proof．（Cont＇d）．

（2）Suppose that $f: A \rightarrow B$ is surjective and $g \circ f=I_{A}$ ．Then claim （a）implies that $f^{-1} \subseteq g$ ；thus it suffices to show that $g \subseteq f^{-1}$ ． Let $(y, x) \in g$ ．Then by the surjectivity of f there exists $x_{1} \in A$ such that $y=f\left(x_{1}\right)$ or equivalently，$\left(y, x_{1}\right) \in f^{-1}$ ．On the other hand，

$$
x=g(y)=g\left(f\left(x_{1}\right)\right)=(g \circ f)\left(x_{1}\right)=I_{A}\left(x_{1}\right)=x_{1} .
$$

Therefore，$g \subseteq f^{-1}$ ．
（3）Now suppose that $f: A \rightarrow B$ is injective and $f \circ g=I_{B}$ ．Then claim（b）implies that $g \subseteq f^{-1}$ ；thus it suffices to show that $f^{-1} \subseteq g$ ．Let $(y, x) \in f^{-1}$ or equivalently，$(x, y) \in f$ or $y=f(x)$ ． By the fact that $f \circ g=I_{B}$ ，we have $f(g(y))=y$ ；thus the injectivity of f implies that $g(y)=x$ or $(y, x) \in g$ ．Therefore， $f^{-1} \subseteq g$ which completes the proof．

§4．4 Inverse Functions

Since we have shown in the previous theorem that for functions $f: A \rightarrow B$ and $g: B \rightarrow A$ ，
（1）$g=f^{-1}$ if and only if $g \circ f=I_{A}$ and $f \circ g=I_{B}$ ，
（2）If f is surjective，and $g \circ f=I_{A}$ ，then $g=f^{-1}$ ，
（3）If f is injective，and $f \circ g=I_{B}$ ，then $g=f^{-1}$ ，
we can conclude the following

Corollary

If $f: A \rightarrow B$ is an one－to－one correspondence，and $g: B \rightarrow A$ be a function．Then $g=f^{-1}$ if and only if $g \circ f=I_{A}$ or $f \circ g=I_{B}$ ．

Example

Let $A=\mathbb{R}$ and $B=\{x \mid x \geqslant 0\}$ ．Define $f: A \rightarrow B$ by $f(x)=x^{2}$ and $g: B \rightarrow A$ by $g(y)=\sqrt{y}$ ．Then $f \circ g=I_{B}$ but g is not inverse function of f since $(g \circ f)(x)=|x|$ for all $x \in A$ ．

§4．4 Inverse Functions

Definition

Let A be a non－empty set．A permutation of A is a one－to－one correspondence from A onto A ．

Theorem

Let A be a non－empty set．Then
（1）the identity map I_{A} is a permutation of A ．
（2）the composite of permutations of A is a permutation of A ．
（3）the inverse of a permutation of A is a permutation of A ．
（9）if f is a permutation of A ，then $f \circ I_{A}=I_{A} \circ f=f$ ．
（5）if f is a permutation of A ，then $f \circ f^{-1}=f^{-1} \circ f=I_{A}$ ．
（0）if f and g are permutations of A ，then $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$ ．

§4．5 Set Images

Definition

Let $f: A \rightarrow B$ be a function，and $X \subseteq A, Y \subseteq B$ ．The image of X （under f ）or image set of X ，denoted by $f(X)$ ，is the set

$$
f(X)=\{y \in B \mid y=f(x) \text { for some } x \in X\}=\{f(x) \mid x \in X\},
$$

and the pre－image of Y（under f ）or the inverse image of Y ， denoted by $f^{-1}(Y)$ ，is the set

$$
f^{-1}(Y)=\{x \in A \mid f(x) \in Y\} .
$$

Remark：Here are some facts about images of sets that follow from the definitions：
（a）If $a \in D$ ，then $f(a) \in f(D)$ ．
（b）If $a \in f^{-1}(E)$ ，then $f(a) \in E$ ．
（c）If $f(a) \in E$ ，then $a \in f^{-1}(E)$ ．
（d）If $f(a) \in f(D)$ and f is one－to－one，then $a \in D$ ．

