§4．2 Construction of Functions

Theorem

Suppose that f and g are functions．Then $f \cap g$ is a function with domain $A=\{x \mid f(x)=g(x)\}$ ，and $f \cap g=\left.f\right|_{A}=\left.g\right|_{A}$ ．

Proof．

Let $(x, y) \in f \cap g$ ．Then $y=f(x)=g(x)$ ；thus

$$
\operatorname{Dom}(f \cap g)=\{x \mid f(x)=g(x)\}(\equiv A)
$$

If $\left(x, y_{1}\right),\left(x, y_{2}\right) \in f \cap g,\left(x, y_{1}\right),\left(x, y_{2}\right) \in f$ which，by the fact that f is a function，implies that $y_{1}=y_{2}$ ．Therefore，$f \cap g$ is a function． Moreover，

$$
f \cap g=\{(x, y) \mid \exists x \in A, y=f(x)\}
$$

which implies that $f \cap g=\left.f\right|_{A}$ ．

§4．2 Construction of Functions

For $f \cup g$ being a function，it is（sufficient and）necessary that if $x \in \operatorname{Dom}(f) \cap \operatorname{Dom}(g)$ ，then $f(x)=g(x)$ ．Moreover，if $f \cup g$ is a function，then $f=\left.(f \cup g)\right|_{\operatorname{Dom}(f)}$ and $g=\left.(f \cup g)\right|_{\operatorname{Dom}(g)}$ ．In particular， we have the following

Theorem

Let f and g be functions with $\operatorname{Dom}(f)=A$ and $\operatorname{Dom}(g)=B$ ．If $A \cap B=\varnothing$ ，then $f \cup g$ is a function with domain $A \cup B$ ．Moreover，

$$
(f \cup g)(x)= \begin{cases}f(x) & \text { if } x \in A \\ g(x) & \text { if } x \in B\end{cases}
$$

§4．2 Construction of Functions

Theorem

Let f and g be functions with $\operatorname{Dom}(f)=A$ and $\operatorname{Dom}(g)=B$ ．If $A \cap B=\varnothing$ ，then $f \cup g$ is a function with domain $A \cup B$ ．Moreover，

$$
(f \cup g)(x)= \begin{cases}f(x) & \text { if } x \in A \\ g(x) & \text { if } x \in B\end{cases}
$$

Proof．

Clearly $\operatorname{Dom}(f \cup g)=A \cup B$ ．Suppose that $\left(x, y_{1}\right),\left(x, y_{2}\right) \in f \cup g$ ． If $\left(x, y_{1}\right) \in f$ ，then $x \in \operatorname{Dom}(f)$ ；thus by the fact that $A \cap B=\varnothing$ ， we must have $\left(x, y_{2}\right) \in f$ ．Since f is a function，$y_{1}=f(x)=y_{2}$ ． Similarly，if $\left(x, y_{1}\right) \in g$ ，then $\left(x, y_{2}\right) \in g$ which also implies that $y_{1}=g(x)=y_{2}$ ．Therefore，$f \cup g$ is a function and (\star) is valid．

§4．2 Construction of Functions

Definition

Let f be a real－valued function defined on an interval $I \subseteq \mathbb{R}$ ．
（1）The function f is said to be increasing decreasing on／if $x \leqslant y$ implies that $\begin{aligned} & f(x) \leqslant f(y) \\ & \\ & f(x) \geqslant f(y)\end{aligned}$ for all $x, y \in I$.
（2）The function f is said to be strictly increasing strictly decreasing

$$
\text { implies that } \begin{aligned}
& f(x)<f(y) \\
& f(x)>f(y)
\end{aligned} \text { for all } x, y \in I .
$$

§4．3 Functions that are Onto；One－to－One Functions

Definition

Let $f: A \rightarrow B$ be a function．
（1）The function f is said to be surjective or onto B if $\operatorname{Rng}(f)=$ B ．When f is surjective，f is called a surjection，and we write $f: A \xrightarrow{\text { onto }} B$ ．
（2）The function f is said to be injective or one－to－one if it holds that＂$f(x)=f(y) \Rightarrow x=y$＂．When f is injective，f is called a injection，and we write $f: A \xrightarrow{1-1} B$ ．
（3）The function f is called a bijection if it is both injective and surjective．When f is a bijection，we write $f: A \xrightarrow[\text { onto }]{\stackrel{1-1}{\longrightarrow}} B$ ．

§4．3 Functions that are Onto；One－to－One Functions

Remark：

（1）It is always true that $\operatorname{Rng}(f) \subseteq B$ ；thus $f: A \rightarrow B$ is onto if and only if $B \subseteq \operatorname{Rng}(f)$ ．In other words，$f: A \rightarrow B$ is onto if and only if every $b \in B$ has a pre－image．Therefore，to prove that $f: A \rightarrow B$ is onto B ，it is sufficient to show that for every $b \in B$ there exists $a \in A$ such that $f(a)=b$ ．
（2）The direct proof of that $f: A \rightarrow B$ is injective is to verify the property that＂$f(x)=f(y) \Rightarrow x=y$＂．A proof of the injectivity of f by contraposition assumes that $x \neq y$ and one needs to show that $f(x) \neq f(y)$ ．

§4．3 Functions that are Onto；One－to－One Functions

Theorem

（1）If $f: A \rightarrow B$ is onto B and $g: B \rightarrow C$ is onto C ，then $g \circ f$ is onto C ．
（2）If $f: A \rightarrow B$ is one－to－one and $g: B \rightarrow C$ is one－to－one，then $g \circ f$ is one－to－one．

Proof．

（1）Let $c \in C$ ．By the surjectivity of g ，there exists $b \in B$ such that $g(b)=c$ ．The surjectivity of f then implies the existence of $a \in A$ such that $f(a)=b$ ．Therefore，$(g \circ f)(a)=g(f(a))=$ $g(b)=c$ which concludes（1）．
（2）Assume that $(g \circ f)(x)=(g \circ f)(y)$ ．Then $g(f(x))=g(f(y))$ ； thus by the injectivity of $g, f(x)=f(y)$ ．Therefore，the injec－ tivity of f implies that $x=y$ which concludes（2）．

§4．3 Functions that are Onto；One－to－One Functions

Theorem

If $f: A \rightarrow B, g: B \rightarrow C$ are bijections，then $g \circ f: A \rightarrow C$ is a bijection．

Theorem

Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions．
（1）If $g \circ f$ is onto C ，then g is onto C ．
（2）If $g \circ f$ is one－to－one，then f is one－to－one．

Proof．

（1）Let $c \in C$ ．Since $g \circ f$ is onto C ，there exists $a \in A$ such that $(g \circ f)(a)=c$ ．Let $b=f(a)$ ．Then $g(b)=g(f(a))=$ $(g \circ f)(a)=c$ ．
（2）Suppose that $f(x)=f(y)$ ．Then $(g \circ f)(x)=g(f(x))=$ $g(f(y))=(g \circ f)(y)$ ，and the injectivity of $g \circ f$ implies that $x=y$ ．

