Theorem

Suppose that f and g are functions. Then $f \cap g$ is a function with domain $A = \{x \mid f(x) = g(x)\}$, and $f \cap g = f|_A = g|_A$.

Proof.

Let
$$(x, y) \in f \cap g$$
. Then $y = f(x) = g(x)$; thus
 $\operatorname{Dom}(f \cap g) = \{x \mid f(x) = g(x)\} (\equiv A).$

If $(x, y_1), (x, y_2) \in f \cap g$, $(x, y_1), (x, y_2) \in f$ which, by the fact that f is a function, implies that $y_1 = y_2$. Therefore, $f \cap g$ is a function. Moreover,

$$f \cap g = \left\{ (x, y) \, \middle| \, \exists \, x \in A, \, y = f(x) \right\}$$

which implies that $f \cap g = f|_A$.

イロト イヨト イヨト イヨト

For $f \cup g$ being a function, it is (sufficient and) necessary that if $x \in \text{Dom}(f) \cap \text{Dom}(g)$, then f(x) = g(x). Moreover, if $f \cup g$ is a function, then $f = (f \cup g)|_{\text{Dom}(f)}$ and $g = (f \cup g)|_{\text{Dom}(g)}$. In particular, we have the following

Theorem

Let f and g be functions with Dom(f) = A and Dom(g) = B. If $A \cap B = \emptyset$, then $f \cup g$ is a function with domain $A \cup B$. Moreover, $(f \cup g)(x) = \begin{cases} f(x) & \text{if } x \in A, \\ g(x) & \text{if } x \in B. \end{cases}$

イロト イヨト イヨト イヨト 三日

Theorem

Let f and g be functions with Dom(f) = A and Dom(g) = B. If $A \cap B = \emptyset$, then $f \cup g$ is a function with domain $A \cup B$. Moreover, $(f \cup g)(x) = \begin{cases} f(x) & \text{if } x \in A, \\ g(x) & \text{if } x \in B. \end{cases}$ (*)

Proof.

Clearly $Dom(f \cup g) = A \cup B$. Suppose that $(x, y_1), (x, y_2) \in f \cup g$. If $(x, y_1) \in f$, then $x \in Dom(f)$; thus by the fact that $A \cap B = \emptyset$, we must have $(x, y_2) \in f$. Since f is a function, $y_1 = f(x) = y_2$. Similarly, if $(x, y_1) \in g$, then $(x, y_2) \in g$ which also implies that $y_1 = g(x) = y_2$. Therefore, $f \cup g$ is a function and (\star) is valid. \Box

Definition

Let f be a real-valued function defined on an interval $I \subseteq \mathbb{R}$.

• The function *f* is said to be decreasing

O The function f is said to be

that
$$\begin{array}{c} f(x) \leq f(y) \\ f(x) \geq f(y) \end{array}$$
 for all $x, y \in I$.

strictly decreasing

on *I* if
$$x < y$$

on *I* if $x \leq y$ implies

 $\begin{array}{ll} \text{implies that} & f(x) < f(y) \\ f(x) > f(y) & \text{for all } x, y \in I. \end{array}$

Definition

- Let $f: A \rightarrow B$ be a function.
 - The function f is said to be *surjective* or *onto* B if Rng(f) = B. When f is surjective, f is called a surjection, and we write f: A ^{onto}→ B.
 - 2 The function f is said to be *injective* or *one-to-one* if it holds that "f(x) = f(y) ⇒ x = y". When f is injective, f is called a injection, and we write f: A ¹⁻¹→ B.
 - 3 The function f is called a *bijection* if it is both injective and surjective. When f is a bijection, we write f: A¹⁻¹/_{onto}B.

・ロト ・回ト ・ヨト ・ヨト

Remark:

- It is always true that Rng(f) ⊆ B; thus f: A → B is onto if and only if B ⊆ Rng(f). In other words, f: A → B is onto if and only if every b ∈ B has a pre-image. Therefore, to prove that f: A → B is onto B, it is sufficient to show that for every b ∈ B there exists a ∈ A such that f(a) = b.
- O The direct proof of that f: A → B is injective is to verify the property that "f(x) = f(y) ⇒ x = y". A proof of the injectivity of f by contraposition assumes that x ≠ y and one needs to show that f(x) ≠ f(y).

・ロト ・回ト ・ヨト ・ヨト

Theorem

- If $f: A \to B$ is onto B and $g: B \to C$ is onto C, then $g \circ f$ is onto C.
- If f: A → B is one-to-one and g: B → C is one-to-one, then g ∘ f is one-to-one.

Proof.

Let c ∈ C. By the surjectivity of g, there exists b ∈ B such that g(b) = c. The surjectivity of f then implies the existence of a ∈ A such that f(a) = b. Therefore, (g ∘ f)(a) = g(f(a)) = g(b) = c which concludes ①.

Assume that (g ∘ f)(x) = (g ∘ f)(y). Then g(f(x)) = g(f(y)); thus by the injectivity of g, f(x) = f(y). Therefore, the injectivity of f implies that x = y which concludes ②.

・ロト ・回 ト ・ヨト ・ヨト

E

Theorem

If $f : A \to B$, $g : B \to C$ are bijections, then $g \circ f : A \to C$ is a bijection.

Theorem

Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions.

- If $g \circ f$ is onto C, then g is onto C.
- 2 If $g \circ f$ is one-to-one, then f is one-to-one.

Proof.

- Let $c \in C$. Since $g \circ f$ is onto C, there exists $a \in A$ such that $(g \circ f)(a) = c$. Let b = f(a). Then $g(b) = g(f(a)) = (g \circ f)(a) = c$.
- Suppose that f(x) = f(y). Then $(g \circ f)(x) = g(f(x)) = g(f(y)) = (g \circ f)(y)$, and the injectivity of $g \circ f$ implies that x = y.