§3．2 Equivalence Relations

Theorem

Let A be a non－empty set and R be an equivalence relation on A ． For all $x, y \in A$ ，we have
（a）$x \in \bar{x}$ and $\bar{x} \subseteq A$ ．
（b）$x R y$ if and only if $\bar{x}=\bar{y}$ ．
（c）$x \not R y$ if and only if $\bar{x} \cap \bar{y}=\varnothing$ ．

Proof．

It is clear that（a）holds．To see（b）and（c），it suffices to show that ＂$x R y \Rightarrow \bar{x}=\bar{y}$＂and＂$x R y \Rightarrow \bar{x} \cap \bar{y}=\varnothing$＂．
Assume that $x R y$ ．Then if $z \in \bar{x}$ ，we have $x R z$ ．The symmetry and transitivity of R then implies that $y R z$ ；thus $z \in \bar{y}$ which implies that $\bar{x} \subseteq \bar{y}$ ．Similarly， $\bar{y} \subseteq \bar{x}$ ，hence we conclude that＂$x R y \Rightarrow \bar{x}=\bar{y}$＂．
Now assume that $\bar{x} \cap \bar{y} \neq \varnothing$ ．Then for for some $z \in A$ we have $z \in \bar{x} \cap \bar{y}$ ．Therefore，$x R z$ and $y R z$ ．Since R is symmetric and transitive，then $x R y$ which implies that＂$x R y \Rightarrow \bar{x} \cap \bar{y}=\varnothing$＂．

§3．2 Equivalence Relations

Definition

Let m be a fixed positive integer．For $x, y \in \mathbb{Z}$ ，we say x is congruent to y modulo m（以 m 為除數時 x 同稌 y ）and write $x=y(\boldsymbol{m o d}$ m ）if m divides $(x-y)$ ．The number m is called the modulus of the congruence．

Example

Using 4 as the modulus，we have

$$
\begin{aligned}
3 & =3(\bmod 4) \text { because } 4 \text { divides } 3-3=0 \\
9 & =5(\bmod 4) \text { because } 4 \text { divides } 9-5=4, \\
-27 & =1(\bmod 4) \text { because } 4 \text { divides }-27-1=-28 \\
20 & =8(\bmod 4) \text { because } 4 \text { divides } 20-8=12 \\
100 & =0(\bmod 4) \text { because } 4 \text { divides } 100-0=100
\end{aligned}
$$

§3．2 Equivalence Relations

Theorem

For every fixed positive integer m ，the relation＂congruence modulo m＂is an equivalence relation on \mathbb{Z} ．

Proof．

（1）（Reflexivity）It is easy to see that $x=x(\bmod m)$ for all $x \in \mathbb{Z}$ ． Therefore，congruence modulo m is reflexive on \mathbb{Z} ．
（2）（Symmetry）Assume that $x=y(\bmod m)$ ．Then m divides $x-y$ ；that is，$x-y=m k$ for some $k \in \mathbb{Z}$ ．Therefore，$y-x=$ $m(-k)$ which implies that m divides $y-x$ ；thus $y=x(\bmod$ m ）．
（3）（Transitivity）Assume that $x=y(\bmod m)$ and $y=z(\bmod$ m ）．Then $x-y=m k$ and $y-z=m \ell$ for some $k, \ell \in \mathbb{Z}$ ． Therefore，$x-z=m(k+\ell)$ which implies that m divides $x-z$ ； thus $x=z(\bmod m)$ ．

§3．2 Equivalence Relations

Definition

The set of equivalence classes for the relation congruence modulo m is denoted by \mathbb{Z}_{m} ．

Remark：The elements of \mathbb{Z}_{m} are sometimes called the residue（or remainder）classes modulo m ．

Example

For congruence modulo 4 ，there are four equivalence classes：

$$
\begin{aligned}
& \overline{0}=\{\cdots,-16,-12,-8,-4,0,4,8,12,16, \cdots\}=\{4 k \mid k \in \mathbb{Z}\}, \\
& \overline{1}=\{\cdots,-15,-11,-7,-3,1,5,9,13,17, \cdots\}=\{4 k+1 \mid k \in \mathbb{Z}\}, \\
& \overline{2}=\{\cdots,-14,-10,-6,-2,2,6,10,14,18, \cdots\}=\{4 k+2 \mid k \in \mathbb{Z}\}, \\
& \overline{3}=\{\cdots,-13,-9,-5,-1,3,7,11,15,19, \cdots\}=\{4 k+3 \mid k \in \mathbb{Z}\} .
\end{aligned}
$$

§3．2 Equivalence Relations

In general，we will prove that the equivalence relation＂congruence modulo m＂produces m equivalence classes

$$
\bar{j}=\{m k+j \mid k \in \mathbb{Z}\}, \quad j=0,1, \cdots, m-1
$$

The collection of these equivalence classes，by definition $\mathbb{Z} /(\bmod m)$ ， is usually denoted by \mathbb{Z}_{m} ．

Theorem

Let m be a fixed positive integer．Then
（1）For integers x and $y, x=y(\bmod m)$ if and only if the remainder when x is divided by m equals the remainder when y divided by m．
（2） \mathbb{Z}_{m} consists of m distinct equivalence classes：

$$
\mathbb{Z}_{m}=\{\overline{0}, \overline{1}, \cdots, \overline{m-1}\}
$$

§3．2 Equivalence Relations

Proof．

（1）For a given $x \in \mathbb{Z}$ ，let $(q(x), r(x))$ denote the unique pair in $\mathbb{Z} \times \mathbb{Z}$ obtained by the division algorithm satisfying

$$
x=m q(x)+r(x) \quad \text { and } \quad 0 \leqslant r(x)<m .
$$

Then

$$
\begin{aligned}
x=y(\bmod m) & \Leftrightarrow m \text { divides } x-y \\
& \Leftrightarrow m \text { divides } m(q(x)-q(y))+r(x)-r(y) \\
& \Leftrightarrow m \text { divides } r(x)-r(y) \\
& \Leftrightarrow r(x)-r(y)=0 .
\end{aligned}
$$

where the last equivalence following from the fact that $0 \leqslant$ $r(x), r(y)<m$ ．

§3．2 Equivalence Relations

Proof．（Cont＇d）．

（2）Using（1），x and y are in the same equivalence classes（produced by the equivalence relation＂congruence modulo m＂）if and only if x and y has the same remainder when they are divided by m ． Therefore，we find that

$$
\bar{x}=\{m k+r(x) \mid k \in \mathbb{Z}\}=\overline{r(x)} \quad \forall x \in \mathbb{Z}
$$

Since $r(x)$ has values from $\{0,1, \cdots, m-1\}$ ，we find that $\mathbb{Z}_{m}=$ $\{\overline{0}, \overline{1}, \cdots, \overline{m-1}\}$ ．The proof is completed if we show that $\bar{k} \cap \bar{j}=\varnothing$ if $k \neq j$ and $k, j \in\{0,1, \cdots, m-1\}$ ．However，if $x \in \bar{k} \cap \bar{j}$ ，then

$$
x=m q_{1}+k=m q_{2}+j
$$

which is impossible since $k \neq j$ and $k, j \in\{0,1, \cdots, m-1\}$ ． Therefore，there are exactly m equivalence classes．

§3．3 Partitions

Definition

Let A be a non－empty set． \mathcal{P} is a partition of A if \mathcal{P} is a collection of subsets of A such that
（1）if $X \in \mathcal{P}$ ，then $X \neq \varnothing$ ．
（2）if $X \in \mathcal{P}$ and $Y \in \mathcal{P}$ ，then $X=Y$ or $X \cap Y=\varnothing$ ．
（3）$\bigcup_{X \in \mathcal{P}} X=A$ ．
In other words，a partition of a set A is a pairwise disjoint collection of non－empty subsets of A whose union is A ．

§3．3 Partitions

Example

The family $\mathcal{G}=\{[n, n+1) \mid n \in \mathbb{Z}\}$ is a partition of \mathbb{R} ．

Example

Each of the following is a partition of \mathbb{Z} ：
（1） $\mathcal{P}=\{E, D\}$ ，where E is the collection of even integers and D is the collection of odd integers．
（2）$X=\left\{\mathbb{N},\{0\}, \mathbb{Z}^{-}\right\}$，where \mathbb{Z}^{-}is the collection of negative inte－ gers．
（3） $\mathcal{H}=\left\{A_{k} \mid k \in \mathbb{Z}\right\}$ ，where $A_{k}=\{3 k, 3 k+1,3 k+2\}$ ．

§3．3 Partitions

Theorem

If R is an equivalent relation on a non－empty set A ，then A / R is a partition of A ．

Proof．

First of all，each equivalence class $\bar{x} \in A / R$ must be non－empty since it contains x ．Let \bar{x} and \bar{y} be two equivalence classes in A / R ． If $\bar{x} \cap \bar{y} \neq \varnothing$ ，then there exists $z \in \bar{x} \cap \bar{y}$ which implies that $x R z$ and $y R z$ ．By the symmetry and the transitivity of R we have $x R y$ which implies that $\bar{x}=\bar{y}$ ．
Finally，it is clear that $\bigcup_{\bar{x} \in A / R} \bar{x} \subseteq A$ since each $\bar{x} \subseteq A$ ．On the other hand，since each $y \in A$ belongs to the equivalence class \bar{y} ，we must have $A \subseteq \bigcup_{\bar{x} \in A / R} \bar{x}$ ．Therefore，$A=\bigcup_{\bar{x} \in A / R} \bar{x}$ ．

§3．3 Partitions

Theorem

Let \mathcal{P} be a partition of a non－empty set A ．For $x, y \in A$ ，define $x Q y$ if and only if there exists $C \in \mathcal{P}$ such that $x, y \in C$ ．Then
（1）Q is an equivalence relation on A ．
（2）$A / Q=\mathcal{P}$ ．

Proof．

It is clear that Q is reflexive and symmetric on A ，so it suffices to show the transitivity of Q to complete（1）．Suppose that $x Q y$ and $y Q z$ ．By the definition of the relation Q there exists C_{1} and C_{2} in \mathcal{P} such that $x, y \in C_{1}$ and $y, z \in C_{2}$ ；hence $C_{1} \cap C_{2} \neq \varnothing$ ．Then $C_{1}=C_{2}$ by the fact that \mathcal{P} is a partition and $C_{1}, C_{2} \in \mathcal{P}$ ．Therefore， $x, z \in C_{1}$ which implies that $x Q z$ ．

§3．3 Partitions

Proof．（Cont＇d）．

Next，we claim that if $C \in \mathcal{P}$ ，then $x \in C$ if and only if $\bar{x}=C$ ．It suffices to show the direction＂\Rightarrow＂since $x \in \bar{x}$ ．

Suppose that $C \in \mathcal{P}$ and $x \in C$ ．
（1）＂$C \subseteq \bar{x}$＂：Let $y \in C$ be given．By the fact that $x \in C$ we must have $y Q x$ ．Therefore，$y \in \bar{x}$ which shows $C \subseteq \bar{x}$ ．
（2）＂ $\bar{x} \subseteq C$＂：Let $y \in \bar{x}$ be given．Then there exists $\tilde{C} \in \mathcal{P}$ such that $x, y \in \tilde{C}$ ．By the fact that $x \in C$ ，we find that $C \cap \tilde{C} \neq \varnothing$ ． Since \mathcal{P} is a partition of A and $C, \widetilde{C} \in \mathcal{P}$ ，we must have $C=\widetilde{C}$ ； thus $y \in C$ ．Therefore， $\bar{x} \subseteq C$ ．

§3．3 Partitions

Proof．（Cont＇d）．

Now we show that $A / Q=\mathcal{P}$ ．If $C \in \mathcal{P}$ ，then $C \neq \varnothing$ ；thus there exists $x \in C$ for some $x \in A$ ．Then the claim above shows that $C=\bar{x} \in A / Q$ ．Therefore， $\mathcal{P} \subseteq A / Q$ ．On the other hand，if $\bar{x} \in A / Q$ ， by the fact that \mathcal{P} is a partition of A ，there exists $C \in \mathcal{P}$ such that $x \in C$ ．Then the claim above shows that $\bar{x}=C$ ．Therefore， $A / Q \subseteq \mathcal{P}$ ．

Remark：The relation Q defined in the theorem proved above is called the equivalence relation associated with the partition \mathcal{P} ．

