Theorem

Let A be a non-empty set and R be an equivalence relation on A. For all $x, y \in A$, we have

(a) $x \in \overline{x}$ and $\overline{x} \subseteq A$. (b) xRy if and only if $\overline{x} = \overline{y}$.

(c) $x \not R y$ if and only if $\bar{x} \cap \bar{y} = \emptyset$.

Proof.

It is clear that (a) holds. To see (b) and (c), it suffices to show that " $xRy \Rightarrow \overline{x} = \overline{y}$ " and " $xRy \Rightarrow \overline{x} \cap \overline{y} = \emptyset$ ".

Assume that *xRy*. Then if $z \in \overline{x}$, we have *xRz*. The symmetry and transitivity of *R* then implies that *yRz*; thus $z \in \overline{y}$ which implies that $\overline{x} \subseteq \overline{y}$. Similarly, $\overline{y} \subseteq \overline{x}$; hence we conclude that "*xRy* $\Rightarrow \overline{x} = \overline{y}$ ". Now assume that $\overline{x} \cap \overline{y} \neq \emptyset$. Then for for some $z \in A$ we have $z \in \overline{x} \cap \overline{y}$. Therefore, *xRz* and *yRz*. Since *R* is symmetric and transitive, then *xRy* which implies that "*xRy* $\Rightarrow \overline{x} \cap \overline{y} = \emptyset$ ".

・ロット (四マ・川田) (日)

ъ

Definition

Let *m* be a fixed positive integer. For $x, y \in \mathbb{Z}$, we say *x* is congruent to *y* modulo *m* (以*m* 為除數時 *x* 同餘 *y*) and write x = y (mod *m*) if *m* divides (x - y). The number *m* is called the modulus of the congruence.

Example

Using 4 as the modulus, we have $3 = 3 \pmod{4}$ because 4 divides 3 - 3 = 0, $9 = 5 \pmod{4}$ because 4 divides 9 - 5 = 4, $-27 = 1 \pmod{4}$ because 4 divides -27 - 1 = -28, $20 = 8 \pmod{4}$ because 4 divides 20 - 8 = 12, $100 = 0 \pmod{4}$ because 4 divides 100 - 0 = 100.

Theorem

For every fixed positive integer m, the relation "congruence modulo m" is an equivalence relation on \mathbb{Z} .

Proof.

- (Reflexivity) It is easy to see that x = x (mod m) for all x ∈ Z. Therefore, congruence modulo m is reflexive on Z.
- **2** (Symmetry) Assume that $x = y \pmod{m}$. Then *m* divides x y; that is, x y = mk for some $k \in \mathbb{Z}$. Therefore, y x = m(-k) which implies that *m* divides y x; thus $y = x \pmod{m}$.
- (Transitivity) Assume that x = y (mod m) and y = z (mod m). Then x y = mk and y z = mℓ for some k, ℓ ∈ Z. Therefore, x z = m(k+ℓ) which implies that m divides x z; thus x = z (mod m).

Definition

The set of equivalence classes for the relation congruence modulo m is denoted by \mathbb{Z}_m .

Remark: The elements of \mathbb{Z}_m are sometimes called the *residue* (or *remainder*) classes modulo *m*.

Example

For congruence modulo 4, there are four equivalence classes:

$$\begin{split} \overline{0} &= \{\cdots, -16, -12, -8, -4, 0, 4, 8, 12, 16, \cdots\} = \{4k \, \big| \, k \in \mathbb{Z}\}, \\ \overline{1} &= \{\cdots, -15, -11, -7, -3, 1, 5, 9, 13, 17, \cdots\} = \{4k + 1 \, \big| \, k \in \mathbb{Z}\}, \\ \overline{2} &= \{\cdots, -14, -10, -6, -2, 2, 6, 10, 14, 18, \cdots\} = \{4k + 2 \, \big| \, k \in \mathbb{Z}\}, \\ \overline{3} &= \{\cdots, -13, -9, -5, -1, 3, 7, 11, 15, 19, \cdots\} = \{4k + 3 \, \big| \, k \in \mathbb{Z}\}. \end{split}$$

イロト イヨト イヨト イヨト

Э

In general, we will prove that the equivalence relation "congruence modulo m" produces m equivalence classes

$$\overline{j} = \left\{ mk + j \mid k \in \mathbb{Z} \right\}, \qquad j = 0, 1, \cdots, m - 1.$$

The collection of these equivalence classes, by definition $\mathbb{Z}/(\mod m)$, is usually denoted by \mathbb{Z}_m .

Theorem

Let m be a fixed positive integer. Then

- For integers x and y, x = y (mod m) if and only if the remainder when x is divided by m equals the remainder when y divided by m.
- **2** \mathbb{Z}_m consists of *m* distinct equivalence classes:

$$\mathbb{Z}_m = \left\{\overline{0}, \overline{1}, \cdots, \overline{m-1}\right\}.$$

Proof.

• For a given $x \in \mathbb{Z}$, let (q(x), r(x)) denote the unique pair in $\mathbb{Z} \times \mathbb{Z}$ obtained by the division algorithm satisfying x = mq(x) + r(x) and $0 \le r(x) < m$. Then $x = y \pmod{m} \Leftrightarrow m \text{ divides } x - y$ \Leftrightarrow *m* divides m(q(x) - q(y)) + r(x) - r(y) \Leftrightarrow *m* divides r(x) - r(y) $\Leftrightarrow r(\mathbf{x}) - r(\mathbf{y}) = 0$. where the last equivalence following from the fact that $0 \leq$ r(x), r(y) < m

(日)

Proof. (Cont'd).

Using ①, x and y are in the same equivalence classes (produced by the equivalence relation "congruence modulo m") if and only if x and y has the same remainder when they are divided by m. Therefore, we find that

$$\overline{x} = \left\{ mk + r(x) \mid k \in \mathbb{Z} \right\} = \overline{r(x)} \qquad \forall x \in \mathbb{Z} \,.$$

Since r(x) has values from $\{0, 1, \dots, m-1\}$, we find that $\mathbb{Z}_m = \{\overline{0}, \overline{1}, \dots, \overline{m-1}\}$. The proof is completed if we show that $\overline{k} \cap \overline{j} = \emptyset$ if $k \neq j$ and $k, j \in \{0, 1, \dots, m-1\}$. However, if $x \in \overline{k} \cap \overline{j}$, then

$$x = mq_1 + k = mq_2 + j$$

which is impossible since $k \neq j$ and $k, j \in \{0, 1, \cdots, m-1\}$. Therefore, there are exactly *m* equivalence classes.

Definition

Let A be a non-empty set. \mathcal{P} is a **partition** of A if \mathcal{P} is a collection

of subsets of A such that

• if
$$X \in \mathcal{P}$$
, then $X \neq \emptyset$.

2 if $X \in \mathcal{P}$ and $Y \in \mathcal{P}$, then X = Y or $X \cap Y = \emptyset$.

$$\bigcup_{X\in\mathcal{P}}X=A.$$

In other words, a partition of a set A is a pairwise disjoint collection of non-empty subsets of A whose union is A.

< ロ > < 同 > < 三 > < 三 >

Example

The family
$$\mathfrak{G} = ig\{[n,n+1) \, \big| \, n \in \mathbb{Z}ig\}$$
 is a partition of $\mathbb{R}.$

Example

Each of the following is a partition of \mathbb{Z} :

- $\mathcal{P} = \{E, D\}$, where *E* is the collection of even integers and *D* is the collection of odd integers.
- ② $X = \{\mathbb{N}, \{0\}, \mathbb{Z}^-\}$, where \mathbb{Z}^- is the collection of negative integers.

3
$$\mathcal{H} = \{A_k \mid k \in \mathbb{Z}\}, \text{ where } A_k = \{3k, 3k+1, 3k+2\}.$$

・ロト ・回ト ・ヨト ・ヨト

臣

Theorem

If R is an equivalent relation on a non-empty set A, then A/R is a partition of A.

Proof.

First of all, each equivalence class $\overline{x} \in A/R$ must be non-empty since it contains x. Let \overline{x} and \overline{y} be two equivalence classes in A/R. If $\overline{x} \cap \overline{y} \neq \emptyset$, then there exists $z \in \overline{x} \cap \overline{y}$ which implies that xRz and yRz. By the symmetry and the transitivity of R we have xRy which implies that $\overline{x} = \overline{y}$. Finally, it is clear that $[] \bar{x} \subseteq A$ since each $\bar{x} \subseteq A$. On the other $\bar{x} \in A/R$ hand, since each $y \in A$ belongs to the equivalence class \overline{y} , we must have $A \subseteq \bigcup \overline{x}$. Therefore, $A = \bigcup \overline{x}$. $\bar{x} \in A/R$ $\bar{x} \in A/R$

・ロト ・日ト ・ヨト ・ヨト

Э

Theorem

Let \mathcal{P} be a partition of a non-empty set A. For $x, y \in A$, define xQy if and only if there exists $C \in \mathcal{P}$ such that $x, y \in C$. Then

Q is an equivalence relation on A.

 $A/Q = \mathcal{P}.$

Proof.

It is clear that Q is reflexive and symmetric on A, so it suffices to show the transitivity of Q to complete ①. Suppose that xQy and yQz. By the definition of the relation Q there exists C_1 and C_2 in \mathcal{P} such that $x, y \in C_1$ and $y, z \in C_2$; hence $C_1 \cap C_2 \neq \emptyset$. Then $C_1 = C_2$ by the fact that \mathcal{P} is a partition and $C_1, C_2 \in \mathcal{P}$. Therefore, $x, z \in C_1$ which implies that xQz.

Proof. (Cont'd).

Next, we claim that if $C \in \mathcal{P}$, then $x \in C$ if and only if $\overline{x} = C$. It suffices to show the direction " \Rightarrow " since $x \in \overline{x}$.

Suppose that $C \in \mathcal{P}$ and $x \in C$.

- " $C \subseteq \overline{x}$ ": Let $y \in C$ be given. By the fact that $x \in C$ we must have yQx. Therefore, $y \in \overline{x}$ which shows $C \subseteq \overline{x}$.
- "x ⊆ C": Let y ∈ x be given. Then there exists C̃ ∈ P such that x, y ∈ C̃. By the fact that x ∈ C, we find that C ∩ C̃ ≠ Ø. Since P is a partition of A and C, C̃ ∈ P, we must have C = C̃; thus y ∈ C. Therefore, x̄ ⊆ C.

イロト イヨト イヨト イヨト

Proof. (Cont'd).

Now we show that $A/Q = \mathcal{P}$. If $C \in \mathcal{P}$, then $C \neq \emptyset$; thus there exists $x \in C$ for some $x \in A$. Then the claim above shows that $C = \overline{x} \in A/Q$. Therefore, $\mathcal{P} \subseteq A/Q$. On the other hand, if $\overline{x} \in A/Q$, by the fact that \mathcal{P} is a partition of A, there exists $C \in \mathcal{P}$ such that $x \in C$. Then the claim above shows that $\overline{x} = C$. Therefore, $A/Q \subseteq \mathcal{P}$.

Remark: The relation Q defined in the theorem proved above is called *the equivalence relation associated with the partition* \mathcal{P} .

イロト イヨト イヨト イヨト