§3．2 Equivalence Relations

Definition

Let A be a set and R be a relation on A ．
（1）R is reflexive on A if $(\forall x \in A)(x R x)$ ．
（2）R is symmetric on A if $[\forall(x, y) \in A \times A](x R y \Leftrightarrow y R x)$ ．
（3）R is transitive on A if

$$
[\forall(x, y, z) \in A \times A \times A][(x R y) \wedge(y R z)] \Rightarrow(x R z)] .
$$

A relation R on A which is reflexive，symmetric and transitive is called an equivalence relation on A ．

An equivalence relation is often denoted by \sim（the same symbol as negation but \sim as negation is always in front of a proposition while \sim as an equivalence relation is always between two elements in a set）．

§3．2 Equivalence Relations

Example

The relation＂divides＂on \mathbb{N} is reflexive and transitive，but not sym－ metric．The relation＂is greater than＂on \mathbb{N} is only transitive（遞移律）but not reflexive and transitive．

Example

Let A be a set．The relation＂is a subset of＂on the power set $\mathcal{P}(A)$ is reflexive，transitive but not symmetric．

Example

The relation $S=\left\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x^{2}=y^{2}\right\}$ is reflexive，symmetric and transitive on \mathbb{R} ．

Example

The relation R on \mathbb{Z} defined by $R=\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x+y$ is even $\}$ is reflexive，symmetric and transitive．

§3．2 Equivalence Relations

Definition

Let A be a set and R be an equivalence relation on A ．For $x \in A$ ， the equivalence class of \times modulo R（or simply $\times \bmod R$ ）is a subset of A given by

$$
\bar{x}=\{y \in A \mid x R y\} .
$$

Each element of \bar{x} is called a representative of this class．The collection of all equivalence classes modulo R ，called A modulo R ， is denoted by A / R（and is the set $A / R=\{\bar{x} \mid x \in A\}$ ）．

Example

The relation $\boldsymbol{H}=\{(1,1),(2,2),(3,3),(1,2),(2,1)\}$ is an equiva－ lence relation on the set $A=\{1,2,3\}$ ．Then

$$
\overline{1}=\overline{2}=\{1,2\} \quad \text { and } \quad \overline{3}=\{3\} .
$$

Therefore，$A / H=\{\{1,2\},\{3\}\}$ ．

