§2．2 Set Operations

Definition

Let A and B be sets．
（1）The union of A and B ，denoted by $A \cup B$ ，is the set

$$
\{x \mid(x \in A) \vee(x \in B)\} .
$$

（2）The intersection of A and B ，denoted by $A \cap B$ ，is the set

$$
\{x \mid(x \in A) \wedge(x \in B)\}
$$

（3）The difference of A and B ，denoted by $A-B$ ，is the set

$$
\{x \mid(x \in A) \wedge(x \notin B)\} .
$$

Definition

Two sets A and B are said to be disjoint if $A \cap B=\varnothing$ ．

§2．2 Set Operations

－Venn diagrams：

$$
A-B
$$

Disjoint sets A and B

§2．2 Set Operations

Theorem

Let A, B and C be sets．Then
（a）$A \subseteq A \cup B$ ；
（b）$A \cap B \subseteq A$ ；
（c）$A \cap \varnothing=\varnothing$ ；
（d）$A \cup \varnothing=A$ ；
（e）$A \cap A=A$ ；
（f）$A \cup A=A$ ；
（g）$A \backslash \varnothing=A$ ；
（h）$\varnothing \backslash A=\varnothing$ ；
（i）$A \cup B=B \cup A$ ；
（commutative laws）
（j）$A \cap B=B \cap A ;$
$\left.\begin{array}{l}\text {（k）} A \cup(B \cup C)=(A \cup B) \cup C ; \\ (\ell) A \cap(B \cap C)=(A \cap B) \cap C ;\end{array}\right\} \quad$（associative laws）
（m）$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ ；$\}$
（distributive laws）
（n）$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$ ；$\}$
（p）$A \subseteq B \Leftrightarrow A \cap B=A$ ；
（q）$A \subseteq B \Rightarrow A \cup C \subseteq B \cup C$ ；
（r）$A \subseteq B \Rightarrow A \cap C \subseteq B \cap C$ ．
Note：$(A \cup B) \cap C \neq A \cup(B \cap C)$ in general！

§2．2 Set Operations

Proof of（m）

Let x be an element in the universe，and P, Q and R denote the propositions $x \in A, x \in B$ and $x \in C$ ，respectively．Note that from the truth table，we conclude that

$$
P \wedge(Q \vee R) \Leftrightarrow[(P \wedge Q) \vee(P \wedge R)]
$$

（1）Let $x \in A \cap(B \cup C)$ ．Then $x \in A$ and $x \in B \cup C$ ；thus the proposition $\mathrm{P} \wedge(\mathrm{Q} \vee \mathrm{R})$ is true．Therefore，the proposition $[(\mathrm{P} \wedge \mathrm{Q}) \vee(\mathrm{P} \wedge \mathrm{R})]$ is also true which implies that $x \in A \cap B$ or $x \in A \cap C$ ；thus

$$
A \cap(B \cup C) \subseteq(A \cap B) \cup(A \cap C)
$$

（2）Working conversely，we find that if $x \in A \cap B$ or $x \in A \cap C$ ， then $x \in A \cap(B \cup C)$ ．Therefore，

$$
(A \cap B) \cup(A \cap C) \subseteq A \cap(B \cup C) .
$$

§2．2 Set Operations

Proof of（ m ）

Let $x \in A \cap(B \cup C)$ ．Then $x \in A$ and $x \in B \cup C$ ．Thus，
（1）if $x \in B$ ，then $x \in A \cap B$ ．
（2）if $x \in C$ ，then $x \in A \cap C$ ．
Therefore，$x \in A \cap B$ or $x \in A \cap C$ which shows $x \in(A \cap B) \cup(A \cap C)$ ； thus we establish that

$$
A \cap(B \cup C) \subseteq(A \cap B) \cup(A \cap C)
$$

On the other hand，suppose that $x \in(A \cap B) \cup(A \cap C)$ ．
（1）if $x \in A \cap B$ ，then $x \in A$ and $x \in B$ ．
（2）if $x \in A \cap C$ ，then $x \in A$ and $x \in C$ ．
In either cases，$x \in A$ ；thus if $x \in(A \cap B) \cup(A \cap C)$ ，then $x \in A$ but at the same time $x \in B$ or $x \in C$ ．Thus，$x \in A$ and $x \in B \cup C$ which shows that $x \in A \cap(B \cup C)$ ．Therefore，

$$
(A \cap B) \cup(A \cap C) \subseteq A \cap(B \cup C)
$$

§2．2 Set Operations

Proof of（p）

(\Rightarrow) Suppose that $A \subseteq B$ ．Let x be an element in A ．Then $x \in B$ since $A \subseteq B$ ；thus $x \in A \cap B$ which implies that $A \subseteq A \cap B$ ． On the other hand，it is clear that $A \cap B \subseteq A$ ，so we conclude that $A \cap B=A$ ．
(\Leftarrow) Suppose that $A \cap B=A$ ．Let x be an element in A ．Then $x \in A \cap B$ which shows that $x \in B$ ．Therefore，$A \subseteq B$ ．

§2．2 Set Operations

Definition

Let U be the universe and $A \subseteq U$ ．The complement（補集）of A ， denoted by A^{\complement} ，is the set $U-A$ ．

Theorem

Let U be the universe，and $A, B \subseteq U$ ．Then
（a）$\left(A^{\complement}\right)^{\complement}=A$ ．
（b）$A \cup A^{\complement}=U$ ．
（c）$A \cap A^{\complement}=\varnothing$ ．
（d）$A-B=A \cap B^{\complement}$ ．
（e）$A \subseteq B$ if and only if $B^{\complement} \subseteq A^{\complement}$ ．
（f）$A \cap B=\varnothing$ if and only if $A \subseteq B^{\complement}$
（g）$(A \cup B)^{\complement}=A^{\complement} \cap B^{\complement}$ ．$\}$
（h）$(A \cap B)^{\complement}=A^{\complement} \cup B^{\complement}$ ．$\}$
（De Morgan＇s Law）

§2．2 Set Operations

Proof of（a）

By the definition of the complement，$x \in\left(A^{\complement}\right)^{\complement}$ if and only if $x \notin A^{\complement}$ if and only if $x \in A$ ．

Proof of（e）
By the equivalence of $\mathrm{P} \Rightarrow \mathrm{Q}$ and $\sim \mathrm{Q} \Rightarrow \sim \mathrm{P}$ ，we conclude that

$$
(\forall x)[(x \in A) \Rightarrow(x \in B)] \quad \Leftrightarrow \quad(\forall x)[(x \notin B) \Rightarrow(x \notin A)]
$$

and the bi－directional statement is identical to that

$$
\begin{equation*}
A \subseteq B \Leftrightarrow B^{\complement} \subseteq A^{\complement} . \tag{ㅁ}
\end{equation*}
$$

Alternative proof of（e）
Using（a），it suffices to show that $A \subseteq B \Rightarrow B^{\complement} \subseteq A^{\complement}$ ．Suppose that $A \subseteq B$ ，but $B^{\complement} \ddagger A^{\complement}$ ．Then there exists $x \in B^{\complement}$ and $x \in A$ ；however， by the fact that $A \subseteq B$ ，x has to belong to B ，a contradiction．

§2．2 Set Operations

Proof of（g）

By the equivalence of $\sim(\mathrm{P} \vee \mathrm{Q})$ and $(\sim \mathrm{P}) \wedge(\sim \mathrm{Q})$ ，we find that

$$
(\forall x) \sim[(x \in A) \vee(x \in B)] \Leftrightarrow(\forall x)[(x \notin A) \wedge(x \notin B)]
$$

and the bi－directional statement is identical to that

$$
(A \cup B)^{\complement}=A^{\complement} \cap B^{\complement} .
$$

Alternative proof of（g）

Let x be an element in the universe．

$$
x \in(A \cup B)^{\complement} \text { if and only if } x \notin A \cup B
$$

if and only if it is not the case that $x \in A$ or $x \in B$
if and only if $x \notin A$ and $x \notin B$
if and only if $x \in A^{\complement}$ and $x \in B^{\complement}$ if and only if $x \in A^{\complement} \cap B^{\complement}$ ．

§2．2 Set Operations

Definition

An ordered pair (a, b) is an object formed from two objects a and b ，where a is called the first coordinate and b the second coor－ dinate．Two ordered pairs are equal whenever their corresponding coordinates are the same．
An ordered n－tuples $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ is an object formed from n objects $a_{1}, a_{2}, \cdots, a_{n}$ ，where a_{j} is called the j－th coordinate．Two n－tuples $\left(a_{1}, a_{2}, \cdots, a_{n}\right),\left(c_{1}, c_{2}, \cdots, c_{n}\right)$ are equal if $a_{i}=c_{i}$ for $i \in\{1,2, \cdots, n\}$ ．

Definition

Let A and B be sets．The product of A and B ，denoted by $A \times B$ ，is

$$
A \times B=\{(a, b) \mid a \in A, b \in B\} .
$$

The product of three or more sets are defined similarly．

§2．2 Set Operations

Example

Let $A=\{1,3,5\}$ and $B=\{\star, \diamond\}$ ．Then

$$
A \times B=\{(1, \star),(3, \star),(5, \star),(1, \diamond),(3, \diamond),(5, \diamond)\} .
$$

Theorem

If A, B, C and D are sets，then
（a）$A \times(B \cup C)=(A \times B) \cup(A \times C)$ ．
（b）$A \times(B \cap C)=(A \times B) \cap(A \times C)$ ．
（c）$A \times \varnothing=\varnothing$ ．
（d）$(A \times B) \cap(C \times D)=(A \cap C) \times(B \cap D)$ ．
（e）$(A \times B) \cup(C \times D) \subseteq(A \cup C) \times(B \cup D)$ ．
（f）$(A \times B) \cap(B \times A)=(A \cap B) \times(A \cap B)$ ．

§2．3 Indexed Family of Sets

Definition

Let \mathcal{F} be a family of sets．
（1）The union of the family \mathcal{F} or the union over \mathcal{F} ，denoted by $\bigcup_{A \in \mathcal{F}} A$ ，is the set $\{x \mid x \in A$ for some $A \in \mathcal{F}\}$ ．Therefore，

$$
x \in \bigcup_{A \in \mathcal{F}} A \text { if and only if }(\exists A \in \mathcal{F})(x \in A) \text {. }
$$

（2）The intersection of the family \mathcal{F} or the intersection over \mathcal{F} ， denoted by $\bigcap_{A \in \mathcal{F}} A$ ，is the set $\{x \mid x \in A$ for all $A \in \mathcal{F}\}$ ．There－ fore，

$$
x \in \bigcap_{A \in \mathcal{F}} A \text { if and only if }(\forall A \in \mathcal{F})(x \in A) \text {. }
$$

§2．3 Indexed Family of Sets

Example

Let \mathcal{F} be the collection of sets given by

$$
\mathcal{F}=\left\{\left.\left[\frac{1}{n}, 2-\frac{1}{n}\right] \right\rvert\, n \in \mathbb{N}\right\} .
$$

Then $\bigcup_{A \in \mathcal{F}} A=(0,2)$ and $\bigcap_{A \in \mathcal{F}} A=\{1\}$ ．We also write $\bigcup_{A \in \mathcal{F}} A$ and $\bigcap_{A \in \mathcal{F}} A$ as $\bigcup_{n=1}^{\infty}\left[\frac{1}{n}, 2-\frac{1}{n}\right]$ and $\bigcap_{n=1}^{\infty}\left[\frac{1}{n}, 2-\frac{1}{n}\right]$ ，respectively．

Example

Let \mathcal{F} be the collection of sets given by

$$
\mathcal{F}=\left\{\left.\left(-\frac{1}{n}, 2+\frac{1}{n}\right) \right\rvert\, n \in \mathbb{N}\right\} .
$$

Then $\bigcup_{A \in \mathcal{F}} A=(-1,3)$ and $\bigcap_{A \in \mathcal{F}} A=[0,2]$ ．We also write $\bigcup_{A \in \mathcal{F}} A$ and $\bigcap_{A \in \mathcal{F}} A$ as $\bigcup_{n=1}^{\infty}\left(-\frac{1}{n}, 2+\frac{1}{n}\right)$ and $\bigcap_{n=1}^{\infty}\left(-\frac{1}{n}, 2+\frac{1}{n}\right)$ ，respectively．

§2．3 Indexed Family of Sets

Theorem

Let \mathcal{F} be a family of sets．
（a）For every set B in the family $\mathcal{F}, \bigcap_{A \in \mathcal{F}} A \subseteq B$ ．
（b）For every set B in the family $\mathcal{F}, B \subseteq \bigcup_{A \in \mathcal{F}} A$ ．
（c）If the family \mathcal{F} is non－empty，then $\bigcap_{A \in \mathcal{F}} A \subseteq \bigcup_{A \in \mathcal{F}} A$ ．
（d）$\left(\bigcap_{A \in \mathcal{F}} A\right)^{\complement}=\bigcup_{A \in \mathcal{F}} A^{\complement}$ ．
（e）$\left(\bigcup_{A \in \mathcal{F}} A\right)^{\complement}=\bigcap_{A \in \mathcal{F}} A^{\complement}$ ．$\}$

（De Morgan＇s Law）

§2．3 Indexed Family of Sets

Proof of（d）

Let x be an element in the universe．Then

$$
\begin{aligned}
x \in\left(\bigcap_{A \in \mathcal{F}} A\right)^{\complement} & \text { if and only if } x \notin \bigcap_{A \in \mathcal{F}} A \\
& \text { if and only if } \sim\left(x \in \bigcap_{A \in \mathcal{F}} A\right) \\
& \text { if and only if } \sim(\forall A \in \mathcal{F})(x \in A) \\
& \text { if and only if }(\exists A \in \mathcal{F}) \sim(x \in A) \\
& \text { if and only if }(\exists A \in \mathcal{F})(x \notin A) \\
& \text { if and only if }(\exists A \in \mathcal{F})\left(x \in A^{\complement}\right) \\
& \text { if and only if } x \in \bigcup_{A \in \mathcal{F}} A^{\complement} .
\end{aligned}
$$

§2．3 Indexed Family of Sets

Theorem

Let \mathcal{F} be a non－empty family of sets and B a set．
（1）If $B \subseteq A$ for all $A \in \mathcal{F}$ ，then $B \subseteq \bigcap_{A \in \mathcal{F}} A$ ．
（2）If $A \subseteq B$ for all $A \in \mathcal{F}$ ，then $\bigcup_{A \in \mathcal{F}} A \subseteq B$ ．

Proof．

（1）Suppose that $B \subseteq A$ for all $A \in \mathcal{F}$ ，and $x \in B$ ．Then $x \in A$ for all $A \in \mathcal{F}$ ．Therefore，$(\forall A \in \mathcal{F})(x \in A)$ or equivalently，$x \in \bigcap_{A \in \mathcal{F}} A$ ．
（2）Suppose that $A \subseteq B$ for all $A \in \mathcal{F}$ ，and $x \in \bigcup_{A \in \mathcal{F}} A$ ．Then $x \in A$ for some $A \in \mathcal{F}$ ．By the fact that $A \subseteq B$ ，we find that $x \in B$ ．

