基礎數學補充教材 May 132016

Proposition 0．1．Let S be a non－empty set．The following three statements are equivalent：
（a）S is countable；
（b）there exists a surjection $f: \mathbb{N} \rightarrow S$ ；
（c）there exists an injection $f: S \rightarrow \mathbb{N}$ ．
Proof．＂（a）$\Rightarrow(\mathrm{b})$＂First suppose that $S=\left\{x_{1}, \cdots, x_{n}\right\}$ is finite．Define $f: \mathbb{N} \rightarrow S$ by

$$
f(k)= \begin{cases}x_{k} & \text { if } k<n, \\ x_{n} & \text { if } k \geqslant n .\end{cases}
$$

Then $f: \mathbb{N} \rightarrow S$ is a surjection．Now suppose that S is denumerable．Then by definition of countability，there exists $f: \mathbb{N} \xrightarrow[\text { onto }]{\underline{1-1}} S$ ．
＂$(\mathrm{a}) \Leftarrow(\mathrm{b}) "$ W．L．O．G．we assume that S is an infinite set．Let $k_{1}=1$ ．Since $\#(S)=\infty$ ， $S_{1} \equiv S \backslash\left\{f\left(k_{1}\right)\right\} \neq \varnothing$ ；thus $N_{1} \equiv f^{-1}\left(S_{1}\right)$ is a non－empty subset of \mathbb{N} ．By the well－ordered principle（WOP）of \mathbb{N}, N_{1} has a smallest element denoted by k_{2} ．Since $\#(S)=\infty, S_{2}=$ $S \backslash\left\{f\left(k_{1}\right), f\left(k_{2}\right)\right\} \neq \varnothing$ ；thus $N_{2} \equiv f^{-1}\left(S_{2}\right)$ is a non－empty subset of \mathbb{N} and possesses a smallest element denoted by k_{3} ．We continue this process and obtain a set $\left\{k_{1}, k_{2}, \cdots\right\} \subseteq \mathbb{N}$ ，where $k_{1}<k_{2}<\cdots$ ，and k_{j} is the smallest element of $N_{j-1} \equiv f^{-1}\left(S \backslash\left\{f\left(k_{1}\right), f\left(k_{2}\right), \cdots, f\left(k_{j-1}\right)\right\}\right)$ ．
Claim：$f:\left\{k_{1}, k_{2}, \cdots\right\} \rightarrow S$ is one－to－one and onto．
Proof of claim：The injectivity of f is easy to see since $f\left(k_{j}\right) \notin\left\{f\left(k_{1}\right), f\left(k_{2}\right), \cdots, f\left(k_{j-1}\right)\right\}$ for all $j \geqslant 2$ ．For surjectivity，assume that there is $s \in S$ such that $s \notin f\left(\left\{k_{1}, k_{2}, \cdots\right\}\right)$ ．Since $f: \mathbb{N} \rightarrow \mathbb{S}$ is onto，$f^{-1}(\{s\})$ is a non－empty subset of \mathbb{N} ；thus possesses a smallest element k ． Since $s \notin f\left(\left\{k_{1}, k_{2}, \cdots\right\}\right)$ ，there exists $\ell \in \mathbb{N}$ such that $k_{\ell}<k<k_{\ell+1}$ ．As a consequence，there exists $k \in N_{\ell}$ such that $k<k_{\ell+1}$ which contradicts to the fact that $k_{\ell+1}$ is the smallest element of N_{ℓ} ．

Define $g: \mathbb{N} \rightarrow\left\{k_{1}, k_{2}, \cdots\right\}$ by $g(j)=k_{j}$ ．Then $g: \mathbb{N} \rightarrow\left\{k_{1}, k_{2}, \cdots\right\}$ is one－to－one and onto； thus $h=g \circ f: \mathbb{N} \xrightarrow[\text { onto }]{\stackrel{1-1}{\longrightarrow}} S$ ．
＂（a）\Rightarrow（c）＂If $S=\left\{x_{1}, \cdots, x_{n}\right\}$ is finite，we simply let $f: S \rightarrow \mathbb{N}$ be $f\left(x_{n}\right)=n$ ．Then f is clearly an injection．If S is denumerable，by definition there exists $g: \mathbb{N} \xrightarrow[\text { onto }]{\stackrel{1-1}{\longrightarrow}} S$ which suggests that $f=g^{-1}: S \rightarrow \mathbb{N}$ is an injection．
＂（a）$\Leftarrow(\mathrm{c})$＂Let $f: S \rightarrow \mathbb{N}$ be an injection．If f is also surjective，then $f: S \xrightarrow[\text { onto }]{1-1} \mathbb{N}$ which implies that S is denumerable．Now suppose that $f(S) \subsetneq \mathbb{N}$ ．Since S is non－empty，there exists $s \in S$ ． Let $g: \mathbb{N} \rightarrow S$ be defined by

$$
g(n)=\left\{\begin{array}{cl}
f^{-1}(n) & \text { if } n \in f(S) \\
s & \text { if } n \notin f(S)
\end{array}\right.
$$

Then clearly $g: \mathbb{N} \rightarrow S$ is surjective；thus the equivalence between（a）and（b）implies that S is countable．

