
Exercise Problem Sets 4
Mar. 10. 2023

Problem 1. Let A Ď Rn, B Ď Rm be Riemann measurable sets, and f : AˆB Ñ R be non-negative,
uniformly continuous and integrable on A ˆ B. Define F (x) =

ż

B
f(x, y) dy.

1. Show that if B is bounded, then F : A Ñ R is continuous. How about if B is not bounded?

2. Let f have the additional property that for each ε ą 0, there exists N ą 0 such that
ˇ

ˇ

ˇ

ż

BXB(0,k)

(f ^k)(x, y) dy ´

ż

B

f(x, y) dy
ˇ

ˇ

ˇ
ă ε @ k ě N and x P A .

Show that F is continuous on A. In particular, show that if f(x, y) ď g(y) for all (x, y) P AˆB,
and g is integrable on B, then F is continuous.

Proof. 1. If B is bounded, then B has volume. Let ε ą 0 be given. By the uniform continuity of f ,
there exists δ ą 0 such that

ˇ

ˇf(x1, y1) ´ f(x2, y2)
ˇ

ˇ ă
ε

ν(B) + 1
@
ˇ

ˇ(x1, y1) ´ (x2, y2)
ˇ

ˇ ă δ and x1, x2 P A, y1, y2 P B .

Therefore, if |x1 ´ x2| ă δ and x1, x2 P A,

ˇ

ˇF (x1) ´ F (x2)
ˇ

ˇ =
ˇ

ˇ

ˇ

ż

B

[
f(x1, y) ´ f(x2, y)

]
dy
ˇ

ˇ

ˇ
ď

ż

B

ˇ

ˇf(x1, y) ´ f(x2, y)
ˇ

ˇ dy

ď

ż

B

ε

ν(B) + 1
dx ď

εν(B)

ν(B) + 1
ă ε .

This implies that F is uniformly continuous on A.

If B is unbounded, then the argument above does not apply. In fact, consider the case

f(x, y) =

?
x

1 + x2y2
, A = [0, 1] and B = R .

Then f is non-negative and uniformly continuous on A ˆ B (by Problem 3 of Exercise 12 in
the first semester). Note that F (0) = 0 while if x ą 0,

F (x) =

ż

R
f(x, y) dy =

ż 8

´8

?
x

1 + x2y2
dy =

?
x

x
arctan(xy)

ˇ

ˇ

ˇ

y=8

y=´8
=

π
?
x
.

Therefore, the Tonelli Theorem implies that
ż

AˆB

f(x, y) d(x, y) =

ż

A

( ż
B

f(x, y) dy
)
dx =

ż 1

0

π
?
x
dx = 2π ă 8

which shows that f is integrable on A ˆ B. However, F is not continuous at x = 0.



2. Let ε ą 0 be given. Since f has the property mentioned above, there exists N ą 0 such that
ˇ

ˇ

ˇ

ż

BXB(0,k)

(f ^k)(x, y) dy ´

ż

B

f(x, y) dy
ˇ

ˇ

ˇ
ă

ε

3
@ k ě N and x P A .

By the uniform continuity of f on A ˆ B, there exists δ ą 0 such that
ˇ

ˇf(x1, y1) ´ f(x2, y2)
ˇ

ˇ ă
ε

3
@
ˇ

ˇ(x1, y1) ´ (x2, y2)
ˇ

ˇ ă δ and x1, x2 P A, y1, y2 P B .

Suppose that |x1 ´ x2| ă δ, x1, x2 P A and y P B.

(a) If f(x1, y) and f(x2, y) are both not greater than N , then
ˇ

ˇ(f ^N)(x1, y) ´ (f ^N)(x2, y)
ˇ

ˇ =
ˇ

ˇf(x1, y) ´ f(x2, y)
ˇ

ˇ ă ε .

(b) If f(x1, y) and f(x2, y) are both greater than N , then
ˇ

ˇ(f ^N)(x1, y) ´ (f ^N)(x2, y)
ˇ

ˇ = |N ´ N | = 0 .

(c) If one and only one of f(x1, y) and f(x2, y) is greater than N , then
ˇ

ˇ(f ^N)(x1, y) ´ (f ^N)(x2, y)
ˇ

ˇ ă
ˇ

ˇf(x1, y) ´ f(x2, y)
ˇ

ˇ ă ε .

Case (a), (b) and (c) show that
ˇ

ˇ(f ^N)(x1, y) ´ (f ^N)(x2, y)
ˇ

ˇ ă
ε

3ν(B(0, N))
@ |x1 ´ x2| ă δ, x1, x2 PA and y PB .

Therefore, if x1, x2 P A and |x1 ´ x2| ă δ,

ˇ

ˇF (x1) ´ F (x2)
ˇ

ˇ ď

ˇ

ˇ

ˇ

ż

BXB(0,N)

(f ^N)(x1, y) dy ´

ż

B

f(x1, y) dy
ˇ

ˇ

ˇ

+
ˇ

ˇ

ˇ

ż

BXB(0,N)

(f ^N)(x2, y) dy ´

ż

B

f(x2, y) dy
ˇ

ˇ

ˇ

+
ˇ

ˇ

ˇ

ż

BXB(0,N)

(f ^N)(x1, y) dy ´

ż

BXB(0,N)

(f ^N)(x2, y) dy
ˇ

ˇ

ˇ

ă
ε

3
+

ε

3
+

ż

BXB(0,N)

ˇ

ˇ(f ^N)(x1, y) ´ (f ^N)(x2, y)
ˇ

ˇ dy ď ε .

This implies that F is uniformly continuous on A.

Now suppose that f(x, y) ď g(y) for all (x, y) P A ˆ B, and g is integrable on B. Then

lim
kÑ8

ż

BXB(0,k)

(g^k)(y) dy =

ż

B

g(y) dy ;

thus there exists N ą 0 such that
ˇ

ˇ

ˇ

ż

BXB(0,k)

(g^k)(y) dy ´

ż

B

g(y) dy
ˇ

ˇ

ˇ
ă ε whenever k ě N .



Therefore, for all k ě N and x P A,
ˇ

ˇ

ˇ

ż

BXB(0,k)

(f ^k)(x, y) dy ´

ż

B

f(x, y) dy
ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ż

BXB(0,k)

(f ^k)(x, y) dy ´

ż

BXB(0,k)

f(x, y) dy
ˇ

ˇ

ˇ
+

ż

BXB(0,k)A

f(x, y) dy

ď

ż

BXB(0,k)

ˇ

ˇ(f ^k)(x, y) ´ f(x, y)
ˇ

ˇ dy +

ż

BXB(0,k)A

g(y) dy

ď

ż

tyPBXB(0,k) | f(x,y)ąku

[
f(x, y) ´ k

]
dy +

ż

BXB(0,k)A

g(y) dy

ď

ż

tyPBXB(0,k) | g(y)ąku

[
g(y) ´ k

]
dy +

ż

BXB(0,k)A

g(y) dy

ď

ż

BXB(0,k)

[
g(y) ´ (g^k)(y)

]
dy +

ż

BXB(0,k)A

g(y) dy

=

ż

B

g(y) dy ´

ż

BXB(0,k)

(g^k)(y) dy ă ε .

This shows that f satisfies the condition mentioned in 2, so F is continuous on A. ˝

Problem 2. Let f : R Ñ R be a Riemann measurable function, and F : R Ñ R be defined by

F (x) =

ż

R
f(y) cos(x ´ y) dy

whenever the integral exists. Show that if the function f is integrable, then F is defined on R and is
differentiable on R with derivative

F 1(x) =

ż

R
f(y)

B

Bx
cos(x ´ y) dy = ´

ż

R
f(y) sin(x ´ y) dy .

Proof. Let x P R be given. Since f is Riemann measurable, the function g : R Ñ R defined by
g(y) = f(y) cos(x´ y) is Riemann measurable and |g(y)| ď |f(y)| for all y P R. Since f is integrable,
the comparison test implies that g is integrable. Therefore, F is defined everywhere on R.

Let thku8
k=1 be a non-zero sequence with limit 0. Define

gk(y) = f(y)
cos(x+ hk ´ y) ´ cos(x ´ y)

hk

.

Then for all y P R, lim
kÑ8

gk(y) = f(y)
B

Bx
(cos(x ´ y)) = ´f(y) sin(x ´ y).

Since
ˇ

ˇ

ˇ

d

dy
cosx

ˇ

ˇ

ˇ
ď 1, the Mean Value Theorem implies that

ˇ

ˇ cos(x+ hk ´ y) ´ cos(x ´ y)
ˇ

ˇ ď |hk| .

Therefore,
ˇ

ˇgk(y)
ˇ

ˇ ď
ˇ

ˇf(y)
ˇ

ˇ @x P R .

Since f is integrable on R, |f | is integrable on R; thus the Dominated Convergence Theorem implies
that

lim
kÑ8

F (x+ hk) ´ F (x)

hk

= lim
kÑ8

ż

R
gk(y) dy = ´

ż

R
f(x) sin(x ´ y) dy .



The equality above shows that for each non-zero sequence thku8
k=1 with limit 0, the limit

lim
kÑ8

F (x+ hk) ´ F (x)

hk

= ´

ż

R
f(x) sin(x ´ y) dy

exists. By the definition of the limit of functions,

lim
hÑ0

F (x+ h) ´ F (x)

h
= ´

ż

R
f(x) sin(x ´ y) dy . ˝

Problem 3. Let f : R Ñ R be an integrable Riemann measurable function, and F : R Ñ R be
defined by

F (x) =

ż

R
f(y) cos(xy) dy

(which exists for all x P R since f is integrable). Show that if the function g(x) = xf(x) is integrable,
then F is differentiable on R and

F 1(y) =

ż

R
f(x)

B

By
cos(xy) dx = ´

ż

R
xf(x) sin(xy) dx .

Proof. Let y P R be given, and thku8
k=1 be a non-zero sequence with limit 0. Define

gk(x) = f(x)
cos(x(y + hk)) ´ cos(xy)

hk

.

Then for all x P R, lim
kÑ8

gk(x) = f(x)
B

By
(cos(xy)) = ´xf(x) sin(xy).

Since
ˇ

ˇ

ˇ

d

dx
cosx

ˇ

ˇ

ˇ
ď 1, the Mean Value Theorem implies that

ˇ

ˇ cos(x(y + hk)) ´ cos(xy)
ˇ

ˇ ď |xhk| .

Therefore,
ˇ

ˇgk(x)
ˇ

ˇ ď
ˇ

ˇxf(x)
ˇ

ˇ =
ˇ

ˇg(x)
ˇ

ˇ @x P R .

Since g is integrable on R, |g| is integrable on R; thus the Dominated Convergence Theorem implies
that

lim
kÑ8

F (y + hk) ´ F (y)

hk

= lim
kÑ8

ż

R
hk(x) dx = ´

ż

R
xf(x) sin(xy) dx .

The equality above shows that for each non-zero sequence thku8
k=1 with limit 0, the limit

lim
kÑ8

F (y + hk) ´ F (y)

hk

= ´

ż

R
xf(x) sin(xy) dx

exists. By the definition of the limit of functions,

lim
hÑ0

F (y + h) ´ F (y)

h
= ´

ż

R
xf(x) sin(xy) dx . ˝

Problem 4. Let f : R2 Ñ R be defined by

f(x, y) =

$

&

%

e´xy sin y

y
if y ‰ 0 ,

1 if y = 0 .
.

Complete the following.



1. Show that fx(x, y) is continuous everywhere, and show that f(x, ¨) is integrable on [0,8) for
all x ą 0.

2. Define F (x) =
ż 8

0
f(x, y) dy for x ą 0. Show that F 1(x) = ´

1

x2 + 1
.

3. Show that F (x) =
π

2
´ tan´1 x if x ą 0, and conclude that

ż 8

0

sinx

x
dx =

π

2
.

Proof. 1. Note that if y ‰ 0, fx(x, y) = e´xy sin y while fx(x, 0) = 0. Clearly fx is continuous on R2

except perhaps on the x-axis. On the other hand, since lim
(x,y)Ñ(a,0)

f(x, y) = 0, we conclude that
fx is also continuous on the x-axis. Therefore, fx is continuous everywhere.

Let x ą 0 be given. Then
ˇ

ˇf(x, y)
ˇ

ˇ ď e´xy. Since the right-hand side function, for given x ą 0,
is integrable on [0,8), the comparison test implies that f(x, ¨) is integrable on [0,8).

2. Let x ą 0 be given, and thku8
k=1 be a non-zero sequence with limit 0. W.L.O.G., we can assume

that |hk| ă
x

2
since x ą 0. Define

gk(y) =

$

&

%

e´yhk ´ 1

hk
e´xy sin y

y
if y ‰ 0 ,

0 if y = 0 .

The Mean Value Theorem implies that
ˇ

ˇ

ˇ

e´yhk ´ 1

hk

ˇ

ˇ

ˇ
ď e

xy
2 |y|; thus

ˇ

ˇgk(y)
ˇ

ˇ ď e´
xy
2 @ y ě 0 .

Since the right-hand side function, for given x ą 0, is integrable on [0,8), the Dominated
Convergence Theorem implies that

lim
kÑ8

F (x+ hk) ´ F (x)

hk

= lim
kÑ8

ż 8

0

f(x+ hk, y) ´ f(x, y)

hk

dy = lim
kÑ8

ż 8

0

gk(y) dy

=

ż 8

0

lim
kÑ8

gk(y) dy = ´

ż 8

0

e´xy sin y dy

Integrating by parts, by the fact x ą 0 we find that
ż 8

0

e´xy sin y dy = ´e´xy cos y
ˇ

ˇ

ˇ

y=8

y=0
´ x

ż 8

0

e´xy cos y dy

= 1 ´ x
[
e´xy sin y

ˇ

ˇ

ˇ

y=8

y=0
+ x

ż 8

0

e´xy sin y dy
]

= 1 ´ x2

ż 8

0

e´xy sin y dy ;

thus we conclude that
lim
kÑ8

F (x+ hk) ´ F (x)

hk

= ´
1

1 + x2



for all x ą 0 and non-zero sequence thku8
k=1 with limit 0. Therefore, for x ą 0 the limit

lim
hÑ0

F (x+ h) ´ F (x)

h
exists (so that F is differentiable on (0,8)) and

F 1(x) = lim
hÑ0

F (x+ h) ´ F (x)

h
=

1

1 + x2
@x ą 0 .

3. By the (generalized version of) Fundamental Theorem of Calculus, for a, b ą 0 we have

F (b) ´ F (a) =

ż b

a

F 1(x) dx = ´

ż b

a

1

1 + x2
dx = arctanx

ˇ

ˇ

ˇ

x=b

x=a
= arctan a ´ arctan b .

Note that for a ą 0 we have

|F (a)| ď

ż 8

0

e´ay dy =
e´ay

´a

ˇ

ˇ

ˇ

y=8

y=0
=

1

a
;

thus lim
aÑ8

F (a) = 0 by the Sandwich lemma. Therefore, for x ą 0,

F (x) = lim
aÑ8

[
F (x) ´ F (a)

]
= lim

aÑ8

(
arctan a ´ arctanx

)
=

π

2
´ arctanx .

Finally, we show that F (0) = lim
xÑ0+

F (x). Let ε ą 0 be given. Since

B

By

(´e´xy cos y ´ xe´xy sin y

x2 + 1
+ cos y

)
= (e´xy ´ 1) sin y ,

integrating by parts shows that for all n ą 0,
ż 8

n

(e´xy ´ 1)
sin y

y
dy =

1

y

(
´e´xy cos y ´ xe´xy sin y

x2 + 1
+ cos y

)ˇ
ˇ

ˇ

y=8

y=n

+

ż 8

n

(
´e´xy cos y ´ xe´xy sin y

x2 + 1
+ cos y

) 1

y2
dy .

By the fact that
ˇ

ˇ

ˇ

´e´xy cos y ´ xe´xy sin y

x2 + 1
+ cos y

ˇ

ˇ

ˇ
ď

x+ 1

x2 + 1
+ 1 ď

5

2
ă 3 ,

we have
ˇ

ˇ

ˇ

ż 8

n

(e´xy ´ 1)
sin y

y
dy
ˇ

ˇ

ˇ
ď

ż 8

n

3

y2
dy +

3

n
=

6

n
.

Therefore, for all n ą 0,
ˇ

ˇF (x) ´ F (0)
ˇ

ˇ =
ˇ

ˇ

ˇ

ż 8

0

(e´xy ´ 1)
sin y

y
dy

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ż n

0

(e´xy ´ 1)
sin y

y
dy
ˇ

ˇ

ˇ
+
ˇ

ˇ

ˇ

ż 8

n

(e´xy ´ 1)
sin y

y
dy

ˇ

ˇ

ˇ

ď

ż n

0

(1 ´ e´xy) dy +
6

n
= n+

e´nx ´ 1

x
+

6

n

so that
lim sup
xÑ0+

ˇ

ˇF (x) ´ F (0)
ˇ

ˇ ď
6

n
@n ą 0 .



Since n ą 0 is given arbitrarily, we conclude that lim sup
xÑ0+

ˇ

ˇF (x) ´ F (0)
ˇ

ˇ = 0 which shows that

lim
xÑ0+

F (x) = F (0). As a consequence,
ż 8

0

sinx

x
dx = F (0) = lim

xÑ0+
F (x) = lim

xÑ0+

(π
2

´ arctanx
)
=

π

2
. ˝

Problem 5. Let (M,d) and (N, ρ) be metric spaces, A Ď M , and fk : A Ñ N be a sequence of
functions such that for some function f : A Ñ N , we have that for all x P A, if txku8

k=1 Ď A and
xk Ñ x as k Ñ 8, then

lim
kÑ8

fk(xk) = f(x) .

Show that

1. tfku8
k=1 converges pointwise to f .

2. If
␣

fkj
(8

j=1
is a subsequence of tfku8

k=1, and txju
8
j=1 Ď A is a convergent sequence satisfying

that lim
jÑ8

xj = x, then
lim
jÑ8

fkj(xj) = f(x) .

3. Show that if in addition A is compact and f is continuous on A, then tfku8
k=1 converges

uniformly f on A.

Proof. 1. Let x P A be given. Define txku8
k=1 by xk = x for all k P N. Then lim

kÑ8
xk = x; thus

lim
kÑ8

fk(x) = lim
kÑ8

fk(xk) = f(x)

which shows that tfku8
k=1 converges pointwise to f .

2. Let tfkju
8
j=1 be a subsequence of tfku8

k=1, and txju
8
j=1 be a convergent sequence with limits x.

Define a new sequence tyℓu
8
ℓ=1 by

y1, ¨ ¨ ¨ , yk1 = x1 , yk1+1, ¨ ¨ ¨ , yk2 = x2 , ¨ ¨ ¨ , ykℓ+1, ¨ ¨ ¨ , ykℓ+1
= xℓ+1 , ¨ ¨ ¨ ;

that is, the first k1 terms of tyℓu
8
ℓ=1 is x1, the next (k2 ´ k1) terms of tyℓu

8
ℓ=1 is x2, and so on.

Then tyℓu
8
ℓ=1 converges to x;

lim
ℓÑ8

fℓ(yℓ) = f(x) .

Since
␣

fkj(xj)
(8

j=1
is a subsequence of

␣

fℓ(yℓ)
(8

ℓ=1
, lim
jÑ8

fkj(xj) = f(x).

3. Suppose the contrary that tfku8
k=1 does not converge uniformly to f on A. Then there exists

ε ą 0 such that for each k ą 0 there exist nk ě k (W.L.O.G. we can assume that nk+1 ą nk

for all k P N) and xk P A such that

ρ
(
fnk

(xk), f(xk)
)

ě ε .

By the compactness of A, there exists a convergent subsequence txkju
8
j=1 of txku8

k=1. Suppose
that lim

jÑ8
xkj = x. Since

ρ
(
fnkj

(xkj), f(xkj)
)

ě ε @ j P N ,



by the fact that lim
jÑ8

fnkj
(xkj) = f(x) and that f is continuous at x, we obtain that

ρ
(
f(x), f(x)

)
= lim

jÑ8
ρ
(
f(xkj), f(x)

)
ě lim inf

jÑ8

[
ρ
(
fnkj

(xkj), f(xkj)
)

´ ρ
(
fnkj

(xkj), f(x)
)]

= lim inf
jÑ8

ρ
(
fnkj

(xkj), f(xkj)
)

ě
ε

2
,

a contradiction. ˝

Remark. Using the inequality

ρ
(
fk(xk), f(x)

)
ď ρ

(
f(xk), f(x)

)
+ sup

xPA
ρ
(
fk(x), f(x)

)
,

we find that if tfku8
k=1 converges uniformly to a continuous function f , then lim

kÑ8
fk(xk) = f(x) as

long as lim
kÑ8

xk = x. Together with the conclusion in 3, we conclude that

Let (M,d), (N, ρ) be metric spaces, K Ď M be a compact set, fk : K Ñ N be
a function for each k P N, and f : K Ñ N be continuous. The sequence tfkuk=1

converges uniformly to f if and only if lim
kÑ8

fk(xk) = f(x) whenever sequence
txku8

k=1 Ď K converges to x.

Problem 6. Let (M,d) be a metric space, A Ď M , (N, ρ) be a complete metric space, and fk : A Ñ N

be a sequence of functions (not necessary continuous) which converges uniformly on A. Suppose that
a P A 1 and

lim
xÑa

fk(x) = Lk

exists for all k P N. Show that tLku8
k=1 converges, and

lim
xÑa

lim
kÑ8

fk(x) = lim
kÑ8

lim
xÑa

fk(x) .

Proof. Let ε ą 0 be given. Since tfku8
k=1 converges uniformly, there exists N1 ą 0 such that

ρ
(
fk(x), fℓ(x)

)
ă

ε

3
whenever k, ℓ ě N1 and x P A . (‹)

If a P cl(A), then the inequality above implies that

ρ(Lk, Lℓ) = lim
xÑa

ρ
(
fk(x), fℓ(x)

)
ď

ε

3
ă ε whenever k, ℓ ě N1 ;

thus tLku8
k=1 is a Cauchy sequence in (N, ρ). Therefore, tLku8

k=1 converges. Suppose that lim
kÑ8

Lk = L

and tfku8
k=1 converges uniformly to f . There exists N2 ą 0 such that ρ(Lk, L) ă

ε

3
whenever k ě N2.

Moreover, passing to the limit as ℓ Ñ 8 in (‹), we obtain that

ρ
(
fk(x), f(x)

)
ď

ε

3
whenever k ě N1 and x P A .



Let n = maxtN1, N2u. Since lim
xÑa

fn(x) = Ln, there exists δ ą 0 such that

ρ
(
fn(x), Ln

)
ă

ε

3
whenever x P B(a, δ) X Aztau .

Then if x P B(a, δ) X Aztau,

ρ
(
f(x), L

)
ď ρ

(
f(x), fn(x)

)
+ ρ

(
fn(x), Ln

)
+ ρ(Ln, L) ă

ε

3
+

ε

3
+

ε

3
= ε .

Therefore, lim
xÑa

f(x) = L which shows that lim
xÑa

lim
kÑ8

fk(x) = lim
kÑ8

lim
xÑa

fk(x). ˝

Problem 7. Prove the Dini theorem:

Let K be a compact set, and fk : K Ñ R be continuous for all k P N such that
tfkuk=1 converges pointwise to a continuous function f : K Ñ R. Suppose that
fk ď fk+1 for all k P N. Then tfku8

k=1 converges uniformly to f on K.

Hint: Mimic the proof of showing that tcku8
k=1 converges to 0 in Lemma 6.64 in the lecture note.

Proof. Suppose the contrary that there exist ε ą 0 such that

lim sup
kÑ8

sup
xPK

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ ě 2ε .

Then there exists 1 ď k1 ă k2 ă ¨ ¨ ¨ such that

max
xPK

ˇ

ˇfkj(x) ´ f(x)
ˇ

ˇ = sup
xPK

ˇ

ˇfkj(x) ´ f(x)
ˇ

ˇ ą ε .

In other words, for some ε ą 0 and strictly increasing sequence tkju
8
j=1 Ď N,

Fj ”
␣

x P K
ˇ

ˇ f(x) ´ fkj(x) ě ε
(

‰ H @ j P N .

Note that since fk ď fk+1 for all k P N, Fj Ě Fj+1 for all j P N. Moreover, by the continuity of fk and
f , Fj is a closed subset of K; thus Fj is compact. Therefore, the nested set property for compact sets
implies that

Ş8

j=1 Fj is non-empty. In other words, there exists x P K such that f(x) ´ fkj(x) ě ε

for all j P N which contradicts to the fact that fk Ñ f p.w. on K. ˝

Problem 8. Let (M,d) and (N, ρ) be metric spaces, A Ď M , and fk : A Ñ N be uniformly
continuous functions, and tfku8

k=1 converges uniformly to f : A Ñ N on A. Show that f is uniformly
continuous on A.

Proof. Let ε ą 0 be given. Since tfku8
k=1 converges uniformly to f , there exists N ą 0 such that

ρ
(
fk(x), f(x)

)
ă

ε

3
whenever k ě N and x P A .

Since fN is uniformly continuous, there exists δ ą 0 such that

ρ
(
fN(x1), fN(x2)

)
ă

ε

3
whenever x1, x2 P A and d(x1, x2) ă δ .

Therefore, if x1, x2 P A satisfying d(x1, x2) ă δ, we have

ρ
(
f(x1), f(x2)

)
ď ρ

(
f(x1), fN(x1)

)
+ ρ

(
fN(x1), fN(x2)

)
+ ρ

(
fN(x2), f(x2)

)
ă

ε

3
+

ε

3
+

ε

3
= ε ;

thus f is uniformly continuous on A. ˝



Problem 9. Let (M,d) be a metric space, (V , } ¨ }) be a norm space, B Ď A Ď M , fk : A Ñ V be

bounded for each k P N, and tgnu8
n=1 be the Cesàro mean of tfku8

k=1; that is, gn =
1

n

n
ř

k=1

fk. Show

that if tfku8
k=1 converges uniformly to f on B, then tgnu8

n=1 converges uniformly to f on B.

Proof. Let ε ą 0 be given. By the boundedness of fk, for each k P N there exists Mk ą 0 such that
›

›fk(x)
›

› ď Mk for all x P B and k P N. Since tfku8
k=1 converges uniformly to f on B, there exists

N1 ą 0 such that
›

›fk(x) ´ f(x)
›

› ă
ε

2
@ k ě N1 and x P B .

We note that the inequality above implies that
›

›f(x)
›

› ď M ” MN1 + ε for all x P B.
If x P B, by the fact that

N1
ÿ

k=1

›

›fk(x) ´ f(x)
›

› ď

N1
ÿ

k=1

(Mk +M) ă 8 ,

we find that lim
nÑ8

1

n

N1
ř

k=1

supxPB

›

›fk(x) ´ f(x)
›

› = 0; thus there exists N2 ą 0 such that

1

n

N1
ÿ

k=1

›

›fk(x) ´ f(x)
›

› ă
ε

2
whenever n ě N2 and x P B .

Let N = maxtN1, N2u. Then if n ě N and x P B,

›

›gn(x) ´ f(x)
›

› =
ˇ

ˇ

ˇ

1

n

n
ÿ

k=1

fk(x) ´ f(x)
ˇ

ˇ

ˇ
ď

1

n

N1
ÿ

k=1

›

›fk(x) ´ f(x)
›

›+
1

n

n
ÿ

k=N1

›

›fk(x) ´ f(x)
›

›

ă
ε

2
+

1

n

n
ÿ

k=N1

ε

2
ă ε ;

thus tgnu8
n=1 converges uniformly to f on B. ˝


