Exercise Problem Sets 2

Mar. 02. 2023

Problem 1. Let $A \subseteq \mathbb{R}^n$ be an open bounded set with volume, and $f : A \to \mathbb{R}$ be continuous. Show that if $\int_B f(x) dx = 0$ for all subsets $B \subseteq A$ with volume, then f = 0.

Proof. Assume that for some $a \in A$, $f(a) \neq 0$. W.L.O.G. we can assume that f(a) > 0. By the continuity of f, there exists $\delta > 0$ such that

$$|f(x) - f(a)| < \frac{f(a)}{2}$$
 whenever $x \in B(a, \delta) \cap A$.

Since A is open, we can choose $0 < r < \delta$ such that $B(a, r) \subseteq B(a, \delta) \cap A$, and let B be a rectangle in B(a, r) with sides parallel to the coordinate axes. Then B have volume and

$$\frac{f(a)}{2} < f(x) < \frac{3f(a)}{2} \quad \text{whenever} \quad x \in B.$$

This implies that $\int_B f(x) dx \ge \frac{f(a)}{2}\nu(B) > 0$, a contradiction.

Problem 2. Prove the following statements.

- 1. The function $f(x) = \sin \frac{1}{x}$ is Riemann integrable on (0, 1).
- 2. Let $f:(0,1] \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} \frac{1}{p} & \text{if } x = \frac{q}{p} \in \mathbb{Q}, \ (p,q) = 1, \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$$

Then f is Riemann integrable on (0, 1]. Find $\int_{(0,1]} f(x) dx$ as well.

- 3. Let $A \subseteq \mathbb{R}^n$ be a bounded set, and $f : A \to \mathbb{R}$ is Riemann integrable. Then f^k (f 的 k 次方) is integrable for all $k \in \mathbb{N}$.
- *Proof.* 1. Note that (0, 1) has volume, f is bounded on (0, 1) and f is continuous on (0, 1). Therefore, the Lebesgue Theorem (or its corollary) implies that f is Riemann integrable on (0, 1).
 - 2. In Calculus we have shown that f is continuous on $\mathbb{Q}^{\complement} \cap (0, 1]$ so that the collection of discontinuities of $\overline{f}^{(0,1]}$ is $\mathbb{Q} \cap (0,1]$. Since $\mathbb{Q} \cap (0,1]$ is countable, we find that the collection of discontinuities of $\overline{f}^{(0,1]}$ has measure zero. Therefore, f is Riemann integrable on (0,1].

Let \mathcal{P} be a partition of (0, 1]. Then $L(f, \mathcal{P}) = 0$ since

$$\inf_{x \in \Delta} \overline{f}^{(0,1]}(x) = 0 \qquad \forall \Delta \in \mathcal{P}.$$

Therefore, $\int_{A} f(x) dx = 0$; thus the fact that f is Riemann integrable on (0, 1] shows that $\int_{(0,1]} f(x) dx = 0.$

3. First we note that the fact that f is Riemann integrable on A implies that f is bounded on A. Therefore, f^k is bounded on A. Moreover, the Lebesgue Theorem implies that the collection D of discontinuities of \overline{f}^A has measure zero. Since $\overline{f^k}^A = (\overline{f}^A)^k$, we find that the collection of discontinuities of $\overline{f^k}^A$ is exactly D; thus has measure zero. The Lebesgue Theorem then implies that f^k is Riemann integrable on A.

Problem 3. Suppose that $f : [a, b] \to \mathbb{R}$ is Riemann integrable, and the set $\{x \in [a, b] | f(x) \neq 0\}$ has measure zero. Show that $\int_a^b f(x) dx = 0$.

Proof. First we note that for each $[c, d] \subseteq [a, b]$, then there exists $x \in [c, d]$ such that f(x) = 0 for otherwise $f(x) \neq 0$ for all $x \in [c, d]$ so that

$$[c,d] \subseteq \left\{ x \in [a,b] \, \middle| \, f(x) \neq 0 \right\}$$

and this implies that [c, d] is a set of measure zero, a contradiction to Corollary 6.25 in the lecture note. Therefore, $L(|f|, \mathcal{P}) = 0$ for all partitions \mathcal{P} of [a, b] which shows that $\int_{a}^{b} f(x) dx = 0$. Since fis Riemann integrable on [a, b], we conclude that $\int_{a}^{b} f(x) dx = 0$.

Problem 4. Find an example that

$$\int_{A} f(x) \, dx + \int_{A} g(x) \, dx < \int_{A} (f+g)(x) \, dx < \int_{A} (f+g)(x) \, dx < \int_{A} f(x) \, dx + \int_{A} g(x) \, dx$$

Solution. Let $f, g : [0, 2] \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \cap [0, 2], \\ 0 & \text{otherwise}, \end{cases} \quad \text{and} \quad g(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}^{\mathbb{C}} \cap [0, 1], \\ 0 & \text{otherwise}. \end{cases}$$

Then for A = [0, 2],

$$\int_{\underline{A}} f(x) \, dx = \int_{\underline{A}} g(x) \, dx = 0 \,, \quad \overline{\int}_{\underline{A}} f(x) \, dx = 2 \quad \text{and} \quad \overline{\int}_{\underline{A}} g(x) \, dx = 1 \,.$$

Moreover,

$$(f+g)(x) = \begin{cases} 1 & \text{if } x \in [0,1] \cup (\mathbb{Q} \cap [1,2]), \\ 0 & \text{otherwise.} \end{cases}$$

so that

$$\int_{A} (f+g)(x) \, dx = 1 \qquad \text{and} \qquad \int_{A} (f+g)(x) \, dx = 2 \, .$$

Therefore, f and g satisfy the desired inequality.

Another example is given as follows: let $f, g: [0, 1] \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \cap [0,1], \\ 0 & \text{if } x \in \mathbb{Q}^{\complement} \cap [0,1], \end{cases} \quad \text{and} \quad g(x) = \begin{cases} 0 & \text{if } x \in \mathbb{Q} \cap [0,1], \\ 2 & \text{if } x \in \mathbb{Q}^{\complement} \cap [0,1], \end{cases}$$

Then

$$(f+g)(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \cap [0,1], \\ 2 & \text{if } x \in \mathbb{Q}^{\complement} \cap [0,1], \end{cases}$$

so that we have $\int_{[0,1]} f(x) dx = \int_{[0,1]} g(x) dx = 0$, $\overline{\int}_{[0,1]} f(x) dx = \int_{[0,1]} (f+g)(x) dx = 1$, and $\overline{\int}_{[0,1]} g(x) dx = \overline{\int}_{[0,1]} (f+g)(x) dx = 2$.

Problem 5. Let $A \subseteq \mathbb{R}^n$ be a bounded set, and $f : A \to \mathbb{R}$ be a bounded function. Show that if f is Riemann integrable on A, then |f| is also Riemann integrable on A.

- Proof. Method 1: Since f is Rieman integrable on A, the Lebesgue Theorem implies that the collection of discontinuities of \overline{f}^A has measure zero. Note that if \overline{f}^A is continuous at $a \in A$, then $\overline{|f|}^A$ is also continuous at a since $\overline{|f|}^A = |\overline{f}^A|$. Therefore, the collection of discontinuities of $\overline{|f|}^A$ is a subset of a measure zero set, the collection of discontinuities of \overline{f}^A ; thus the collection of discontinuities of discontinuities of $\overline{|f|}^A$ has measure zero. The Lebesgue Theorem then shows that |f| is Riemann integrable on A.
- Method 2: Let $\varepsilon > 0$ be given. Since f is Riemann integrable on A, by Riemann's condition there exists a partition \mathcal{P} of A such that

$$U(f, \mathcal{P}) - L(f, \mathcal{P}) < \varepsilon$$

Note that for each $\Delta \in P$,

$$\sup_{x \in \Delta} \left| \overline{f}^{A}(x) \right| - \inf_{x \in \Delta} \left| \overline{f}^{A}(x) \right| \leq \sup_{x \in \Delta} \overline{f}^{A}(x) - \inf_{x \in \Delta} \overline{f}^{A}(x) \,;$$

thus

$$U(|f|, \mathcal{P}) - L(|f|, \mathcal{P}) = \sum_{\Delta \in \mathcal{P}} \left(\sup_{x \in \Delta} \left| \overline{f}^A(x) \right| - \inf_{x \in \Delta} \left| \overline{f}^A(x) \right| \right) \nu(\Delta)$$

$$\leq \sum_{\Delta \in \mathcal{P}} \left(\sup_{x \in \Delta} \overline{f}^A(x) - \inf_{x \in \Delta} \overline{f}^A(x) \right) \nu(\Delta) = U(f, \mathcal{P}) - L(f, \mathcal{P}) < \varepsilon.$$

By Riemann's condition, we conclude that |f| is Riemann integrable on A.