Exercise Problem Sets 15

Dec. 23. 2022

Problem 1. Let $U \subseteq \mathbb{R}^{n}$ be open, and $f: U \rightarrow \mathbb{R}^{m}$ with $f=\left(f_{1}, \cdots, f_{m}\right)$.

1. Suppose that f is differentiable on U and the line segment joining x and y lies in U. Then there exist points c_{1}, \cdots, c_{m} on that segment such that

$$
f_{i}(y)-f_{i}(x)=\left(D f_{i}\right)\left(c_{i}\right)(y-x) \quad \forall i=1, \cdots, m .
$$

2. Suppose in addition that U is convex (the convexity of sets is defined in Problem 7 in Exercise 11). Show that for each $x, y \in U$ and vector $v \in \mathbb{R}^{m}$, there exists c on the line segment joining x and y such that

$$
v \cdot[f(x)-f(y)]=v \cdot(D f)(c)(x-y) .
$$

In particular, show that if $\sup _{x \in U}\|(D f)(x)\|_{\mathscr{B}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)} \leqslant M$, then

$$
\|f(x)-f(y)\|_{\mathbb{R}^{m}} \leqslant M\|x-y\|_{\mathbb{R}^{n}} \quad \forall x, y \in U .
$$

Proof. Let $\gamma:[0,1] \rightarrow \mathbb{R}^{n}$ be given by $\gamma(t)=(1-t) x+t y$. Then by the chain rule, for each $i=1, \cdots, m,\left(f_{i} \circ \gamma\right):[0,1] \rightarrow \mathbb{R}$ is differentiable on $(0,1)$; thus the mean value theorem (for functions of one real variable) implies that there exists $t_{i} \in(0,1)$ such that

$$
f_{i}(y)-f_{i}(x)=\left(f_{i} \circ \gamma\right)(1)-\left(f_{i} \circ \gamma\right)(0)=\left(f_{i} \circ \gamma\right)^{\prime}\left(t_{i}\right)=\left(D f_{i}\right)\left(c_{i}\right)\left(\gamma^{\prime}\left(t_{i}\right)\right),
$$

where $c_{i}=\gamma\left(t_{i}\right)$. Part 1 is concluded since $\gamma^{\prime}\left(t_{i}\right)=y-x$.
For $v \in \mathbb{R}^{n}$, let $g(t)=v \cdot f(t y+(1-t) x)$. Then $g:[0,1] \rightarrow \mathbb{R}$ is differentiable; thus the mean value theorem (for functions of one real variable) implies that there exists $0<t_{0}<1$ such that

$$
v \cdot[f(y)-f(x)]=g(1)-g(0)=g^{\prime}\left(t_{0}\right)=v \cdot(D f)\left(t_{0} y+\left(1-t_{0}\right) x\right)(x-y) .
$$

Letting $c=t_{0} y+\left(1-t_{0}\right) x$, we conclude that $v \cdot[f(x)-f(y)]=v \cdot(D f)(c)(x-y)$.
Finally, let $v=f(y)-f(x)$. By the discussion above there exists $c \in \overline{x y}$ such that

$$
\|f(y)-f(x)\|_{\mathbb{R}^{m}}^{2}=v \cdot[f(y)-f(x)]=v \cdot(D f)(c)(x-y) .
$$

The Cauchy-Schwarz inequality further implies that

$$
\begin{aligned}
\|f(y)-f(x)\|_{\mathbb{R}^{m}}^{2} & \leqslant\|f(y)-f(x)\|_{\mathbb{R}^{m}}\|(D f)(c)(x-y)\|_{\mathbb{R}^{m}} \\
& \leqslant\|f(y)-f(x)\|_{\mathbb{R}^{m}}\|(D f)(c)\|_{\mathscr{B}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)}\|x-y\|_{\mathbb{R}^{n}} .
\end{aligned}
$$

Therefore, if $\sup _{x \in U}\|(D f)(x)\|_{\mathscr{B}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)} \leqslant M$, we conclude that

$$
\|f(y)-f(x)\|_{\mathbb{R}^{m}} \leqslant M\|x-y\|_{\mathbb{R}^{n}} \quad \forall x, y \in U .
$$

Problem 2. Let $U \subseteq \mathbb{R}^{n}$ be open and connected, and $f: U \rightarrow \mathbb{R}$ be a function such that $\frac{\partial f}{\partial x_{j}}(x)=0$ for all $x \in U$. Show that f is constant in U.

Proof. First, we show that if $B(a, r)$ is a ball in U, then f is constant on U. In fact, by the fact that balls are convex set, Problem 1 implies that

$$
|f(y)-f(x)| \leqslant \sup _{z \in B(a, r)}\|(D f)(z)\|_{\mathscr{B}\left(\mathbb{R}^{n}, \mathbb{R}\right)}\|x-y\|_{\mathbb{R}^{n}} \quad \forall x, y \in B(a, r) .
$$

Since $\frac{\partial f}{\partial x_{j}}(x)=0$ for all $x \in B(a, r)$, we find that $\|(D f)(z)\|_{\mathscr{B}\left(\mathbb{R}^{n}, \mathbb{R}\right)}=0$ for all $z \in B(a, r)$; thus $f(y)=f(x)$ for all $x, y \in B(a, r)$.

Suppose that $f=c$ in $B(a, r)$. Let $E=f^{-1}(\{c\})$. Note that the fact $\frac{\partial f}{\partial x_{j}}(x)=0$ for all $x \in U$ implies that $D f$ is continuous on U; thus f is continuously differentiable on U. In particular, f is continuous; thus $f^{-1}(\{c\})$ is closed relative to U. Suppose that $f^{-1}(\{c\})=F \cap U$ for some closed set F in \mathbb{R}^{n}. Next we show that $U \backslash F=\varnothing$ so that $f=c$ on U.

Suppose the contrary that $U \backslash F \neq \varnothing$. Let $E_{1}=U \cap F^{\complement}$ and $E_{2}=U \cap F$. Then $U=E_{1} \cup E_{2}$ and Problem 6 in Exercise 7 shows that

$$
E_{1} \cap \overline{E_{2}} \subseteq E_{1} \cap \bar{F}=U \cap F^{\complement} \cap F=\varnothing
$$

Therefore, $\overline{E_{1}} \cap E_{2} \neq \varnothing$ for otherwise U is disconnected by Proposition 3.65 in the lecture note. This implies that there exists $x \in \overline{E_{1}} \cap E_{2}$; thus there exists $\left\{x_{k}\right\}_{k=1}^{\infty} \subseteq U \backslash F$ such that $x_{k} \rightarrow x$ as $k \rightarrow \infty$. Since $x \in U$, there exists $\epsilon>0$ such that $B(x, \epsilon) \subseteq U$; thus the convergence of $\left\{x_{k}\right\}_{k=1}^{\infty}$ implies that there exists $N>0$ such that $x_{k} \in B(x, \epsilon)$ for all $k \geqslant N$. By the discussion above, f is constant on $B(x, \epsilon)$; thus $f\left(x_{k}\right)=f(x)=c$ for all $k \geqslant N$, a contradiction to that $x_{k} \notin F$.
Problem 3. Let $U \subseteq \mathbb{R}^{n}$ be open, and for each $1 \leqslant i, j \leqslant n, a_{i j}: U \rightarrow \mathbb{R}$ be differentiable functions. Define $A=\left[a_{i j}\right]$ and $J=\operatorname{det}(A)$. Show that

$$
\frac{\partial J}{\partial x_{k}}=\operatorname{tr}\left(\operatorname{Adj}(A) \frac{\partial A}{\partial x_{k}}\right) \quad \forall 1 \leqslant k \leqslant n,
$$

where for a square matrix $M=\left[m_{i j}\right], \operatorname{tr}(M)$ denotes the trace of $M, \operatorname{Adj}(M)$ denotes the adjoint matrix of M, and $\frac{\partial M}{\partial x_{k}}$ denotes the matrix whose (i, j)-th entry is given by $\frac{\partial m_{i j}}{\partial x_{k}}$.
Hint: Show that

$$
\frac{\partial J}{\partial x_{k}}=\left|\begin{array}{cccc}
\frac{\partial a_{11}}{\partial x_{k}} & a_{12} & \cdots & a_{1 n} \\
\frac{\partial a_{21}}{\partial x_{k}} & a_{22} & \cdots & a_{2 n} \\
\vdots & & & \vdots \\
\frac{\partial a_{n 1}}{\partial x_{k}} & a_{n 2} & \cdots & a_{n n}
\end{array}\right|+\left|\begin{array}{ccccc}
a_{11} & \frac{\partial a_{12}}{\partial x_{k}} & a_{13} & \cdots & a_{1 n} \\
a_{21} & \frac{\partial a_{22}}{\partial x_{k}} & a_{23} & \cdots & a_{2 n} \\
\vdots & & & \vdots & \\
a_{n 1} & \frac{\partial a_{n 2}}{\partial x_{k}} & a_{n 3} & \cdots & a_{n n}
\end{array}\right|+\cdots+\left|\begin{array}{cccc}
a_{11} & \cdots & a_{(n-1) 1} & \frac{\partial a_{1 n}}{\partial x_{k}} \\
a_{21} & \cdots & a_{(n-1) 2} & \frac{\partial a_{2 n}}{\partial x_{k}} \\
\vdots & & & \vdots \\
a_{n 1} & \cdots & a_{(n-1) n} & \frac{\partial a_{n 1}}{\partial x_{k}}
\end{array}\right|
$$

and rewrite this identity in the form which is asked to prove. You can also show the differentiation formula by applying the chain rule to the composite function $F \circ g$ of maps $g: U \rightarrow \mathbb{R}^{n^{2}}$ and $F: \mathbb{R}^{n^{2}} \rightarrow \mathbb{R}$ defined by $g(x)=\left(a_{11}(x), a_{12}(x), \cdots, a_{n n}(x)\right)$ and $F\left(a_{11}, \cdots, a_{n n}\right)=\operatorname{det}\left(\left[a_{i j}\right]\right)$. Check first what $\frac{\partial F}{\partial a_{i j}}$ is.

Proof. Let $A=\left[a_{i j}\right]$ and $\operatorname{Adj}(A)=\left[c_{i j}\right]$. Then $\frac{\partial F}{\partial a_{i j}}=c_{j i}$ since the cofactor expansion implies that

$$
\operatorname{det}(A)=a_{i 1} c_{1 i}+a_{i 2} c_{2 i}+\cdots+a_{i n} c_{n i} \quad \text { for each } 1 \leqslant i \leqslant n
$$

Therefore, for $J=\operatorname{det}(A)$, we have

$$
\frac{\partial J}{\partial x_{k}}(x)=\frac{\partial(F \circ g)}{\partial x_{k}}(x)=\sum_{i, j=1}^{n} \frac{\partial F}{\partial a_{i j}}(g(x)) \frac{\partial a_{i j}}{\partial x_{k}}(x)=\sum_{i, j=1}^{n} c_{j i}(x) \frac{\partial a_{i j}}{\partial x_{k}}(x)
$$

and the result is concluded from the fact that $\operatorname{tr}\left(\operatorname{Adj}(A) \frac{\partial A}{\partial x_{k}}\right)=\sum_{i, j=1}^{n} c_{j i} \frac{\partial a_{i j}}{\partial x_{k}}$.
Problem 4. 1. If $f: A \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $g: B \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}^{\ell}$ are twice differentiable and $f(A) \subseteq B$, then for $x_{0} \in A, u, v \in \mathbb{R}^{n}$, show that

$$
\begin{aligned}
& D^{2}(g \circ f)\left(x_{0}\right)(u, v) \\
& \quad=\left(D^{2} g\right)\left(f\left(x_{0}\right)\right)\left((D f)\left(x_{0}\right)(u), D f\left(x_{0}\right)(v)\right)+(D g)\left(f\left(x_{0}\right)\right)\left(\left(D^{2} f\right)\left(x_{0}\right)(u, v)\right) .
\end{aligned}
$$

2. If $p: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear map plus some constant; that is, $p(x)=L x+c$ for some $L \in$ $\mathscr{B}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$, and $f: A \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}^{s}$ is k-times differentiable, prove that

$$
D^{k}(f \circ p)\left(x_{0}\right)\left(u^{(1)}, \cdots, u^{(k)}\right)=\left(D^{k} f\right)\left(p\left(x_{0}\right)\right)\left((D p)\left(x_{0}\right)\left(u^{(1)}\right), \cdots,(D p)\left(x_{0}\right)\left(u^{(k)}\right) .\right.
$$

Problem 5. Let $f(x, y)$ be a real-valued function on \mathbb{R}^{2}. Suppose that f is of class \mathscr{C}^{1} (that is, all first partial derivatives are continuous on \mathbb{R}^{2}) and $\frac{\partial^{2} f}{\partial x \partial y}$ exists and is continuous. Show that $\frac{\partial^{2} f}{\partial y \partial x}$ exists and $\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}$.

Hint: Mimic the proof of Clairaut's Theorem.
Proof. Let $(a, b) \in \mathbb{R}^{2}$. For real numbers $h, k \neq 0$, define $Q: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
Q(h, k)=\frac{1}{h k}[f(a+h, b+k)-f(a+h, b)-f(a, b+k)+f(a, b)]
$$

and

$$
\psi(x, y)=f(x+h, y)-f(x, y)
$$

Then $Q(h, k)=\frac{1}{h k}[\psi(a, b+k)-\psi(a, b)]$. By the mean value theorem (for functions of one real variable),

$$
\begin{aligned}
Q(h, k) & =\frac{1}{h k} \frac{\partial \psi}{\partial y}\left(a, b+\theta_{1} k\right) k=\frac{1}{h}\left[\frac{\partial f}{\partial y}\left(a+h, b+\theta_{1} k\right)-\frac{\partial f}{\partial y}\left(a, b+\theta_{1} k\right)\right] \\
& =\frac{1}{h} \frac{\partial^{2} f}{\partial x \partial y}\left(a+\theta_{2} h, b+\theta_{1} k\right) h=\frac{\partial^{2} f}{\partial x \partial y}\left(a+\theta_{2} h, b+\theta_{1} k\right)
\end{aligned}
$$

for some function $\theta_{1}=\theta(h, k)$ and $\theta_{2}=\theta_{2}(h, k)$ satisfying $\theta_{1}, \theta_{2} \in(0,1)$. Since $\frac{\partial^{2} f}{\partial x \partial y}$ is continuous, we find that

$$
\lim _{(h, k) \rightarrow(0,0)} Q(h, k)=\lim _{(h, k) \rightarrow(0,0)} \frac{\partial^{2} f}{\partial x \partial y}\left(a+\theta_{2} h, b+\theta_{1} k\right)=\frac{\partial^{2} f}{\partial x \partial y}(a, b) .
$$

On the other hand, since the limit $\lim _{(h, k) \rightarrow(0,0)} Q(h, k)$ exists,

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial x \partial y}(a, b) & =\lim _{(h, k) \rightarrow(0,0)} Q(h, k)=\lim _{k \rightarrow 0} \lim _{h \rightarrow 0} Q(h, k) \\
& =\lim _{k \rightarrow 0} \frac{1}{k}\left[\lim _{h \rightarrow 0}\left(\frac{f(a+h, b+k)-f(a, b+k)}{h}-\frac{f(a+h, b)-f(a, b)}{h}\right)\right] \\
& =\lim _{k \rightarrow 0} \frac{1}{k}\left[\frac{\partial f}{\partial x}(b+k)-\frac{\partial f}{\partial x}(b)\right] ;
\end{aligned}
$$

thus the limit $\lim _{k \rightarrow 0} \frac{f_{x}(a, b+k)-f_{x}(a, b)}{k}$ exists and equals $\frac{\partial^{2} f}{\partial x \partial y}(a, b)$. By the definition of partial derivatives, $\frac{\partial^{2} f}{\partial y \partial x}(a, b)$ exists and $\frac{\partial^{2} f}{\partial y \partial x}(a, b)=\frac{\partial^{2} f}{\partial x \partial y}(a, b)$.
Problem 6. Let $U \subseteq \mathbb{R}^{n}$ be open, and $\psi: U \rightarrow \mathbb{R}^{n}$ be a function of class \mathscr{C}^{2}. Suppose that $(D \psi)(x) \in \operatorname{GL}(n)$ for all $x \in \mathbb{R}^{n}$, and $\operatorname{define} J=\operatorname{det}([D \psi])$ and $A=[D \psi]^{-1}$, where $[D \psi]$ is the Jacobian matrix of ψ. Write $[A]=\left[a_{i j}\right]$.

1. Show that for each $1 \leqslant i, j, k \leqslant n, a_{i j}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable, and

$$
\frac{\partial a_{i j}}{\partial x_{k}}=-\sum_{r, s=1}^{n} a_{i r} \frac{\partial^{2} \psi_{r}}{\partial x_{k} \partial x_{s}} a_{s j}
$$

2. Show the Piola identity

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(J a_{i j}\right)(x)=0 \quad \forall 1 \leqslant j \leqslant n \text { and } x \in U \tag{0.1}
\end{equation*}
$$

Proof. Note that since $A=[D \psi]^{-1}$, we have

$$
\sum_{r=1}^{n} a_{i r} \frac{\partial \psi_{r}}{\partial x_{s}}=\sum_{r=1}^{n} \frac{\partial \psi_{i}}{\partial x_{r}} a_{r s}=\delta_{i s},
$$

where $\delta_{i s}$ is the Kronecker delta.

1. The product rule implies that

$$
\sum_{r=1}^{n}\left(\frac{\partial a_{i r}}{\partial x_{k}} \frac{\partial \psi_{r}}{\partial x_{s}}+a_{i r} \frac{\partial^{2} \psi_{r}}{\partial x_{k} \partial x_{s}}\right)=0
$$

thus

$$
\sum_{r=1}^{n} \frac{\partial a_{i r}}{\partial x_{k}} \frac{\partial \psi_{r}}{\partial x_{s}}=-\sum_{r=1}^{n} a_{i r} \frac{\partial^{2} \psi_{r}}{\partial x_{k} \partial x_{s}}
$$

Therefore,

$$
\sum_{s=1}^{n} a_{s j} \sum_{r=1}^{n} \frac{\partial a_{i r}}{\partial x_{k}} \frac{\partial \psi_{r}}{\partial x_{s}}=-\sum_{s=1}^{n} \sum_{r=1}^{n} a_{i r} \frac{\partial^{2} \psi_{r}}{\partial x_{k} \partial x_{s}} a_{s j}=-\sum_{r, s=1}^{n} a_{i r} \frac{\partial^{2} \psi_{r}}{\partial x_{k} \partial x_{s}} a_{s j}
$$

and Part 1 follows from the fact that $\sum_{s=1}^{n} \frac{\partial \psi_{r}}{\partial x_{s}} a_{s j}=\delta_{r j}$ and $\sum_{r=1}^{n} \delta_{r j} \frac{\partial a_{i r}}{\partial x_{k}}=\frac{\partial a_{i j}}{\partial x_{k}}$.
2. Note that since $(D \psi) \in \mathrm{GL}(n)$, by the property of the adjoint matrix we obtain that

$$
J A=\operatorname{det}([D \psi])[D \psi]^{-1}=\operatorname{Adj}([D \psi])
$$

which implies that the (i, j)-entry of $\operatorname{Adj}([D \psi])$ is $J a_{i j}$. Therefore, using the result in Problem 3 shows that

$$
\frac{\partial J}{\partial x_{i}}=\operatorname{tr}\left(\operatorname{Adj}([D \psi]) \frac{\partial[D \psi]}{\partial x_{i}}\right)=\sum_{r, s=1}^{n} J a_{r s} \frac{\partial}{\partial x_{i}} \frac{\partial \psi_{s}}{\partial x_{r}}=\sum_{r, s=1}^{n} J a_{r s} \frac{\partial^{2} \psi_{s}}{\partial x_{i} \partial x_{r}}
$$

thus the product rule implies that

$$
\begin{aligned}
\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(J a_{i j}\right) & =\sum_{i=1}^{n} \frac{\partial J}{\partial x_{i}} a_{i j}+\sum_{i=1}^{n} J \frac{\partial a_{i j}}{\partial x_{i}}=\sum_{i, r, s=1}^{n} J a_{r s} \frac{\partial^{2} \psi_{s}}{\partial x_{i} \partial x_{r}} a_{i j}-\sum_{i, r, s=1}^{n} J a_{i r} \frac{\partial^{2} \psi_{r}}{\partial x_{i} \partial x_{s}} a_{s j} \\
& =\sum_{i, r, s=1}^{n} J a_{r s} \frac{\partial^{2} \psi_{s}}{\partial x_{i} \partial x_{r}} a_{i j}-\sum_{i, r, s=1}^{n} J a_{r s} \frac{\partial^{2} \psi_{s}}{\partial x_{r} \partial x_{i}} a_{i j} \\
& =\sum_{i, r, s=1}^{n} J a_{r s}\left(\frac{\partial^{2} \psi_{s}}{\partial x_{i} \partial x_{r}}-\frac{\partial^{2} \psi_{s}}{\partial x_{r} \partial x_{i}}\right) a_{i j}
\end{aligned}
$$

and the conclusion follows from Clairaut's Theorem.

