Exercise Problem Sets 15

Dec. 23. 2022

Problem 1. Let $U \subseteq \mathbb{R}^n$ be open, and $f: U \to \mathbb{R}^m$ with $f = (f_1, \cdots, f_m)$.

1. Suppose that f is differentiable on U and the line segment joining x and y lies in U. Then there exist points c_1, \dots, c_m on that segment such that

$$f_i(y) - f_i(x) = (Df_i)(c_i)(y - x) \qquad \forall i = 1, \cdots, m.$$

2. Suppose in addition that U is convex (the convexity of sets is defined in Problem 7 in Exercise 11). Show that for each $x, y \in U$ and vector $v \in \mathbb{R}^m$, there exists c on the line segment joining x and y such that

$$v \cdot [f(x) - f(y)] = v \cdot (Df)(c)(x - y).$$

In particular, show that if $\sup_{x \in U} ||(Df)(x)||_{\mathscr{B}(\mathbb{R}^n,\mathbb{R}^m)} \leq M$, then

$$\|f(x) - f(y)\|_{\mathbb{R}^m} \leqslant M \|x - y\|_{\mathbb{R}^n} \qquad \forall \, x, y \in U \,.$$

Proof. Let $\gamma : [0,1] \to \mathbb{R}^n$ be given by $\gamma(t) = (1-t)x + ty$. Then by the chain rule, for each $i = 1, \dots, m, (f_i \circ \gamma) : [0,1] \to \mathbb{R}$ is differentiable on (0,1); thus the mean value theorem (for functions of one real variable) implies that there exists $t_i \in (0,1)$ such that

$$f_i(y) - f_i(x) = (f_i \circ \gamma)(1) - (f_i \circ \gamma)(0) = (f_i \circ \gamma)'(t_i) = (Df_i)(c_i)(\gamma'(t_i)),$$

where $c_i = \gamma(t_i)$. Part 1 is concluded since $\gamma'(t_i) = y - x$.

For $v \in \mathbb{R}^n$, let $g(t) = v \cdot f(ty + (1-t)x)$. Then $g: [0,1] \to \mathbb{R}$ is differentiable; thus the mean value theorem (for functions of one real variable) implies that there exists $0 < t_0 < 1$ such that

$$v \cdot [f(y) - f(x)] = g(1) - g(0) = g'(t_0) = v \cdot (Df)(t_0y + (1 - t_0)x)(x - y).$$

Letting $c = t_0 y + (1 - t_0) x$, we conclude that $v \cdot [f(x) - f(y)] = v \cdot (Df)(c)(x - y)$.

Finally, let v = f(y) - f(x). By the discussion above there exists $c \in \overline{xy}$ such that

$$\|f(y) - f(x)\|_{\mathbb{R}^m}^2 = v \cdot [f(y) - f(x)] = v \cdot (Df)(c)(x - y).$$

The Cauchy-Schwarz inequality further implies that

$$\|f(y) - f(x)\|_{\mathbb{R}^m}^2 \leq \|f(y) - f(x)\|_{\mathbb{R}^m} \|(Df)(c)(x-y)\|_{\mathbb{R}^m}$$

$$\leq \|f(y) - f(x)\|_{\mathbb{R}^m} \|(Df)(c)\|_{\mathscr{B}(\mathbb{R}^n,\mathbb{R}^m)} \|x-y\|_{\mathbb{R}^n} .$$

Therefore, if $\sup_{x \in U} ||(Df)(x)||_{\mathscr{B}(\mathbb{R}^n,\mathbb{R}^m)} \leq M$, we conclude that

$$\|f(y) - f(x)\|_{\mathbb{R}^m} \leqslant M \|x - y\|_{\mathbb{R}^n} \qquad \forall x, y \in U.$$

Problem 2. Let $U \subseteq \mathbb{R}^n$ be open and connected, and $f: U \to \mathbb{R}$ be a function such that $\frac{\partial f}{\partial x_j}(x) = 0$ for all $x \in U$. Show that f is constant in U.

Proof. First, we show that if B(a, r) is a ball in U, then f is constant on U. In fact, by the fact that balls are convex set, Problem 1 implies that

$$\left|f(y) - f(x)\right| \leq \sup_{z \in B(a,r)} \|(Df)(z)\|_{\mathscr{B}(\mathbb{R}^n,\mathbb{R})} \|x - y\|_{\mathbb{R}^n} \qquad \forall x, y \in B(a,r).$$

Since $\frac{\partial f}{\partial x_j}(x) = 0$ for all $x \in B(a, r)$, we find that $||(Df)(z)||_{\mathscr{B}(\mathbb{R}^n,\mathbb{R})} = 0$ for all $z \in B(a, r)$; thus f(y) = f(x) for all $x, y \in B(a, r)$.

Suppose that f = c in B(a, r). Let $E = f^{-1}(\{c\})$. Note that the fact $\frac{\partial f}{\partial x_j}(x) = 0$ for all $x \in U$ implies that Df is continuous on U; thus f is continuously differentiable on U. In particular, f is continuous; thus $f^{-1}(\{c\})$ is closed relative to U. Suppose that $f^{-1}(\{c\}) = F \cap U$ for some closed set F in \mathbb{R}^n . Next we show that $U \setminus F = \emptyset$ so that f = c on U.

Suppose the contrary that $U \setminus F \neq \emptyset$. Let $E_1 = U \cap F^{\complement}$ and $E_2 = U \cap F$. Then $U = E_1 \cup E_2$ and Problem 6 in Exercise 7 shows that

$$E_1 \cap \overline{E_2} \subseteq E_1 \cap \overline{F} = U \cap F^{\mathbb{C}} \cap F = \emptyset$$
.

Therefore, $\overline{E_1} \cap E_2 \neq \emptyset$ for otherwise U is disconnected by Proposition 3.65 in the lecture note. This implies that there exists $x \in \overline{E_1} \cap E_2$; thus there exists $\{x_k\}_{k=1}^{\infty} \subseteq U \setminus F$ such that $x_k \to x$ as $k \to \infty$. Since $x \in U$, there exists $\epsilon > 0$ such that $B(x, \epsilon) \subseteq U$; thus the convergence of $\{x_k\}_{k=1}^{\infty}$ implies that there exists N > 0 such that $x_k \in B(x, \epsilon)$ for all $k \ge N$. By the discussion above, f is constant on $B(x, \epsilon)$; thus $f(x_k) = f(x) = c$ for all $k \ge N$, a contradiction to that $x_k \notin F$.

Problem 3. Let $U \subseteq \mathbb{R}^n$ be open, and for each $1 \leq i, j \leq n, a_{ij} : U \to \mathbb{R}$ be differentiable functions. Define $A = [a_{ij}]$ and $J = \det(A)$. Show that

$$\frac{\partial J}{\partial x_k} = \operatorname{tr}\left(\operatorname{Adj}(A)\frac{\partial A}{\partial x_k}\right) \qquad \forall \, 1 \leqslant k \leqslant n \,,$$

where for a square matrix $M = [m_{ij}]$, $\operatorname{tr}(M)$ denotes the trace of M, $\operatorname{Adj}(M)$ denotes the adjoint matrix of M, and $\frac{\partial M}{\partial x_k}$ denotes the matrix whose (i, j)-th entry is given by $\frac{\partial m_{ij}}{\partial x_k}$. **Hint**: Show that

Hint: Show that

$$\frac{\partial J}{\partial x_k} = \begin{vmatrix} \frac{\partial a_{11}}{\partial x_k} & a_{12} & \cdots & a_{1n} \\ \frac{\partial a_{21}}{\partial x_k} & a_{22} & \cdots & a_{2n} \\ \vdots & & \vdots \\ \frac{\partial a_{n1}}{\partial x_k} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & \frac{\partial a_{12}}{\partial x_k} & a_{13} & \cdots & a_{1n} \\ a_{21} & \frac{\partial a_{22}}{\partial x_k} & a_{23} & \cdots & a_{2n} \\ \vdots & & \vdots \\ a_{n1} & \frac{\partial a_{n2}}{\partial x_k} & a_{n3} & \cdots & a_{nn} \end{vmatrix} + \cdots + \begin{vmatrix} a_{11} & \cdots & a_{(n-1)1} & \frac{\partial a_{1n}}{\partial x_k} \\ a_{21} & \cdots & a_{(n-1)2} & \frac{\partial a_{2n}}{\partial x_k} \\ \vdots & & \vdots \\ a_{n1} & \frac{\partial a_{n2}}{\partial x_k} & a_{n3} & \cdots & a_{nn} \end{vmatrix}$$

and rewrite this identity in the form which is asked to prove. You can also show the differentiation formula by applying the chain rule to the composite function $F \circ g$ of maps $g : U \to \mathbb{R}^{n^2}$ and $F : \mathbb{R}^{n^2} \to \mathbb{R}$ defined by $g(x) = (a_{11}(x), a_{12}(x), \cdots, a_{nn}(x))$ and $F(a_{11}, \cdots, a_{nn}) = \det([a_{ij}])$. Check first what $\frac{\partial F}{\partial a_{ij}}$ is. *Proof.* Let $A = [a_{ij}]$ and $\operatorname{Adj}(A) = [c_{ij}]$. Then $\frac{\partial F}{\partial a_{ij}} = c_{ji}$ since the cofactor expansion implies that $\det(A) = a_{i1}c_{1i} + a_{i2}c_{2i} + \dots + a_{in}c_{ni}$ for each $1 \le i \le n$.

Therefore, for $J = \det(A)$, we have

$$\frac{\partial J}{\partial x_k}(x) = \frac{\partial (F \circ g)}{\partial x_k}(x) = \sum_{i,j=1}^n \frac{\partial F}{\partial a_{ij}}(g(x)) \frac{\partial a_{ij}}{\partial x_k}(x) = \sum_{i,j=1}^n c_{ji}(x) \frac{\partial a_{ij}}{\partial x_k}(x)$$

and the result is concluded from the fact that $\operatorname{tr}\left(\operatorname{Adj}(A)\frac{\partial A}{\partial x_k}\right) = \sum_{i,j=1}^n c_{ji}\frac{\partial a_{ij}}{\partial x_k}$.

Problem 4. 1. If $f : A \subseteq \mathbb{R}^n \to \mathbb{R}^m$ and $g : B \subseteq \mathbb{R}^m \to \mathbb{R}^\ell$ are twice differentiable and $f(A) \subseteq B$, then for $x_0 \in A, u, v \in \mathbb{R}^n$, show that

$$D^{2}(g \circ f)(x_{0})(u, v)$$

= $(D^{2}g)(f(x_{0}))((Df)(x_{0})(u), Df(x_{0})(v)) + (Dg)(f(x_{0}))((D^{2}f)(x_{0})(u, v)).$

2. If $p : \mathbb{R}^n \to \mathbb{R}^m$ is a linear map plus some constant; that is, p(x) = Lx + c for some $L \in \mathscr{B}(\mathbb{R}^n, \mathbb{R}^m)$, and $f : A \subseteq \mathbb{R}^m \to \mathbb{R}^s$ is k-times differentiable, prove that

$$D^{k}(f \circ p)(x_{0})(u^{(1)}, \cdots, u^{(k)}) = (D^{k}f)(p(x_{0}))((Dp)(x_{0})(u^{(1)}), \cdots, (Dp)(x_{0})(u^{(k)}).$$

Problem 5. Let f(x, y) be a real-valued function on \mathbb{R}^2 . Suppose that f is of class \mathscr{C}^1 (that is, all first partial derivatives are continuous on \mathbb{R}^2) and $\frac{\partial^2 f}{\partial x \partial y}$ exists and is continuous. Show that $\frac{\partial^2 f}{\partial y \partial x}$ exists and $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$.

Hint: Mimic the proof of Clairaut's Theorem.

Proof. Let $(a,b) \in \mathbb{R}^2$. For real numbers $h, k \neq 0$, define $Q : \mathbb{R}^2 \to \mathbb{R}$ and $\varphi : \mathbb{R}^2 \to \mathbb{R}$ by

$$Q(h,k) = \frac{1}{hk} \left[f(a+h,b+k) - f(a+h,b) - f(a,b+k) + f(a,b) \right]$$

and

$$\psi(x,y) = f(x+h,y) - f(x,y).$$

Then $Q(h,k) = \frac{1}{hk} [\psi(a,b+k) - \psi(a,b)]$. By the mean value theorem (for functions of one real variable),

$$Q(h,k) = \frac{1}{hk} \frac{\partial \psi}{\partial y}(a,b+\theta_1 k)k = \frac{1}{h} \left[\frac{\partial f}{\partial y}(a+h,b+\theta_1 k) - \frac{\partial f}{\partial y}(a,b+\theta_1 k) \right]$$
$$= \frac{1}{h} \frac{\partial^2 f}{\partial x \partial y}(a+\theta_2 h,b+\theta_1 k)h = \frac{\partial^2 f}{\partial x \partial y}(a+\theta_2 h,b+\theta_1 k)$$

for some function $\theta_1 = \theta(h, k)$ and $\theta_2 = \theta_2(h, k)$ satisfying $\theta_1, \theta_2 \in (0, 1)$. Since $\frac{\partial^2 f}{\partial x \partial y}$ is continuous, we find that

$$\lim_{(h,k)\to(0,0)} Q(h,k) = \lim_{(h,k)\to(0,0)} \frac{\partial^2 f}{\partial x \partial y}(a+\theta_2 h, b+\theta_1 k) = \frac{\partial^2 f}{\partial x \partial y}(a,b).$$

On the other hand, since the limit $\lim_{(h,k)\to(0,0)} Q(h,k)$ exists,

$$\begin{aligned} \frac{\partial^2 f}{\partial x \partial y}(a,b) &= \lim_{(h,k) \to (0,0)} Q(h,k) = \lim_{k \to 0} \lim_{h \to 0} Q(h,k) \\ &= \lim_{k \to 0} \frac{1}{k} \Big[\lim_{h \to 0} \Big(\frac{f(a+h,b+k) - f(a,b+k)}{h} - \frac{f(a+h,b) - f(a,b)}{h} \Big) \Big] \\ &= \lim_{k \to 0} \frac{1}{k} \Big[\frac{\partial f}{\partial x}(b+k) - \frac{\partial f}{\partial x}(b) \Big]; \end{aligned}$$

thus the limit $\lim_{k \to 0} \frac{f_x(a, b+k) - f_x(a, b)}{k}$ exists and equals $\frac{\partial^2 f}{\partial x \partial y}(a, b)$. By the definition of partial derivatives, $\frac{\partial^2 f}{\partial y \partial x}(a, b)$ exists and $\frac{\partial^2 f}{\partial y \partial x}(a, b) = \frac{\partial^2 f}{\partial x \partial y}(a, b)$.

Problem 6. Let $U \subseteq \mathbb{R}^n$ be open, and $\psi : U \to \mathbb{R}^n$ be a function of class \mathscr{C}^2 . Suppose that $(D\psi)(x) \in \operatorname{GL}(n)$ for all $x \in \mathbb{R}^n$, and define $J = \det([D\psi])$ and $A = [D\psi]^{-1}$, where $[D\psi]$ is the Jacobian matrix of ψ . Write $[A] = [a_{ij}]$.

1. Show that for each $1 \leq i, j, k \leq n, a_{ij} : \mathbb{R}^n \to \mathbb{R}$ is differentiable, and

$$\frac{\partial a_{ij}}{\partial x_k} = -\sum_{r,s=1}^n a_{ir} \frac{\partial^2 \psi_r}{\partial x_k \partial x_s} a_{sj} \,.$$

2. Show the Piola identity

$$\sum_{i=1}^{n} \frac{\partial}{\partial x_i} (Ja_{ij})(x) = 0 \qquad \forall 1 \le j \le n \text{ and } x \in U.$$
(0.1)

Proof. Note that since $A = [D\psi]^{-1}$, we have

$$\sum_{r=1}^{n} a_{ir} \frac{\partial \psi_r}{\partial x_s} = \sum_{r=1}^{n} \frac{\partial \psi_i}{\partial x_r} a_{rs} = \delta_{is} ,$$

where δ_{is} is the Kronecker delta.

1. The product rule implies that

$$\sum_{r=1}^{n} \left(\frac{\partial a_{ir}}{\partial x_k} \frac{\partial \psi_r}{\partial x_s} + a_{ir} \frac{\partial^2 \psi_r}{\partial x_k \partial x_s} \right) = 0;$$

thus

$$\sum_{r=1}^{n} \frac{\partial a_{ir}}{\partial x_k} \frac{\partial \psi_r}{\partial x_s} = -\sum_{r=1}^{n} a_{ir} \frac{\partial^2 \psi_r}{\partial x_k \partial x_s} \,.$$

Therefore,

$$\sum_{s=1}^{n} a_{sj} \sum_{r=1}^{n} \frac{\partial a_{ir}}{\partial x_k} \frac{\partial \psi_r}{\partial x_s} = -\sum_{s=1}^{n} \sum_{r=1}^{n} a_{ir} \frac{\partial^2 \psi_r}{\partial x_k \partial x_s} a_{sj} = -\sum_{r,s=1}^{n} a_{ir} \frac{\partial^2 \psi_r}{\partial x_k \partial x_s} a_{sj} ,$$

and Part 1 follows from the fact that $\sum_{s=1}^{n} \frac{\partial \psi_r}{\partial x_s} a_{sj} = \delta_{rj}$ and $\sum_{r=1}^{n} \delta_{rj} \frac{\partial a_{ir}}{\partial x_k} = \frac{\partial a_{ij}}{\partial x_k}$.

2. Note that since $(D\psi) \in GL(n)$, by the property of the adjoint matrix we obtain that

$$JA = \det([D\psi])[D\psi]^{-1} = \operatorname{Adj}([D\psi])$$

which implies that the (i, j)-entry of $\operatorname{Adj}([D\psi])$ is Ja_{ij} . Therefore, using the result in Problem 3 shows that

$$\frac{\partial J}{\partial x_i} = \operatorname{tr}\left(\operatorname{Adj}([D\psi])\frac{\partial [D\psi]}{\partial x_i}\right) = \sum_{r,s=1}^n Ja_{rs}\frac{\partial}{\partial x_i}\frac{\partial \psi_s}{\partial x_r} = \sum_{r,s=1}^n Ja_{rs}\frac{\partial^2 \psi_s}{\partial x_i \partial x_r};$$

thus the product rule implies that

$$\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} (Ja_{ij}) = \sum_{i=1}^{n} \frac{\partial J}{\partial x_{i}} a_{ij} + \sum_{i=1}^{n} J \frac{\partial a_{ij}}{\partial x_{i}} = \sum_{i,r,s=1}^{n} J a_{rs} \frac{\partial^{2} \psi_{s}}{\partial x_{i} \partial x_{r}} a_{ij} - \sum_{i,r,s=1}^{n} J a_{ir} \frac{\partial^{2} \psi_{r}}{\partial x_{i} \partial x_{s}} a_{sj}$$
$$= \sum_{i,r,s=1}^{n} J a_{rs} \frac{\partial^{2} \psi_{s}}{\partial x_{i} \partial x_{r}} a_{ij} - \sum_{i,r,s=1}^{n} J a_{rs} \frac{\partial^{2} \psi_{s}}{\partial x_{r} \partial x_{i}} a_{ij}$$
$$= \sum_{i,r,s=1}^{n} J a_{rs} \left(\frac{\partial^{2} \psi_{s}}{\partial x_{i} \partial x_{r}} - \frac{\partial^{2} \psi_{s}}{\partial x_{r} \partial x_{i}} \right) a_{ij}$$

and the conclusion follows from Clairaut's Theorem.