Exercise Problem Sets 12

Nov. 25. 2022

Problem 1. Check if the following functions on uniformly continuous.

1. $f:(0, \infty) \rightarrow \mathbb{R}$ defined by $f(x)=\sin \log x$.
2. $f:(0,1) \rightarrow \mathbb{R}$ defined by $f(x)=x \sin \frac{1}{x}$.
3. $f:(0, \infty) \rightarrow \mathbb{R}$ defined by $f(x)=\sqrt{x}$.
4. $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\cos \left(x^{2}\right)$.
5. $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\cos ^{3} x$.
6. $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x \sin x$.

Problem 2. 1. Find all positive numbers a and b such that the function $f(x)=\frac{\sin \left(x^{a}\right)}{1+x^{b}}$ is uniformly continuous on $[0, \infty)$.
2. Find all positive numbers a and b such that the function $f(x, y)=|x|^{a}|y|^{b}$ is uniformly continuous on \mathbb{R}^{2}.

Problem 3. Show that $f:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x, y)=\frac{\sqrt{x}}{1+x^{2} y^{2}}$ is uniformly continuous on its domain.

Proof. Let $\varepsilon>0$ be given. Choose $N>0$ so that $\frac{8}{4+\varepsilon^{2} N^{2}}<\varepsilon$. Then

1. if $(x, y) \in\left[0, \frac{\varepsilon^{2}}{4}\right] \times[-N, N]^{\complement}$, we have $|f(x, y)| \leqslant \sqrt{x}<\frac{\varepsilon}{2}$.
2. if $(x, y) \in\left[\frac{\varepsilon^{2}}{4}, 1\right] \times[-N, N]^{\complement}$, we have $|f(x, y)| \leqslant \frac{1}{1+\frac{\varepsilon^{2}}{4} N^{2}}=\frac{4}{4+\varepsilon^{2} N^{2}}<\frac{\varepsilon}{2}$.

Therefore,

$$
|f(x, y)| \leqslant \frac{\varepsilon}{2} \quad \forall(x, y) \times[0,1] \times[-N, N]^{\complement} .
$$

Since $[0,1] \times[-2 N, 2 N]$ is compact, the continuity of f implies that f is uniformly continuous on $[0,1] \times[0,2 N] ;$ thus there exists $\delta_{1}>0$ such that

$$
\left|f\left(x_{1}, y_{1}\right)-f\left(x_{2}, y_{2}\right)\right|<\varepsilon \quad \forall\left|\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)\right|<\delta_{1} \text { and } x_{1}, x_{2} \in[0,1], y_{1}, y_{2} \in[-2 N, 2 N] .
$$

Define $\delta=\min \left\{\delta_{1}, N\right\}$. If $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in[0,1] \times \mathbb{R}$ and $\left|\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)\right|<\delta$, then either $\left(x_{1}, y_{1}\right)$, $\left(x_{2}, y_{2}\right)$ belongs to $[0,1] \times[-2 N, 2 N]$ or $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ belongs to $[0,1] \times[-N, N]^{\text {C. }}$. Therefore,

$$
\left|f\left(x_{1}, y_{1}\right)-f\left(x_{2}, y_{2}\right)\right|<\varepsilon \quad \forall\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in[0,1] \times \mathbb{R} \text { and }\left|\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)\right|<\delta .
$$

Problem 4. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be continuous, and $\lim _{|x| \rightarrow \infty} f(x)=b$ exists for some $b \in \mathbb{R}^{m}$. Show that f is uniformly continuous on \mathbb{R}^{n}.

Proof. Let $\varepsilon>0$ be given. By the fact that $\lim _{|x| \rightarrow \infty} f(x)=b$, there exists $M>0$ such that

$$
\|f(x)-b\|_{\mathbb{R}^{m}}<\frac{\varepsilon}{2} \quad \text { whenever } \quad\|x\|_{\mathbb{R}^{n}} \geqslant M
$$

By the Heine-Borel Theorem, $B[0, M+1]$ is compact; thus f is uniformly continuous on $B[0, M+1]$ and there exists $\delta \in\left(0, \frac{1}{2}\right)$ such that

$$
\|f(x)-f(y)\|<\frac{\varepsilon}{2} \quad \text { whenever } \quad\|x-y\|_{\mathbb{R}^{n}}<\delta \text { and } x, y \in B[0, M+1] .
$$

Therefore, for $x, y \in \mathbb{R}^{n}$ satisfying $\|x-y\|<\delta$,

1. if $x, y \in B[0, M+1]$, then (\star) implies that

$$
\|f(x)-f(y)\|_{\mathbb{R}^{m}}<\varepsilon .
$$

2. if $x \notin B[0, M+1]$ or $y \notin B[0, M+1]$, then $x, y \in B[0, M]^{\complement}$ which implies that

$$
\|f(x)-f(y)\|_{\mathbb{R}^{m}} \leqslant\|f(x)\|_{\mathbb{R}^{m}}+\|f(y)\|_{\mathbb{R}^{m}}<\varepsilon
$$

Problem 5. Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is uniformly continuous. Show that there exists $a>0$ and $b>0$ such that $\|f(x)\|_{\mathbb{R}^{m}} \leqslant a\|x\|_{\mathbb{R}^{n}}+b$.

Proof. Since f is uniformly continuous on \mathbb{R}^{n}, there exists $\delta>0$ such that

$$
\|f(x)-f(y)\|_{\mathbb{R}^{n}}<1 \quad \text { whenever } \quad\|x-y\|_{\mathbb{R}^{n}}<\delta
$$

For a given $x \in \mathbb{R}^{n}$, let $N \in \mathbb{N}$ such that $\frac{\|x\|_{\mathbb{R}^{n}}}{\delta}<N \leqslant \frac{\|x\|_{\mathbb{R}^{n}}}{\delta}+1$. For each $k \in \mathbb{N}$, define points x_{k} by $x_{k} \equiv \frac{k x}{N}$. Then $\left\{x_{k}\right\}_{k=0}^{\infty}$ satisfies that

$$
\left\|x_{k}-x_{k-1}\right\|_{\mathbb{R}^{m}}=\frac{\|x\|_{\mathbb{R}^{n}}}{N}<\delta \quad \forall k \in \mathbb{N}
$$

which further implies that

$$
\left\|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right\|_{\mathbb{R}^{m}}<1 \quad \forall k \in \mathbb{N}
$$

Therefore,

$$
\begin{aligned}
\|f(x)\|_{\mathbb{R}^{m}} & \leqslant\|f(x)-f(0)\|_{\mathbb{R}^{m}}+\|f(0)\|_{\mathbb{R}^{m}} \leqslant \sum_{k=1}^{N}\left\|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right\|_{\mathbb{R}^{m}}+\|f(0)\|_{\mathbb{R}^{m}} \\
& \leqslant N+\|f(0)\|_{\mathbb{R}^{m}} \leqslant \frac{1}{\delta}\|x\|_{\mathbb{R}^{m}}+\|f(0)\|_{\mathbb{R}^{m}}+1
\end{aligned}
$$

thus $a=\frac{1}{\delta}$ and $b=\|f(0)\|_{\mathbb{R}^{m}}+1$ verify the inequality $\|f(x)\|_{\mathbb{R}^{m}} \leqslant a\|x\|_{\mathbb{R}^{n}}+b$.
Problem 6. Let $f(x)=\frac{q(x)}{p(x)}$ be a rational function define on \mathbb{R}, where p and q are two polynomials. Show that f is uniformly continuous on \mathbb{R} if and only if the degree of q is not more than the degree of p plus 1 .

Proof. Note that if f is defined on \mathbb{R}, then $p(x) \neq 0$ for all $x \in \mathbb{R}$. By Problem 5, there exist $a, b>0$ such that

$$
\left|\frac{q(x)}{p(x)}\right| \leqslant a|x|+b \quad \forall x \in \mathbb{R} .
$$

Therefore, $|q(x)| \leqslant|p(x)|(a|x|+b)$ for all $x \in \mathbb{R}$, and this inequality above can be true if and only if the degree of q is not more than the degree of p plus 1 .

Problem 7. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous periodic function; that is, there exists $p>0$ such that $f(x+p)=f(x)$ for all $x \in \mathbb{R}$ (and f is continuous). Show that f is uniformly continuous on \mathbb{R}.

Proof. Let $p>0$ be such that $f(x+p)=f(x)$ for all $x \in \mathbb{R}$, and $\varepsilon>0$ be given. Since f is uniformly continuous on $[-p, p]$, there exists $\delta \in(0, p)$ such that

$$
|f(x)-f(y)|<\frac{\varepsilon}{2} \quad \text { whenever } \quad|x-y|<\delta \text { and } x, y \in[-p, p] .
$$

Therefore, if $|x-y|<\delta$, we must have $x, y \in[k p-p, k p+p]$ for some $k \in \mathbb{Z}$ so that $x-k p, y-k p \in[-p, p]$ which, together with the fact that $|(x-k p)-(y-k p)|=|x-y|<\delta$, implies that

$$
|f(x)-f(y)|=|f(x-k p)-f(y-k p)|<\varepsilon .
$$

Problem 8. Let $(a, b) \subseteq \mathbb{R}$ be an open interval, and $f:(a, b) \rightarrow \mathbb{R}^{m}$ be a function. Show that the following three statements are equivalent.

1. f is uniformly continuous on (a, b).
2. f is continuous on (a, b), and both limits $\lim _{x \rightarrow a^{+}} f(x)$ and $\lim _{x \rightarrow b^{-}} f(x)$ exist.
3. For all $\varepsilon>0$, there exists $N>0$ such that $|f(x)-f(y)|<\varepsilon$ whenever $\left|\frac{f(x)-f(y)}{x-y}\right|>N$ and $x, y \in(a, b), x \neq y$.

Proof. First we note that 1 and 2 are equivalent since

1. if f is uniformly continuous on (a, b), then there is a unique continuous extension g of f on $[a, b]$; thus $\lim _{x \rightarrow a^{+}} g(x)=g(a)$ and $\lim _{x \rightarrow b^{-}} g(x)=g(b)$ exists, and 2 holds since $\lim _{x \rightarrow a^{+}} g(x)=\lim _{x \rightarrow a^{+}} f(x)$ and $\lim _{x \rightarrow b^{-}} g(x)=\lim _{x \rightarrow b^{-}} f(x)$.
2. if $\lim _{x \rightarrow a^{+}} f(x)$ and $\lim _{x \rightarrow b^{-}} f(x)$ exists, we define $g:[a, b] \rightarrow \mathbb{R}$ by $g(x)=f(x)$ for $x \in(a, b)$ and $g(a)$, $g(b)$ are respectively the limit of f at a, b. Then g is continuous on $[a, b]$; thus the compactness of $[a, b]$ shows that g is uniformly continuous on $[a, b]$. In particular, g is uniformly continuous on (a, b) which is the same as saying that f is uniformly continuous on (a, b).

Next we prove that 1 and 3 are equivalent.
" $1 \Rightarrow 3$ " Suppose the contrary that there exists $\varepsilon>0$ such that for each $n \in \mathbb{N}$ there exist $x_{n}, y_{n} \in(a, b)$ such that

$$
x_{n} \neq y_{n}, \quad\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geqslant \varepsilon \quad \text { but } \quad\left|\frac{f\left(x_{n}\right)-f\left(y_{n}\right)}{x_{n}-y_{n}}\right|>n \quad \forall n \in \mathbb{N}
$$

By the Bolzano-Weierstrass Theorem/Property, there exist convergent subsequence $\left\{x_{n_{j}}\right\}_{j=1}^{\infty}$ and $\left\{y_{n_{j}}\right\}_{j=1}^{\infty}$ with limit x and y. Since $x_{n}, y_{n} \in(a, b)$ for all $n \in \mathbb{N}$, we must have $x, y \in[a, b]$. If $x=y$, then $\left|x_{n}-y_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$; thus the uniform continuity of f on (a, b) implies that $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \rightarrow 0$ as $n \rightarrow \infty$ which contradicts to the fact that $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geqslant \varepsilon$ for all $n \in \mathbb{N}$. Therefore, $x \neq y$ which further shows that the limit

$$
\lim _{n \rightarrow \infty}\left|\frac{f\left(x_{n}\right)-f\left(y_{n}\right)}{x_{n}-y_{n}}\right|
$$

exists since the limit $\left\{f\left(x_{n}\right)\right\}_{n=1}^{\infty}$ and $\left\{f\left(y_{n}\right)\right\}_{n=1}^{\infty}$ both exist and $\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=x-y \neq 0$. This is a contradiction to that $\left|\frac{f\left(x_{n}\right)-f\left(y_{n}\right)}{x_{n}-y_{n}}\right|>n$ for all $n \in \mathbb{N}$.
" $3 \Rightarrow 1$ " Suppose the contrary that there exists $\varepsilon>0$ such that for each $n \in \mathbb{N}$ there exists $x_{n}, y_{n} \in(a, b)$ satisfying $\left|x_{n}-y_{n}\right|<\frac{1}{n}$ but $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geqslant \varepsilon$. For this $\varepsilon>0$, by assumption there exists $N>0$ such that

$$
|f(x)-f(y)|<\varepsilon \quad \text { whenever } \quad\left|\frac{f(x)-f(y)}{x-y}\right|>N \text { and } x, y \in(a, b), x \neq y
$$

Since $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geqslant \varepsilon$, we must have $x_{n} \neq y_{n}$; thus the fact that $x_{n}, y_{n} \in(a, b)$ implies that

$$
\left|\frac{f\left(x_{n}\right)-f\left(y_{n}\right)}{x_{n}-y_{n}}\right| \leqslant N \quad \forall n \in \mathbb{N}
$$

This contradicts to the fact that $\left|x_{n}-y_{n}\right|<\frac{1}{n}$ and $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|>\varepsilon$.
Problem 9. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is Hölder continuous with exponent α; that is, there exist $M>0$ and $\alpha \in(0,1]$ such that

$$
|f(x)-f(y)| \leqslant M|x-y|^{\alpha} \quad \forall x, y \in[a, b] .
$$

Show that f is uniformly continuous on $[a, b]$. Show that $f:[0, \infty) \rightarrow \mathbb{R}$ defined by $f(x)=\sqrt{x}$ is Hölder continuous with exponent $\frac{1}{2}$.
Proof. Let $\varepsilon>0$ be given. Define $\delta=M^{-\frac{1}{\alpha}} \varepsilon^{\frac{1}{\alpha}}$. Then $\delta>0$. Moreover, if $|x-y|<\delta$ and $x, y \in[a, b]$,

$$
|f(x)-f(y)| \leqslant M|x-y|^{\alpha}<M \delta^{\alpha}=\varepsilon
$$

Therefore, f is uniformly continuous on $[a, b]$.
Next we show that $f(x)=\sqrt{x}$ is Hölder continuous with exponent $\frac{1}{2}$. Note that if $x, y \geqslant 0$ and $x \neq y$,

$$
\frac{|\sqrt{x}-\sqrt{y}|}{|x-y|^{\frac{1}{2}}}=\frac{|\sqrt{x}-\sqrt{y}||\sqrt{x}+\sqrt{y}|}{|x-y|^{\frac{1}{2}}|\sqrt{x}+\sqrt{y}|}=\frac{|x-y|^{\frac{1}{2}}}{|\sqrt{x}+\sqrt{y}|} \leqslant \frac{\sqrt{x}+\sqrt{y}}{|\sqrt{x}+\sqrt{y}|} \leqslant 1 ;
$$

thus

$$
|\sqrt{x}-\sqrt{y}| \leqslant|x-y|^{\frac{1}{2}} \quad \forall x, y \geqslant 0 \text { and } x \neq y .
$$

which implies that $f(x)=\sqrt{x}$ is Hölder continuous with exponent $\frac{1}{2}$ on $[0, \infty)$.
Problem 10. A function $f: A \times B \rightarrow \mathbb{R}^{m}$, where $A \subseteq \mathbb{R}$ and $B \subseteq \mathbb{R}^{p}$, is said to be separately continuous if for each $x_{0} \in A$, the map $g(y)=f\left(x_{0}, y\right)$ is continuous and for $y_{0} \in B, h(x)=f\left(x, y_{0}\right)$ is continuous. f is said to be continuous on A uniformly with respect to B if

$$
\forall \varepsilon>0, \exists \delta>0 \ni\left\|f(x, y)-f\left(x_{0}, y\right)\right\|_{2}<\varepsilon \quad \text { whenever } \quad\left\|x-x_{0}\right\|_{2}<\delta \text { and } y \in B .
$$

Show that if f is separately continuous and is continuous on A uniformly with respect to B, then f is continuous on $A \times B$.

Proof. Let $\varepsilon>0$, and $(a, b) \in A \times B$ be given. By assumption there exists $\delta_{1}>0$ such that

$$
\|f(x, y)-f(a, y)\|_{2}<\frac{\varepsilon}{2} \quad \text { whenever } \quad\|x-a\|_{2}<\delta_{1} \text { and } x \in A, y \in B
$$

Since f is separately continuous, there exists $\delta_{2}>0$ such that

$$
\|f(a, y)-f(a, b)\|_{2}<\frac{\varepsilon}{2} \quad \text { whenever } \quad\|y-b\|_{2}<\delta_{2} \text { and } y \in B .
$$

Define $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Then if $\|(x, y)-(a, b)\|_{2}<\delta$, we must have $\|x-a\|_{2}<\delta_{1}$ and $\|y-b\|_{2}<\delta_{2}$ so that

$$
\begin{aligned}
\|f(x, y)-f(a, b)\|_{2} & =\|f(x, y)-f(a, y)+f(a, y)-f(a, b)\|_{2} \\
& \leqslant\|f(x, y)-f(a, y)\|_{2}+\|f(a, y)-f(a, b)\|_{2}<\varepsilon
\end{aligned}
$$

which shows that f is continuous at (a, b).
Problem 11. Let (M, d) be a metric space, $A \subseteq M$, and $f, g: A \rightarrow \mathbb{R}$ be uniformly continuous on A. Show that if f and g are bounded, then $f g$ is uniformly continuous on A. Does the conclusion still hold if f or g is not bounded?

Proof. Let $\left\{x_{n}\right\}_{n=1}^{\infty},\left\{y_{n}\right\}_{n=1}^{\infty}$ be sequences in A satisfying that $\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=0$. Suppose that $|f(x)| \leqslant M$ and $|g(x)| \leqslant M$ for all $x \in A$. Then

$$
\begin{aligned}
\left|f\left(x_{n}\right) g\left(x_{n}\right)-f\left(y_{n}\right) g\left(y_{n}\right)\right| & =\left|f\left(x_{n}\right) g\left(x_{n}\right)-f\left(x_{n}\right) g\left(y_{n}\right)+f\left(x_{n}\right) g\left(y_{n}\right)-f\left(y_{n}\right) g\left(y_{n}\right)\right| \\
& \leqslant\left|f\left(x_{n}\right)\right|\left|g\left(x_{n}\right)-g\left(y_{n}\right)\right|+\left|g\left(y_{n}\right)\right|\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \\
& \leqslant M\left(\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|+\left|g\left(x_{n}\right)-g\left(y_{n}\right)\right|\right) ;
\end{aligned}
$$

thus the uniform continuity of f and g, together with the Sandich Lemma, implies that

$$
\lim _{n \rightarrow \infty}\left|f\left(x_{n}\right) g\left(x_{n}\right)-f\left(y_{n}\right) g\left(y_{n}\right)\right|=0 .
$$

Therefore, $f g$ is uniformly continuous on A.
When the boundedness is removed from the condition, the product of f and g might not be uniformly continuous. For example, $f(x)=g(x)=x$ are continuous on \mathbb{R}, but $(f g)(x)=x^{2}$ is no uniformly continuous on \mathbb{R} (from an example in class).

