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Problem 1 (True or False). Determine whether the following statements are true or false. If it is
true, prove it. Otherwise, give a counter-example.

1. Every open set in a metric space is a countable union of closed sets.

2. Let A Ď R be bounded from above, then supA P A1.

3. An infinite union of distinct closed sets cannot be closed.

4. An interior point of a subset A of a metric space (M,d) is an accumulation point of that set.

5. Let (M,d) be a metric space, and A Ď M . Then (A1)1 = A1.

6. There exists a metric space in which some unbounded Cauchy sequence exists.

7. Every metric defined in Rn is induced from some “norm” in Rn.

8. There exists a non-zero dimensional normed vector space in which some compact non-zero
dimensional linear subspace exists.

9. There exists a set A Ď (0, 1] which is compact in (0, 1] (in the sense of subspace topology), but
A is not compact in R.

10. Let A Ď Rn be a non-empty set. Then a subset B of A is compact in A if and only if B is
closed and bounded in A.

Solution. 1. True. We note that the statement above is equivalent to that “every closed set in a
metric space is a countable intersection of open sets”. To see that this equivalent statement is
true, we let F be a closed set. For each n P N, define

Un =
ď

xPF

B
(
x,

1

n

)
.

Then F Ď Un

(
since each point x P F belongs to the ball B

(
x,

1

n

))
. Moreover, Un is open since

it is the union of open sets.

Claim: F =
8
Ş

n=1

Un.

Proof of claim: Since F Ď Un for all n P N, F Ď
8
Ş

n=1

Un; thus it suffices to shows that

F Ě
8
Ş

n=1

Un or equivalently, F A Ď
8
Ť

n=1

U A
n. To see the inclusion, we let x P F A and use the

closedness of F to find an n0 P N such that B(x,
1

n0
) Ď F A. This implies that d(x, y) ě

1

n0
for

all y P F ; thus x R Un0 . Therefore, x P U A
n0

so that x P
8
Ť

n=1

U A
n. ˝



2. False. Let A be a collection of single point tau. Then A is bounded from above and supA = a

but A 1 = H.

3. False. Consider the union of the family of closed sets
␣

[3n ´ 1, 3n+ 1]
ˇ

ˇn P N
(

. We note that
for n ‰ m the two sets [3n´1, 3n+1]X [3m´1, 3m+1] = H so that this family is a collection
of distinct set and

8
Ť

n=1

[3n ´ 1, 3n+ 1] is closed.

4. False. Every point x in a discrete metric is the only point in the set B(x, 1) so that x R B(x, 1) 1.

5. False. A counter-example can be found in 5 of Problem 3 in Exercise 8.

6. False. By Proposition 2.58 in the lecture note, every Cauchy sequence is bounded.

7. False. The discrete metric d0 on Rn cannot be induced by a norm since every set in (Rn, d0)

is bounded but Rn is unbounded in (Rn, } ¨ }) for any norms } ¨ } on Rn.

8. False. Note that any non-zero dimensional linear subspace of a normed space is unbounded;
thus any non-zero dimensional linear subspace cannot be compact since a compact set must be
bounded.

9. False. By Theorem 3.77 in the lecture note, A is compact in (0, 1] if and only if A is compact
in R.

10. False. By Theorem 3.42 in the lecture note, it is true that B is compact in A then B is closed
and bounded in A; however, the reverse statement if not true. For example, if A = B = (0, 1),
then B is closed and bounded in A but B is not compact in R. ˝

Problem 2. Let (M,d) be a metric space, and A Ď M be a subset. Determine which of the following
statements are true.

1. intA = AzBA.

2. cl(A) = Mzint(MzA).

3. int(cl(A)) = int(A).

4. cl(int(A)) = A.

5. B (cl(A)) = BA.

6. If A is open, then BA Ď MzA.

7. If A is open, then A = cl(A)zBA. How about if A is not open?

Solution. 1. True. First we note that Å Ď A and Å X BA = H. Therefore,

Å Ď AzBA .



On the other hand, if x P AzBA, by the fact that BA = sA X ĎAA, we find that x is not a limit
point of AA; thus there exists r ą 0 such that B(x, r) Ď (AA)A = A. This Remark 3.3 in the
lecture note implies that x P Å so that AzBA Ď Å.

2. True. Note that x R B̊ if and only if there exists txnu8
n=1 Ď BA such that lim

nÑ8
xn = x.

Therefore,

x P sA ô
(
D txnu8

n=1 Ď A
)(

lim
nÑ8

xn = x
)

ô
(
D txnu8

n=1 Ď (MzA)A
)(

lim
nÑ8

xn = x
)

ô x R int(MzA) ô x P Mzint(MzA) .

3. False. Let A = [0, 1] X Q in (R, | ¨ |). Then cl(A) = [0, 1] and int(A) = H so that int(cl(A)) =
(0, 1) ‰ int(A).

4. False. Let A = [0, 1] X Q in (R, | ¨ |). Then int(A) = H so that cl(int(A)) = H ‰ A.

5. False. Let A = [0, 1] X Q in (R, | ¨ |). Then sA = [0, 1] so that B sA = t0, 1u ‰ BA.

6. True. If A is open, then every point x P A is an interior point so that x R BA (if x P BA, then
there exists txnu8

n=1 Ď AA such that lim
nÑ8

xn = x so that x R Å).

7. True. By Proposition 3.13 in the lecture note, BA = sAzÅ; thus the fact that Å Ď sA shows
that sA = Å Y BA. Since BA X Å = H, we find that A = sAzBA.

If A is not open, the statement is false. For example, consider A = [0, 1] in (R, | ¨ |). Then A is
not open and sA = [0, 1] and BA = t0, 1u so that sAzBA = (0, 1) ‰ A. ˝

Problem 3. Complete the following.

1. Find a function f : R2 Ñ R such that

lim
xÑ0

lim
yÑ0

f(x, y) and lim
yÑ0

lim
xÑ0

f(x, y)

exist but are not equal.

2. Find a function f : R2 Ñ R such that the two limits above exist and are equal but f is not
continuous.

3. Find a function f : R2 Ñ R that is continuous on every line through the origin but is not
continuous.

Problem 4. Complete the following.

1. Show that the projection map f :
R2 Ñ R

(x, y) ÞÑ x
is continuous.

2. Show that if U Ď R is open, then A =
␣

(x, y) P R2
ˇ

ˇx P U
(

is open.



3. Give an example of a continuous function f : R Ñ R and an open set U Ď R such that f(U)

is not open.

Problem 5. Show that f : A Ñ Rm, where A Ď Rn, is continuous if and only if for every B Ď A,

f(cl(B) X A) Ď cl(f(B)) .

Proof. “ñ” Let B Ď A and y P f(cl(B) X A). Then there exists x P cl(B) X A such that y = f(x).
By the property of sB, there exists a sequence txnu8

n=1 Ď B such that lim
nÑ8

xn = x. Since B Ď A,
txnu8

n=1 Ď A; thus the continuity of f (at x) implies that

lim
nÑ8

f(xn) = f(x) .

On the other hand, tf(xn)u
8
n=1 is a sequence in f(B), so the limit f(x) must belong to cl(f(B)).

Therefore, y = f(x) P cl(f(B)) which shows the inclusion f((cl(B) X A) Ď cl(f(B)).

“ð” Suppose the contrary that there exists a sequence txnu8
n=1 Ď A with limit x P AXA 1 such that

lim
nÑ8

f(xn) ‰ f(x). Then there exists ε ą 0 such that for all N ą 0 there exists n ě N such
that }f(xn) ´ f(x)} ě ε. Let n1 P N be such that

›

›f(xn1 ´ f(x)
›

› ě ε. Let n2 ą n1 such that
›

›f(xn2) ´ f(x)
›

› ě ε. Continuing this process, we obtain an increasing sequence tnju
8
j=1 such

that
›

›f(xnj
) ´ f(x)

›

› ě ε @ j P N . (0.1)

Let B =
␣

xnj

(

. Then x P sB since lim
nÑ8

xn = x
(
so that lim

jÑ8
xnj

= x
)
. On the other hand, (0.1)

implies that f(x) R cl(f(B)) since B(f(x), ε) X f(B) = H. Therefore,

f(cl(B) X A) Ę cl(f(B)) ,

a contradiction. ˝

Problem 6. Let T : Rn Ñ Rm satisfy T (x+ y) = T (x) + T (y) for all x, y P Rn.

1. Show that T (rx) = rT (x) for all r P Q and x P Rn.

2. Suppose that T is continuous on Rn. Show that T is linear; that is, T (cx+ y) = cT (x) + T (y)

for all c P R, x, y P Rn.

3. Suppose that T is continuous at some point x0 in Rn. Show that T is continuous on Rn.

4. Suppose that T is bounded on some open subset of Rn. Show that T is continuous on Rn.

5. Suppose that T is bounded from above (or below) on some open subset of Rn. Show that T is
continuous on Rn.

6. Construct a T : R Ñ R which is discontinuous at every point of R, but T (x+ y) = T (x)+T (y)

for all x, y P R.



Proof. 1. By induction, T (kx) = kT (x) for all k P N. Moreover, T (0) = T (0 + 0) = T (0) + T (0)

which implies that T (0) = 0; thus T (0x) = 0T (x) and if k P N,

´kT (x) = ´kT (x)+T (0) = ´kT (x)+T (kx+(´kx)) = ´kT (x)+T (kx)+T (´kx) = T (´kx) .

Therefore, T (kx) = kT (x) for all k P Z and x P Rn. Let r =
q

p
for some p, q P Z. Then for

x P Rn,
pT (rx) = T (prx) = T (qx) = qT (x)

which implies that T (rx) = rT (x) for all r P Q and x P Rn.

2. Let x, y P Rn and c P R. Then there exists tcku8
k=1 Ď Q such that lim

kÑ8
ck = c. This further

implies that ckx Ñ cx as k Ñ 8 since

lim
kÑ8

}cnx ´ cx} = lim
kÑ8

}(ck ´ c)x} = }x} lim
kÑ8

|ck ´ c| = 0

Therefore, by the continuity of T ,

T (cx+ y) = T (cx) + T (y) = lim
kÑ8

T (ckx) + T (y) = lim
kÑ8

ckT (x) + T (y) = cT (x) + T (y) .

3. Let a P Rn and ε ą 0 be given. By the continuity of T at x0, there exists δ ą 0 such that

}T (x ´ x0)} = }T (x) ´ T (x0)} ă ε whenever }x ´ x0} ă δ .

The statement above implies that if }x} ă δ, then }T (x)} ă ε. Therefore,

}T (x) ´ T (a)} = }T (x ´ a)} ă ε whenever }x ´ a} ă δ

which shows that T is continuous at a.

4. Suppose that T is bounded on an open set U so that T (U) Ď B(0,M). Let x0 P U . Then there
exists r ą 0 such that B(x0, r) Ď U . Therefore, if x P B(0, r), then x+ x0 P B(x0, r) so that

}T (x)} ď }T (x+ x0)} + }T (x0)} ď M + }T (x0)} ” R ;

thus we establish that there exists r and R such that

}T (x)} ď R whenever }x} ă r .

Let ε ą 0 be given. Choose c P Q so that 0 ă c ă
ε

R
. For such a fixed c P Q, choose 0 ă δ ă cr.

If }x} ă δ, then
›

›

x

c

›

› ă
δ

c
ă r; thus if }x} ă δ, we have

›

›T (
x

c

)›
› ď R so that

}T (x)} =
›

›T
(
c
x

c

)›
› =

›

›cT
(x
c

)›
› = c}T

(x
c

)
} ď cR ă ε .

Therefore, T is continuous at 0. By 3, T is continuous on Rn.



5. Suppose that Tx ď M (so that in this case m = 1) for all x P U , where U is an open set in Rn.
Let x0 P U . Then there exists r ą 0 such that B(x0, r) Ď U ; thus if x P B(0, r),

Tx = T (x+ x0) ´ T (x0) ď M ´ T (x0) ” R .

Therefore, we establish that there exist r and R such that

T (x) ď R whenever x P B(0, r) .

For x P B(0, r), we must have ´x P B(0, r); thus

´T (x) = T (´x) ď R ;

thus ´R ď T (x) whenever x P B(0, r). Therefore, |T (x)| ď R whenever }x} ă r. By 4, T is
continuous on Rn. ˝

Problem 7. Let (M,d) be a metric space, A Ď M , and f : A Ñ R. For a P A1, define

lim inf
xÑa

f(x) = lim
rÑ0+

inf
␣

f(x)
ˇ

ˇx P B(a, r) X Aztau
(

,

lim sup
xÑa

f(x) = lim
rÑ0+

sup
␣

f(x)
ˇ

ˇx P B(a, r) X Aztau
(

.

Complete the following.

1. Show that both lim inf
xÑa

f(x) and lim sup
xÑa

f(x) exist (which may be ˘8), and

lim inf
xÑa

f(x) ď lim sup
xÑa

f(x) .

Furthermore, there exist sequences txnu8
n=1, tynu8

n=1 Ď Aztau such that txnu8
n=1 and tynu8

n=1

both converge to a, and

lim
nÑ8

f(xn) = lim inf
xÑa

f(x) and lim
nÑ8

f(yn) = lim sup
xÑa

f(x) .

2. Let txnu8
n=1 Ď Aztau be a convergent sequence with limit a. Show that

lim inf
xÑa

f(x) ď lim inf
nÑ8

f(xn) ď lim sup
nÑ8

f(yn) ď lim sup
xÑa

f(x) .

3. Show that lim
xÑa

f(x) = ℓ if and only if

lim inf
xÑa

f(x) = lim sup
xÑa

f(x) = ℓ .

4. Show that lim inf
xÑa

f(x) = ℓ P R if and only if the following two conditions hold:

(a) for all ε ą 0, there exists δ ą 0 such that ℓ ´ ε ă f(x) for all x P B(a, δ) X Aztau;

(b) for all ε ą 0 and δ ą 0, there exists x P B(a, δ) X Aztau such that f(x) ă ℓ+ ε.



Formulate a similar criterion for limsup and for the case that ℓ = ˘8.

5. Compute the liminf and limsup of the following functions at any point of R.

(a) f(x) =

$

&

%

0 if x P QA ,
1

p
if x =

q

p
with (p, q) = 1, q ą 0, p ‰ 0 .

(b) f(x) =

"

x if x P Q ,

´x if x P QA .

Proof. For r ą 0, define m,M : A1 Ñ R˚ by

m(r) = inf
␣

f(x)
ˇ

ˇx P B(a, r) X Aztau
(

and M(r) = sup
␣

f(x)
ˇ

ˇx P B(a, r) X Aztau
(

.

We remark that it is possible that m(r) = ´8 or M(r) = 8. Note that m is decreasing and M is
increasing in (0,8).

1. By the monotonicity of m and M , lim
rÑ0+

m(r) and lim
rÑ0+

M(r) “exist” (which may be ˘8).
Moreover, m(r) ď M(r) for all r ą 0; thus lim

rÑ0+
m(r) ď lim

rÑ0+
M(r) so we conclude that

lim inf
xÑa

f(x) = lim
rÑ0+

m(r) ď lim
rÑ0+

M(r) = lim sup
xÑa

f(x) .

Since lim inf
xÑa

f(x) = ´ lim sup
xÑa

(´f)(x), it suffices to consider the case of the limit superior.

(a) If lim sup
xÑa

f(x) = 8, then for each n P N there exists 0 ă δn ă
1

n
such that

M(r) ě n whenever 0 ă r ă δn .

By the definition of the supremum, for each n P N there exists xn P B
(
a,

δn
2

)
X Aztau

such that f(xn) ě n ´ 1.

(b) If lim sup
xÑa

f(x) = L, then for each n P N there exists 0 ă δn ă
1

n
such that

ˇ

ˇM(r) ´ L
ˇ

ˇ ă
1

n
whenever 0 ă r ă δn .

By the definition of the supremum, for each n P N there exists xn P B
(
a,

δn
2

)
X Aztau

such that
L ´

1

n
ă f(xn) ă L+

1

n
.

Since δn Ñ 0 as n Ñ 8, we find that txnu8
n=1 Ď Aztau converges to a and lim

nÑ8
f(xn) =

lim sup
xÑa

f(x).

2. It suffices to show the case of the limit inferior. Let txnu8
n=1 Ď Aztau and xn Ñ a as n Ñ 8.

For every k P N, there exists Nk ą 0 such that 0 ă d(xn, a) ă
1

k
whenever n ě Nk. W.L.O.G.,



we can assume that Nk ě k and Nk+1 ą Nk for all k P N. By the definition of infimum,

m
(1
k

)
ď f(xn) whenever n ě Nk

which further implies that
m
(1
k

)
ď inf

něNk

f(xn) .

Note that lim
rÑ0+

m(r) = lim
kÑ8

m
(1
k

)
and lim

kÑ8
inf

něNk

f(xn) = lim
kÑ8

inf
něk

f(xn)
(
the latter follows from

the fact that
␣

inf
něNk

f(xn)
(8

k=1
is a subsequence of the “convergent” sequence

␣

inf
něk

f(xn)
(8

k=1

)
,

we conclude that

lim inf
xÑa

f(x) = lim
rÑ0+

m(r) = lim
kÑ8

m
(1
k

)
ď lim

kÑ8
inf

něNk

f(xn) = lim
kÑ8

inf
něk

f(xn) = lim inf
nÑ8

f(xn) .

3. (ñ) Let ε ą 0 be given. There exists δ ą 0 such that

|f(x) ´ ℓ| ă ε whenever x P B(a, δ) X Aztau .

Therefore,
ℓ ´ ε ă f(x) ă ℓ+ ε whenever x P B(a, δ) X Aztau

which implies that
ℓ ´ ε ď m(δ) ď M(δ) ď ℓ+ ε .

By the monotonicity of m and M , the inequality above implies that

ℓ ´ ε ď m(δ) ď m(r) ď M(r) ď M(δ) ď ℓ+ ε @ 0 ă r ă δ .

Passing to the limit as r Ñ 0+, we find that

ℓ ´ ε ď lim inf
xÑa

f(x) ď lim sup
xÑa

f(x) ď ℓ+ ε .

Since ε ą 0 is chosen arbitrary, we conclude that lim inf
xÑa

f(x) = lim sup
xÑa

f(x) = ℓ.

(ð) Let txnu8
n=1 Ď Aztau be a sequence with limit a. Then 2 and the assumption that

lim inf
xÑa

f(x) = lim sup
xÑa

f(x) = ℓ imply that lim inf
nÑ8

f(xn) = lim sup
nÑ8

f(xn) = ℓ. Therefore,
lim
nÑ8

f(xn) = ℓ.

4. (ñ) This direction is proved by contradiction.

(a) Suppose the contrary that there exists ε ą 0 such that for each n P N, there exists
xn P B

(
a,

1

n

)
X Aztau such that f(xn) ď ℓ ´ ε. Then txnu8

n=1Aztau and lim
nÑ8

xn = a;
however,

lim inf
nÑ8

f(xn) ď ℓ ´ ε ă ℓ = lim inf
xÑa

f(x) ,

a contradiction to 2.



(b) Suppose the contrary that there exist ε ą 0 and δ ą 0 such that

f(x) ě ℓ+ ε @x P B(a, δ) X Aztau .

Then m(δ) ě ℓ+ ε; thus the monotonicity of m implies that

ℓ+ ε ď m(δ) ď m(r) whenever 0 ă r ă δ .

Passing to the limit as r Ñ 0+, we conclude that

ℓ+ ε ď lim
rÑ0+

m(r) = lim inf
xÑa

f(x) ,

a contradiction.

(ð) Let txnu8
n=1 Ď Aztau be a sequence with limit a, and ε ą 0 be given. Then (a) provides

δ ą 0 such that f(x) ą ℓ ´ ε whenever x P B(a, δ) X Aztau. For such δ ą 0, there exists
N ą 0 such that 0 ă d(xn, a) ă δ for all n ě N . Therefore, if n ě N , f(xn) ą ℓ´ ε which
implies that lim inf

nÑ8
f(xn) ě ℓ ´ ε. Since ε ą 0 is chosen arbitrary, we conclude that

lim inf
nÑ8

f(xn) ě ℓ for every convergent sequence txnu8
n=1 Ď Aztau with limit a.

On the other hand, using (b) we find that for each n P N, there exists xn P B
(
a,

1

n

)
XAztau

such that f(xn) ă ℓ+
1

n
. Then lim inf

nÑ8
f(xn) ď ℓ, and (i) further implies that lim inf

nÑ8
f(xn) =

ℓ; thus we establish that there exists a convergent sequence txnu8
n=1 Ď Aztau with limit a

such that lim inf
nÑ8

f(xn) = ℓ.
By 1 and 2, we conclude that ℓ = lim inf

xÑa
f(x).

5. (a) lim inf
xÑa

f(x) = lim sup
xÑa

f(x) = 0 for all a P R.

(b) lim inf
xÑa

f(x) = ´|a|, lim sup
xÑa

f(x) = |a|. In particular, lim
xÑ0

f(x) = 0. ˝

Problem 8. Let (M,d) be a metric space, and A Ď M . A function f : A Ñ R is called

lower semi-continuous
upper semi-continuous at a P A if either a P AzA1 or

lim inf
xÑa

f(x) ě f(a) ,

lim sup
xÑa

f(x) ď f(a) ,
and is called

lower/upper semi-continuous on A if f is lower/uppser semi-continuous at a for all a P A.

1. Show that f : A Ñ R is lower semi-continuous on A if and only if f´1((´8, r]) is closed relative
to A. Also show that f : A Ñ R is upper semi-continuous on A if and only if f´1([r,8)) is
closed relative to A.

2. Show that f is lower semi-continuous on A if and only if for all convergent sequences txnu8
n=1 Ď

A and tsnu8
n=1 Ď R satisfying f(xn) ď sn for all n P N, we have

f
(

lim
nÑ8

xn

)
ď lim

nÑ8
sn .



3. Let tfαuαPI be a family of lower semi-continuous functions on A. Prove that f(x) = sup
αPI

fα(x)

is lower semi-continuous on A.

4. Let A be a perfect set (that is, A contains no isolated points) and f : A Ñ R be given. Define

f˚(x) = lim sup
yÑx

f(y) and f˚(x) = lim inf
yÑx

f(y) .

Show that f˚ is upper semi-continuous and f˚ is lower semi-continuous, and f˚(x) ď f(x) ď

f˚(x) for all x P A. Moreover, if g is a lower semi-continuous function on A such that g(x) ď

f(x) for all x P A, then g ď f˚.

Proof. We first note that by 1, 2 and 4 of Problem 7,
f : A Ñ R is lower semi-continuous at a

ô (@ ε ą 0)(D δ ą 0)
(
x P B(a, δ) X A ñ f(x) ą f(a) ´ ε

)
ô

(
@ txnu8

n=1 Ď A
)(

lim
nÑ8

xn = a ñ lim inf
nÑ8

f(xn) ě f(a)
)
.

(0.2)

We note that the first statement implies the second one because of 4(a) in Problem 7, the second
statement implies the third one because of xn P B(a, δ) X A when n " 1, and the third statement
implies the first one because of 1 in Problem 7.

1. (ñ) It suffices to prove the case for limit inferior since lim sup
xÑa

f(x) = ´ lim inf
xÑa

(´f)(x). We

note that E is closed relative to A if and only if E X A is a closed set in the metric space
(A, d). Therefore, a subset of E of A is closed relative to A if and only if every sequence
txnu8

n=1 Ď E that converges to a point in A must also has limit in E.
Let r P R and txnu8

n=1 be a sequence in E ” f´1((´8, r]) such that txnu8
n=1 converges to

a point a P A. Then f(a) ď lim inf
nÑ8

f(xn) ď r which implies that a P f´1((´8, r]).

(ð) Let a P A and ε ą 0 be given. Define r = f(a)´ ε. Then V = f´1((r,8)) is open relative
to A (since f´1((´8, r]) is closed relative to A). Since a P V , there exists δ ą 0 such that
B(a, δ) X A Ď V . This implies that

f(a) ´ ε ă f(x) @x P B(a, δ) X A .

Therefore, the equivalence (0.2) shows that f is lower semi-continuous at a.

2. (ñ) Let txnu8
n=1 be a convergent sequence in A with limit a, tsnu8

n=1 be a real sequence with
limit s, and f(xn) ď sn for all n P N. Suppose that f(a) ą s. Let ε =

f(a) ´ s

2
. Since f

is lower semi-continuous at a, lim inf
xÑa

f(x) ě f(a); thus there exists δ ą 0 such that

f(a) ´ ε ă f(x) @x P B(a, δ) X A .

On the other hand, there exists N ą 0 such that xn P B(a, δ)XA and sn ă s+ε whenever
n ě N . Therefore, if n ě N ,

sn ă s+ ε = f(a) ´ ε ă f(xn) ,

a contradiction.



(ð) Let a P A, and txnu8
n=1 Ď A be a sequence with limit a. Let txnj

u8
j=1 be a subsequence

of txnu8
n=1 such that lim

jÑ8
f(xnj

)
= lim inf

nÑ8
f(xn). Define sj = f

(
xnj

)
. Then clearly

f
(
xnj

)
ď sj for all j P N; thus by assumption

f(a) ď lim
jÑ8

sj = lim inf
nÑ8

f(xn) .

3. Let a P A X A1 and txnu8
n=1 Ď Aztau be a sequence with limit a. Then fα(xn) ď f(xn) for all

n P N and α P I. Since fα is lower semi-continuous for each α P I, for α P I we have

fα(a) ď lim inf
xÑa

fα(x) ď lim inf
xÑa

f(x) .

The inequality above implies that

f(a) = sup
αPI

fα(a) ď lim inf
xÑa

f(x) ;

thus f is lower semi-continuous at a. ˝


