Exercise Problem Sets 10

Problem 1 (**True or False**). Determine whether the following statements are true or false. If it is true, prove it. Otherwise, give a counter-example.

- 1. Every open set in a metric space is a countable union of closed sets.
- 2. Let $A \subseteq \mathbb{R}$ be bounded from above, then $\sup A \in A'$.
- 3. An infinite union of distinct closed sets cannot be closed.
- 4. An interior point of a subset A of a metric space (M, d) is an accumulation point of that set.
- 5. Let (M, d) be a metric space, and $A \subseteq M$. Then (A')' = A'.
- 6. There exists a metric space in which some unbounded Cauchy sequence exists.
- 7. Every metric defined in \mathbb{R}^n is induced from some "norm" in \mathbb{R}^n .
- 8. There exists a non-zero dimensional normed vector space in which some compact non-zero dimensional linear subspace exists.
- 9. There exists a set $A \subseteq (0, 1]$ which is compact in (0, 1] (in the sense of subspace topology), but A is not compact in \mathbb{R} .
- 10. Let $A \subseteq \mathbb{R}^n$ be a non-empty set. Then a subset B of A is compact in A if and only if B is closed and bounded in A.
- Solution. 1. True. We note that the statement above is equivalent to that "every closed set in a metric space is a countable intersection of open sets". To see that this equivalent statement is true, we let F be a closed set. For each $n \in \mathbb{N}$, define

$$U_n = \bigcup_{x \in F} B\left(x, \frac{1}{n}\right).$$

Then $F \subseteq U_n$ (since each point $x \in F$ belongs to the ball $B(x, \frac{1}{n})$). Moreover, U_n is open since it is the union of open sets.

Claim:
$$F = \bigcap_{n=1}^{\infty} U_n$$
.

Proof of claim: Since $F \subseteq U_n$ for all $n \in \mathbb{N}$, $F \subseteq \bigcap_{n=1}^{\infty} U_n$; thus it suffices to shows that $F \supseteq \bigcap_{n=1}^{\infty} U_n$ or equivalently, $F^{\complement} \subseteq \bigcup_{n=1}^{\infty} U_n^{\complement}$. To see the inclusion, we let $x \in F^{\complement}$ and use the closedness of F to find an $n_0 \in \mathbb{N}$ such that $B(x, \frac{1}{n_0}) \subseteq F^{\complement}$. This implies that $d(x, y) \ge \frac{1}{n_0}$ for all $y \in F$; thus $x \notin U_{n_0}$. Therefore, $x \in U_{n_0}^{\complement}$ so that $x \in \bigcup_{n=1}^{\infty} U_n^{\complement}$.

- 2. False. Let A be a collection of single point $\{a\}$. Then A is bounded from above and $\sup A = a$ but $A' = \emptyset$.
- 3. False. Consider the union of the family of closed sets $\{[3n-1, 3n+1] \mid n \in \mathbb{N}\}$. We note that for $n \neq m$ the two sets $[3n-1, 3n+1] \cap [3m-1, 3m+1] = \emptyset$ so that this family is a collection of distinct set and $\bigcup_{n=1}^{\infty} [3n-1, 3n+1]$ is closed.
- 4. False. Every point x in a discrete metric is the only point in the set B(x, 1) so that $x \notin B(x, 1)'$.
- 5. False. A counter-example can be found in 5 of Problem 3 in Exercise 8.
- 6. False. By Proposition 2.58 in the lecture note, every Cauchy sequence is bounded.
- 7. **False**. The discrete metric d_0 on \mathbb{R}^n cannot be induced by a norm since every set in (\mathbb{R}^n, d_0) is bounded but \mathbb{R}^n is unbounded in $(\mathbb{R}^n, \|\cdot\|)$ for any norms $\|\cdot\|$ on \mathbb{R}^n .
- 8. False. Note that any non-zero dimensional linear subspace of a normed space is unbounded; thus any non-zero dimensional linear subspace cannot be compact since a compact set must be bounded.
- 9. False. By Theorem 3.77 in the lecture note, A is compact in (0, 1] if and only if A is compact in \mathbb{R} .
- 10. False. By Theorem 3.42 in the lecture note, it is true that B is compact in A then B is closed and bounded in A; however, the reverse statement if not true. For example, if A = B = (0, 1), then B is closed and bounded in A but B is not compact in \mathbb{R} .

Problem 2. Let (M, d) be a metric space, and $A \subseteq M$ be a subset. Determine which of the following statements are true.

- 1. int $A = A \setminus \partial A$.
- 2. $\operatorname{cl}(A) = M \setminus \operatorname{int}(M \setminus A)$.
- 3. $\operatorname{int}(\operatorname{cl}(A)) = \operatorname{int}(A)$.
- 4. $\operatorname{cl}(\operatorname{int}(A)) = A$.
- 5. $\partial(\operatorname{cl}(A)) = \partial A$.
- 6. If A is open, then $\partial A \subseteq M \setminus A$.
- 7. If A is open, then $A = cl(A) \setminus \partial A$. How about if A is not open?

Solution. 1. True. First we note that $A \subseteq A$ and $A \cap \partial A = \emptyset$. Therefore,

 $\mathring{A} \subseteq A \backslash \partial A \,.$

On the other hand, if $x \in A \setminus \partial A$, by the fact that $\partial A = \overline{A} \cap \overline{A^{\complement}}$, we find that x is not a limit point of A^{\complement} ; thus there exists r > 0 such that $B(x, r) \subseteq (A^{\complement})^{\complement} = A$. This Remark 3.3 in the lecture note implies that $x \in \mathring{A}$ so that $A \setminus \partial A \subseteq \mathring{A}$.

2. True. Note that $x \notin \mathring{B}$ if and only if there exists $\{x_n\}_{n=1}^{\infty} \subseteq B^{\complement}$ such that $\lim_{n \to \infty} x_n = x$. Therefore,

$$x \in \bar{A} \Leftrightarrow \left(\exists \{x_n\}_{n=1}^{\infty} \subseteq A\right) \left(\lim_{n \to \infty} x_n = x\right) \Leftrightarrow \left(\exists \{x_n\}_{n=1}^{\infty} \subseteq (M \setminus A)^{\complement}\right) \left(\lim_{n \to \infty} x_n = x\right)$$
$$\Leftrightarrow x \notin \operatorname{int}(M \setminus A) \Leftrightarrow x \in M \setminus \operatorname{int}(M \setminus A).$$

- 3. False. Let $A = [0,1] \cap \mathbb{Q}$ in $(\mathbb{R}, |\cdot|)$. Then cl(A) = [0,1] and $int(A) = \emptyset$ so that $int(cl(A)) = (0,1) \neq int(A)$.
- 4. False. Let $A = [0,1] \cap \mathbb{Q}$ in $(\mathbb{R}, |\cdot|)$. Then $\operatorname{int}(A) = \emptyset$ so that $\operatorname{cl}(\operatorname{int}(A)) = \emptyset \neq A$.
- 5. **False**. Let $A = [0,1] \cap \mathbb{Q}$ in $(\mathbb{R}, |\cdot|)$. Then $\overline{A} = [0,1]$ so that $\partial \overline{A} = \{0,1\} \neq \partial A$.
- 6. **True**. If A is open, then every point $x \in A$ is an interior point so that $x \notin \partial A$ (if $x \in \partial A$, then there exists $\{x_n\}_{n=1}^{\infty} \subseteq A^{\complement}$ such that $\lim_{n \to \infty} x_n = x$ so that $x \notin \mathring{A}$).
- 7. **True**. By Proposition 3.13 in the lecture note, $\partial A = \overline{A} \setminus \mathring{A}$; thus the fact that $\mathring{A} \subseteq \overline{A}$ shows that $\overline{A} = \mathring{A} \cup \partial A$. Since $\partial A \cap \mathring{A} = \emptyset$, we find that $A = \overline{A} \setminus \partial A$.

If A is not open, the statement is false. For example, consider A = [0, 1] in $(\mathbb{R}, |\cdot|)$. Then A is not open and $\overline{A} = [0, 1]$ and $\partial A = \{0, 1\}$ so that $\overline{A} \setminus \partial A = (0, 1) \neq A$.

Problem 3. Complete the following.

1. Find a function $f : \mathbb{R}^2 \to \mathbb{R}$ such that

$$\lim_{x \to 0} \lim_{y \to 0} f(x, y) \quad \text{and} \quad \lim_{y \to 0} \lim_{x \to 0} f(x, y)$$

exist but are not equal.

- 2. Find a function $f : \mathbb{R}^2 \to \mathbb{R}$ such that the two limits above exist and are equal but f is not continuous.
- 3. Find a function $f : \mathbb{R}^2 \to \mathbb{R}$ that is continuous on every line through the origin but is not continuous.

Problem 4. Complete the following.

1. Show that the projection map $f: \begin{array}{c} \mathbb{R}^2 \to \mathbb{R} \\ (x,y) \mapsto x \end{array}$ is continuous.

2. Show that if $U \subseteq \mathbb{R}$ is open, then $A = \{(x, y) \in \mathbb{R}^2 \mid x \in U\}$ is open.

3. Give an example of a continuous function $f : \mathbb{R} \to \mathbb{R}$ and an open set $U \subseteq \mathbb{R}$ such that f(U) is not open.

Problem 5. Show that $f: A \to \mathbb{R}^m$, where $A \subseteq \mathbb{R}^n$, is continuous if and only if for every $B \subseteq A$,

$$f(\operatorname{cl}(B) \cap A) \subseteq \operatorname{cl}(f(B)).$$

Proof. " \Rightarrow " Let $B \subseteq A$ and $y \in f(\operatorname{cl}(B) \cap A)$. Then there exists $x \in \operatorname{cl}(B) \cap A$ such that y = f(x). By the property of \overline{B} , there exists a sequence $\{x_n\}_{n=1}^{\infty} \subseteq B$ such that $\lim_{n \to \infty} x_n = x$. Since $B \subseteq A$, $\{x_n\}_{n=1}^{\infty} \subseteq A$; thus the continuity of f (at x) implies that

$$\lim_{n \to \infty} f(x_n) = f(x)$$

On the other hand, $\{f(x_n)\}_{n=1}^{\infty}$ is a sequence in f(B), so the limit f(x) must belong to cl(f(B)). Therefore, $y = f(x) \in cl(f(B))$ which shows the inclusion $f((cl(B) \cap A) \subseteq cl(f(B)))$.

"⇐" Suppose the contrary that there exists a sequence $\{x_n\}_{n=1}^{\infty} \subseteq A$ with limit $x \in A \cap A'$ such that $\lim_{n \to \infty} f(x_n) \neq f(x)$. Then there exists $\varepsilon > 0$ such that for all N > 0 there exists $n \ge N$ such that $\|f(x_n) - f(x)\| \ge \varepsilon$. Let $n_1 \in \mathbb{N}$ be such that $\|f(x_{n_1} - f(x)\| \ge \varepsilon$. Let $n_2 > n_1$ such that $\|f(x_{n_2}) - f(x)\| \ge \varepsilon$. Continuing this process, we obtain an increasing sequence $\{n_j\}_{j=1}^{\infty}$ such that

$$\|f(x_{n_j}) - f(x)\| \ge \varepsilon \qquad \forall j \in \mathbb{N}.$$

$$(0.1)$$

Let $B = \{x_{n_j}\}$. Then $x \in \overline{B}$ since $\lim_{n \to \infty} x_n = x$ (so that $\lim_{j \to \infty} x_{n_j} = x$). On the other hand, (0.1) implies that $f(x) \notin \operatorname{cl}(f(B))$ since $B(f(x), \varepsilon) \cap f(B) = \emptyset$. Therefore,

$$f(\operatorname{cl}(B) \cap A) \not\subseteq \operatorname{cl}(f(B))$$
,

a contradiction.

Problem 6. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ satisfy T(x+y) = T(x) + T(y) for all $x, y \in \mathbb{R}^n$.

- 1. Show that T(rx) = rT(x) for all $r \in \mathbb{Q}$ and $x \in \mathbb{R}^n$.
- 2. Suppose that T is continuous on \mathbb{R}^n . Show that T is linear; that is, T(cx+y) = cT(x) + T(y) for all $c \in \mathbb{R}$, $x, y \in \mathbb{R}^n$.
- 3. Suppose that T is continuous at some point x_0 in \mathbb{R}^n . Show that T is continuous on \mathbb{R}^n .
- 4. Suppose that T is bounded on some open subset of \mathbb{R}^n . Show that T is continuous on \mathbb{R}^n .
- 5. Suppose that T is bounded from above (or below) on some open subset of \mathbb{R}^n . Show that T is continuous on \mathbb{R}^n .
- 6. Construct a $T : \mathbb{R} \to \mathbb{R}$ which is discontinuous at every point of \mathbb{R} , but T(x+y) = T(x) + T(y) for all $x, y \in \mathbb{R}$.

Proof. 1. By induction, T(kx) = kT(x) for all $k \in \mathbb{N}$. Moreover, T(0) = T(0+0) = T(0) + T(0)which implies that T(0) = 0; thus T(0x) = 0T(x) and if $k \in \mathbb{N}$,

$$-kT(x) = -kT(x) + T(0) = -kT(x) + T(kx + (-kx)) = -kT(x) + T(kx) + T(-kx) = T(-kx).$$

Therefore, T(kx) = kT(x) for all $k \in \mathbb{Z}$ and $x \in \mathbb{R}^n$. Let $r = \frac{q}{p}$ for some $p, q \in \mathbb{Z}$. Then for $x \in \mathbb{R}^n$,

$$pT(rx) = T(prx) = T(qx) = qT(x)$$

which implies that T(rx) = rT(x) for all $r \in \mathbb{Q}$ and $x \in \mathbb{R}^n$.

2. Let $x, y \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Then there exists $\{c_k\}_{k=1}^{\infty} \subseteq \mathbb{Q}$ such that $\lim_{k \to \infty} c_k = c$. This further implies that $c_k x \to cx$ as $k \to \infty$ since

$$\lim_{k \to \infty} \|c_n x - cx\| = \lim_{k \to \infty} \|(c_k - c)x\| = \|x\| \lim_{k \to \infty} |c_k - c| = 0$$

Therefore, by the continuity of T,

$$T(cx+y) = T(cx) + T(y) = \lim_{k \to \infty} T(c_k x) + T(y) = \lim_{k \to \infty} c_k T(x) + T(y) = cT(x) + T(y)$$

3. Let $a \in \mathbb{R}^n$ and $\varepsilon > 0$ be given. By the continuity of T at x_0 , there exists $\delta > 0$ such that

$$||T(x - x_0)|| = ||T(x) - T(x_0)|| < \varepsilon$$
 whenever $||x - x_0|| < \delta$.

The statement above implies that if $||x|| < \delta$, then $||T(x)|| < \varepsilon$. Therefore,

$$||T(x) - T(a)|| = ||T(x - a)|| < \varepsilon \quad \text{whenever} \quad ||x - a|| < \delta$$

which shows that T is continuous at a.

4. Suppose that T is bounded on an open set U so that $T(U) \subseteq B(0, M)$. Let $x_0 \in U$. Then there exists r > 0 such that $B(x_0, r) \subseteq U$. Therefore, if $x \in B(0, r)$, then $x + x_0 \in B(x_0, r)$ so that

$$||T(x)|| \leq ||T(x+x_0)|| + ||T(x_0)|| \leq M + ||T(x_0)|| \equiv R;$$

thus we establish that there exists r and R such that

$$||T(x)|| \leq R$$
 whenever $||x|| < r$.

Let $\varepsilon > 0$ be given. Choose $c \in \mathbb{Q}$ so that $0 < c < \frac{\varepsilon}{R}$. For such a fixed $c \in \mathbb{Q}$, choose $0 < \delta < cr$. If $||x|| < \delta$, then $||\frac{x}{c}|| < \frac{\delta}{c} < r$; thus if $||x|| < \delta$, we have $||T(\frac{x}{c})|| \leq R$ so that

$$\|T(x)\| = \|T(c\frac{x}{c})\| = \|cT(\frac{x}{c})\| = c\|T(\frac{x}{c})\| \le cR < \varepsilon.$$

Therefore, T is continuous at 0. By 3, T is continuous on \mathbb{R}^n .

5. Suppose that $Tx \leq M$ (so that in this case m = 1) for all $x \in U$, where U is an open set in \mathbb{R}^n . Let $x_0 \in U$. Then there exists r > 0 such that $B(x_0, r) \subseteq U$; thus if $x \in B(0, r)$,

$$Tx = T(x + x_0) - T(x_0) \leq M - T(x_0) \equiv R.$$

Therefore, we establish that there exist r and R such that

$$T(x) \leq R$$
 whenever $x \in B(0, r)$.

For $x \in B(0, r)$, we must have $-x \in B(0, r)$; thus

$$-T(x) = T(-x) \leqslant R;$$

thus $-R \leq T(x)$ whenever $x \in B(0, r)$. Therefore, $|T(x)| \leq R$ whenever ||x|| < r. By 4, T is continuous on \mathbb{R}^n .

Problem 7. Let (M, d) be a metric space, $A \subseteq M$, and $f : A \to \mathbb{R}$. For $a \in A'$, define

$$\liminf_{x \to a} f(x) = \lim_{r \to 0^+} \inf \left\{ f(x) \, \big| \, x \in B(a, r) \cap A \setminus \{a\} \right\},$$
$$\limsup_{x \to a} f(x) = \lim_{r \to 0^+} \sup \left\{ f(x) \, \big| \, x \in B(a, r) \cap A \setminus \{a\} \right\}.$$

Complete the following.

1. Show that both $\liminf_{x \to a} f(x)$ and $\limsup_{x \to a} f(x)$ exist (which may be $\pm \infty$), and

$$\liminf_{x \to a} f(x) \le \limsup_{x \to a} f(x) \,.$$

Furthermore, there exist sequences $\{x_n\}_{n=1}^{\infty}$, $\{y_n\}_{n=1}^{\infty} \subseteq A \setminus \{a\}$ such that $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ both converge to a, and

$$\lim_{n \to \infty} f(x_n) = \liminf_{x \to a} f(x) \quad \text{and} \quad \lim_{n \to \infty} f(y_n) = \limsup_{x \to a} f(x).$$

2. Let $\{x_n\}_{n=1}^{\infty} \subseteq A \setminus \{a\}$ be a convergent sequence with limit a. Show that

$$\liminf_{x \to a} f(x) \leq \liminf_{n \to \infty} f(x_n) \leq \limsup_{n \to \infty} f(y_n) \leq \limsup_{x \to a} f(x).$$

3. Show that $\lim_{x \to a} f(x) = \ell$ if and only if

$$\liminf_{x \to a} f(x) = \limsup_{x \to a} f(x) = \ell.$$

4. Show that $\liminf_{x \to a} f(x) = \ell \in \mathbb{R}$ if and only if the following two conditions hold:

- (a) for all $\varepsilon > 0$, there exists $\delta > 0$ such that $\ell \varepsilon < f(x)$ for all $x \in B(a, \delta) \cap A \setminus \{a\}$;
- (b) for all $\varepsilon > 0$ and $\delta > 0$, there exists $x \in B(a, \delta) \cap A \setminus \{a\}$ such that $f(x) < \ell + \varepsilon$.

Formulate a similar criterion for limsup and for the case that $\ell = \pm \infty$.

5. Compute the limit and limsup of the following functions at any point of \mathbb{R} .

(a)
$$f(x) = \begin{cases} 0 & \text{if } x \in \mathbb{Q}^{\complement}, \\ \frac{1}{p} & \text{if } x = \frac{q}{p} \text{ with } (p,q) = 1, q > 0, p \neq 0. \end{cases}$$

(b)
$$f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q}, \\ -x & \text{if } x \in \mathbb{Q}^{\complement}. \end{cases}$$

Proof. For r > 0, define $m, M : A' \to R^*$ by

$$m(r) = \inf \left\{ f(x) \mid x \in B(a, r) \cap A \setminus \{a\} \right\} \text{ and } M(r) = \sup \left\{ f(x) \mid x \in B(a, r) \cap A \setminus \{a\} \right\}.$$

We remark that it is possible that $m(r) = -\infty$ or $M(r) = \infty$. Note that m is decreasing and M is increasing in $(0, \infty)$.

1. By the monotonicity of m and M, $\lim_{r \to 0^+} m(r)$ and $\lim_{r \to 0^+} M(r)$ "exist" (which may be $\pm \infty$). Moreover, $m(r) \leq M(r)$ for all r > 0; thus $\lim_{r \to 0^+} m(r) \leq \lim_{r \to 0^+} M(r)$ so we conclude that

$$\liminf_{x \to a} f(x) = \lim_{r \to 0^+} m(r) \leq \lim_{r \to 0^+} M(r) = \limsup_{x \to a} f(x) \,.$$

Since $\liminf_{x \to a} f(x) = -\limsup_{x \to a} (-f)(x)$, it suffices to consider the case of the limit superior.

(a) If $\limsup_{x \to a} f(x) = \infty$, then for each $n \in \mathbb{N}$ there exists $0 < \delta_n < \frac{1}{n}$ such that

 $M(r) \ge n$ whenever $0 < r < \delta_n$.

By the definition of the supremum, for each $n \in \mathbb{N}$ there exists $x_n \in B\left(a, \frac{\delta_n}{2}\right) \cap A \setminus \{a\}$ such that $f(x_n) \ge n-1$.

(b) If $\limsup_{x \to a} f(x) = L$, then for each $n \in \mathbb{N}$ there exists $0 < \delta_n < \frac{1}{n}$ such that

$$|M(r) - L| < \frac{1}{n}$$
 whenever $0 < r < \delta_n$.

By the definition of the supremum, for each $n \in \mathbb{N}$ there exists $x_n \in B\left(a, \frac{\delta_n}{2}\right) \cap A \setminus \{a\}$ such that

$$L - \frac{1}{n} < f(x_n) < L + \frac{1}{n}$$

Since $\delta_n \to 0$ as $n \to \infty$, we find that $\{x_n\}_{n=1}^{\infty} \subseteq A \setminus \{a\}$ converges to a and $\lim_{n \to \infty} f(x_n) = \limsup_{x \to a} f(x)$.

2. It suffices to show the case of the limit inferior. Let $\{x_n\}_{n=1}^{\infty} \subseteq A \setminus \{a\}$ and $x_n \to a$ as $n \to \infty$. For every $k \in \mathbb{N}$, there exists $N_k > 0$ such that $0 < d(x_n, a) < \frac{1}{k}$ whenever $n \ge N_k$. W.L.O.G., we can assume that $N_k \ge k$ and $N_{k+1} > N_k$ for all $k \in \mathbb{N}$. By the definition of infimum,

$$m\left(\frac{1}{k}\right) \leqslant f(x_n) \quad whenever \quad n \ge N_k$$

which further implies that

$$m\left(\frac{1}{k}\right) \leqslant \inf_{n \ge N_k} f(x_n).$$

Note that $\lim_{r \to 0^+} m(r) = \lim_{k \to \infty} m(\frac{1}{k})$ and $\lim_{k \to \infty} \inf_{n \ge N_k} f(x_n) = \lim_{k \to \infty} \inf_{n \ge k} f(x_n)$ (the latter follows from the fact that $\{\inf_{n \ge N_k} f(x_n)\}_{k=1}^{\infty}$ is a subsequence of the "convergent" sequence $\{\inf_{n \ge k} f(x_n)\}_{k=1}^{\infty}$), we conclude that

$$\liminf_{x \to a} f(x) = \lim_{r \to 0^+} m(r) = \lim_{k \to \infty} m\left(\frac{1}{k}\right) \leq \lim_{k \to \infty} \inf_{n \geq N_k} f(x_n) = \lim_{k \to \infty} \inf_{n \geq k} f(x_n) = \liminf_{n \to \infty} f(x_n) = \lim_{n \to \infty} \inf_{n \geq k} f(x_n) = \lim_{n \to \infty} \inf_{n \to \infty} f(x_n) = \lim_{n \to \infty} \inf_{n \to \infty} f(x_n) = \lim_{n \to \infty} \inf_{n \to \infty} f(x_n) = \lim_{n \to \infty} \inf_{n \to \infty}$$

3. (\Rightarrow) Let $\varepsilon > 0$ be given. There exists $\delta > 0$ such that

$$|f(x) - \ell| < \varepsilon$$
 whenever $x \in B(a, \delta) \cap A \setminus \{a\}$.

Therefore,

$$\ell - \varepsilon < f(x) < \ell + \varepsilon$$
 whenever $x \in B(a, \delta) \cap A \setminus \{a\}$

which implies that

$$\ell - \varepsilon \leqslant m(\delta) \leqslant M(\delta) \leqslant \ell + \varepsilon$$

By the monotonicity of m and M, the inequality above implies that

$$\ell - \varepsilon \leqslant m(\delta) \leqslant m(r) \leqslant M(r) \leqslant M(\delta) \leqslant \ell + \varepsilon \quad \forall \, 0 < r < \delta \,.$$

Passing to the limit as $r \to 0^+$, we find that

$$\ell - \varepsilon \leq \liminf_{x \to a} f(x) \leq \limsup_{x \to a} f(x) \leq \ell + \varepsilon$$

Since $\varepsilon > 0$ is chosen arbitrary, we conclude that $\liminf_{x \to a} f(x) = \limsup_{x \to a} f(x) = \ell$.

- (\Leftarrow) Let $\{x_n\}_{n=1}^{\infty} \subseteq A \setminus \{a\}$ be a sequence with limit a. Then 2 and the assumption that $\liminf_{x \to a} f(x) = \limsup_{x \to a} f(x) = \ell$ imply that $\liminf_{n \to \infty} f(x_n) = \limsup_{n \to \infty} f(x_n) = \ell$. Therefore, $\lim_{n \to \infty} f(x_n) = \ell$.
- 4. (\Rightarrow) This direction is proved by contradiction.
 - (a) Suppose the contrary that there exists $\varepsilon > 0$ such that for each $n \in \mathbb{N}$, there exists $x_n \in B(a, \frac{1}{n}) \cap A \setminus \{a\}$ such that $f(x_n) \leq \ell \varepsilon$. Then $\{x_n\}_{n=1}^{\infty} A \setminus \{a\}$ and $\lim_{n \to \infty} x_n = a$; however,

$$\liminf_{n \to \infty} f(x_n) \leq \ell - \varepsilon < \ell = \liminf_{x \to a} f(x) \,,$$

a contradiction to 2.

(b) Suppose the contrary that there exist $\varepsilon > 0$ and $\delta > 0$ such that

$$f(x) \ge \ell + \varepsilon \qquad \forall x \in B(a, \delta) \cap A \setminus \{a\}.$$

Then $m(\delta) \ge \ell + \varepsilon$; thus the monotonicity of m implies that

$$\ell + \varepsilon \leq m(\delta) \leq m(r)$$
 whenever $0 < r < \delta$.

Passing to the limit as $r \to 0^+$, we conclude that

$$\ell + \varepsilon \leq \lim_{r \to 0^+} m(r) = \liminf_{x \to a} f(x) \,,$$

a contradiction.

(\Leftarrow) Let $\{x_n\}_{n=1}^{\infty} \subseteq A \setminus \{a\}$ be a sequence with limit a, and $\varepsilon > 0$ be given. Then (a) provides $\delta > 0$ such that $f(x) > \ell - \varepsilon$ whenever $x \in B(a, \delta) \cap A \setminus \{a\}$. For such $\delta > 0$, there exists N > 0 such that $0 < d(x_n, a) < \delta$ for all $n \ge N$. Therefore, if $n \ge N$, $f(x_n) > \ell - \varepsilon$ which implies that $\liminf_{n \to \infty} f(x_n) \ge \ell - \varepsilon$. Since $\varepsilon > 0$ is chosen arbitrary, we conclude that

 $\liminf_{n\to\infty} f(x_n) \ge \ell \text{ for every convergent sequence } \{x_n\}_{n=1}^{\infty} \subseteq A \setminus \{a\} \text{ with limit } a.$

On the other hand, using (b) we find that for each $n \in \mathbb{N}$, there exists $x_n \in B\left(a, \frac{1}{n}\right) \cap A \setminus \{a\}$ such that $f(x_n) < \ell + \frac{1}{n}$. Then $\liminf_{n \to \infty} f(x_n) \leq \ell$, and (i) further implies that $\liminf_{n \to \infty} f(x_n) = \ell$; thus we establish that there exists a convergent sequence $\{x_n\}_{n=1}^{\infty} \subseteq A \setminus \{a\}$ with limit a such that $\liminf_{n \to \infty} f(x_n) = \ell$.

By 1 and 2, we conclude that $\ell = \liminf f(x)$.

5. (a) $\liminf_{x \to a} f(x) = \limsup_{x \to a} f(x) = 0$ for all $a \in \mathbb{R}$.

(b)
$$\liminf_{x \to a} f(x) = -|a|$$
, $\limsup_{x \to a} f(x) = |a|$. In particular, $\lim_{x \to 0} f(x) = 0$.

Problem 8. Let (M,d) be a metric space, and $A \subseteq M$. A function $f : A \to \mathbb{R}$ is called *lower semi-continuous upper semi-continuous* at $a \in A$ if either $a \in A \setminus A'$ or $\lim_{x \to a} f(x) \ge f(a)$, $\lim_{x \to a} f(x) \le f(a)$, and is called

lower/upper semi-continuous on A if f is lower/upper semi-continuous at a for all $a \in A$.

- 1. Show that $f: A \to \mathbb{R}$ is lower semi-continuous on A if and only if $f^{-1}((-\infty, r])$ is closed relative to A. Also show that $f: A \to \mathbb{R}$ is upper semi-continuous on A if and only if $f^{-1}([r, \infty))$ is closed relative to A.
- 2. Show that f is lower semi-continuous on A if and only if for all convergent sequences $\{x_n\}_{n=1}^{\infty} \subseteq A$ and $\{s_n\}_{n=1}^{\infty} \subseteq \mathbb{R}$ satisfying $f(x_n) \leq s_n$ for all $n \in \mathbb{N}$, we have

$$f\left(\lim_{n\to\infty}x_n\right)\leqslant\lim_{n\to\infty}s_n$$
.

- 3. Let $\{f_{\alpha}\}_{\alpha \in I}$ be a family of lower semi-continuous functions on A. Prove that $f(x) = \sup_{\alpha \in I} f_{\alpha}(x)$ is lower semi-continuous on A.
- 4. Let A be a perfect set (that is, A contains no isolated points) and $f: A \to \mathbb{R}$ be given. Define

$$f^*(x) = \limsup_{y \to x} f(y)$$
 and $f_*(x) = \liminf_{y \to x} f(y)$.

Show that f^* is upper semi-continuous and f_* is lower semi-continuous, and $f_*(x) \leq f(x) \leq f^*(x)$ for all $x \in A$. Moreover, if g is a lower semi-continuous function on A such that $g(x) \leq f(x)$ for all $x \in A$, then $g \leq f_*$.

Proof. We first note that by 1, 2 and 4 of Problem 7,

 $f: A \to \mathbb{R}$ is lower semi-continuous at a

$$\Leftrightarrow (\forall \varepsilon > 0) (\exists \delta > 0) (x \in B(a, \delta) \cap A \Rightarrow f(x) > f(a) - \varepsilon)$$

$$\Leftrightarrow (\forall \{x_n\}_{n=1}^{\infty} \subseteq A) (\lim_{n \to \infty} x_n = a \Rightarrow \liminf_{n \to \infty} f(x_n) \ge f(a)).$$

$$(0.2)$$

We note that the first statement implies the second one because of 4(a) in Problem 7, the second statement implies the third one because of $x_n \in B(a, \delta) \cap A$ when $n \gg 1$, and the third statement implies the first one because of 1 in Problem 7.

(⇒) It suffices to prove the case for limit inferior since lim sup f(x) = -liminf(-f)(x). We note that E is closed relative to A if and only if E ∩ A is a closed set in the metric space (A, d). Therefore, a subset of E of A is closed relative to A if and only if every sequence {x_n}[∞]_{n=1} ⊆ E that converges to a point in A must also has limit in E. Let r ∈ ℝ and {x_n}[∞]_{n=1} be a sequence in E ≡ f⁻¹((-∞, r]) such that {x_n}[∞]_{n=1} converges to

a point $a \in A$. Then $f(a) \leq \liminf_{n \to \infty} f(x_n) \leq r$ which implies that $a \in f^{-1}((-\infty, r])$. (\Leftarrow) Let $a \in A$ and $\varepsilon > 0$ be given. Define $r = f(a) - \varepsilon$. Then $V = f^{-1}((r, \infty))$ is open relative

to A (since $f^{-1}((-\infty, r])$ is closed relative to A). Since $a \in V$, there exists $\delta > 0$ such that $B(a, \delta) \cap A \subseteq V$. This implies that

$$f(a) - \varepsilon < f(x) \qquad \forall x \in B(a, \delta) \cap A$$

Therefore, the equivalence (0.2) shows that f is lower semi-continuous at a.

2. (\Rightarrow) Let $\{x_n\}_{n=1}^{\infty}$ be a convergent sequence in A with limit $a, \{s_n\}_{n=1}^{\infty}$ be a real sequence with limit s, and $f(x_n) \leq s_n$ for all $n \in \mathbb{N}$. Suppose that f(a) > s. Let $\varepsilon = \frac{f(a) - s}{2}$. Since f is lower semi-continuous at a, $\liminf_{x \to a} f(x) \geq f(a)$; thus there exists $\delta > 0$ such that

$$f(a) - \varepsilon < f(x) \qquad \forall x \in B(a, \delta) \cap A$$

On the other hand, there exists N > 0 such that $x_n \in B(a, \delta) \cap A$ and $s_n < s + \varepsilon$ whenever $n \ge N$. Therefore, if $n \ge N$,

$$s_n < s + \varepsilon = f(a) - \varepsilon < f(x_n),$$

a contradiction.

(\Leftarrow) Let $a \in A$, and $\{x_n\}_{n=1}^{\infty} \subseteq A$ be a sequence with limit a. Let $\{x_{n_j}\}_{j=1}^{\infty}$ be a subsequence of $\{x_n\}_{n=1}^{\infty}$ such that $\lim_{j\to\infty} f(x_{n_j}) = \liminf_{n\to\infty} f(x_n)$. Define $s_j = f(x_{n_j})$. Then clearly $f(x_{n_j}) \leq s_j$ for all $j \in \mathbb{N}$; thus by assumption

$$f(a) \leq \lim_{j \to \infty} s_j = \liminf_{n \to \infty} f(x_n).$$

3. Let $a \in A \cap A'$ and $\{x_n\}_{n=1}^{\infty} \subseteq A \setminus \{a\}$ be a sequence with limit a. Then $f_{\alpha}(x_n) \leq f(x_n)$ for all $n \in \mathbb{N}$ and $\alpha \in I$. Since f_{α} is lower semi-continuous for each $\alpha \in I$, for $\alpha \in I$ we have

$$f_{\alpha}(a) \leq \liminf_{x \to a} f_{\alpha}(x) \leq \liminf_{x \to a} f(x)$$

The inequality above implies that

$$f(a) = \sup_{\alpha \in I} f_{\alpha}(a) \leq \liminf_{x \to a} f(x);$$

thus f is lower semi-continuous at a.