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Problem 1. A metric space (M, d) is said to be separable if there is a countable subset A which is

dense in M. Show that every sequentially compact set is separable.

Hint: Consider the total boundedness using balls with radius 1 for n e N.
n

Proof. Let K be a sequentially compact set in M. Then K is totally bounded; thus for each n € N

there exists a finite collection of points {xﬁ”), xé”), - 7955\7;3} c K such that

NINOR!
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Let A= {xgn) , xén), e ,xg\?z } Then A € K and A is countable since it is union of countably many
n=1
finite sets. Moreover, for each x € K and n € N, there exists 1 < j < N, such that x € B(xg ), 7);
n

thus for all € > 0, B(z,e) n A # J. Therefore, z € A, and this shows that A € K < A; thus A is

dense in K. o
Problem 2. Let (M, d) be a metric space.

1. Show that if M is complete and A is a totally bounded subset of M, then cl(A) is sequentially

compact.

2. Show that M is complete if and only if every totally bounded sequence has a convergent

subsequence.

Proof. 1. Let r > 0 be given. Since A is totally bounded, there exist x1,z2, -, x5y € M such that
N r
]:

Note that for all x € M, B(x, %) cB [x, %] which further implies that

cl(B(x,i))gB[x,f] < B(z,r) VeeM.
Therefore, (x) and Problem 2 in Exercise 8 imply that

Acaf B, D)= Jel(B (s ) e U B

Jj=1

This shows that A is totally bounded. By the fact that (M, d) is complete, A is complete; thus

A is sequentially compact.



2. “=7 Let {x,}°_; be a totally bounded subsequence. Define A = {x,, | n € N}. Then A is totally
bounded, and (part of the proof of 1 shows that A is totally bounded); thus by the fact that
M is complete 1 implies that A is sequentially compact. Since {z,}*_, is a sequence in A, we

find that there exists a convergent subsequence of {x,}*_, (that converges to a limit in A).

“<" By Proposition 2.58 in the lecture note it suffices to show that every Cauchy sequence is
totally bounded.

Let {z,})°; be a Cauchy sequence, and r > 0 be given. Then there exists N > 0 such that

d(xy, x,) < r whenever n,m > N. In particular, d(x,,xy) < r for all n > N which further

n=1

bounded. o

N
implies that {x,} y < B(z,,r). Therefore, {z,};°; < |J B(zy,,r); thus {z,}r_, is totally
n=1

Alternative proof of 2 of Problem E
“=" Let {z,}2_, be a totally bounded subsequence. Define A = {z,,|n € N}. Then A is totally
bounded; thus by the fact that M is complete 1 implies that A is sequentially compact. Since
{z,}%_, is a sequence in A, we find that there exists a convergent subsequence of {z,}%_, (that
converges to a limit in A).
“<" By Proposition 77 it suffices to show that every Cauchy sequence is totally bounded.

Let {z,}°_; be a Cauchy sequence. If {z,}° is not totally bounded, there exists r > 0 such that
no finite collection of open balls with radius r can be a cover of {z,,}>° ;. Let n; = 1, and ny be the least
integer satisfying x,, ¢ B(z,,,r), and n3 be the least integer which is outside B(z,,,r) U B(zp,, ).

We continue this process and obtain n; < ny < ng < --- such that
k
(a) nu=1; (b) ., ¢ U B(xy,,r) for all k e N.
j=1

However, this implies that there exists no N > 0 such that d(z,,z,) < r for all n,m > N, a

contradiction to that {z,}> ; is a Cauchy sequence. D

Problem 3. Let {z;};>; be a convergent sequence in a metric space, and x — = as k — . Show

that the set A = {1, 29, -+ ,} U {2} is sequentially compact.
Proof. See Example 3.57 in the lecture note. O

Problem 4. 1. Show the so-called “Finite Intersection Property”:

Let (M,d) be a metric space, and K be a subset of M. Then K is compact if
and if for any family of closed subsets {F,}qcs, we have

Kmﬂ&#@

ael

whenever K N ﬂ F, # & for all J < [ satisfying #.J < c0.

aeJ




2. Show the so-called “Nested Set Properpty”:

Let (M,d) be a metric space. If {K,}> | is a sequence of non-empty compact

sets in M such that K; 2 K for all j € N, then there exists at least one point

a0
in () Kj; that is,
j=1

K +@.

j=1

Proof. 1. Suppose the contrary that K n ()
satisfying that

F, = ¢ for some family of closed subsets {F,}aer

ael

Kn ﬂ F, # & for all J < [ satisfying #J < 0.

aeJ

Then .
Kc (ﬂFa) = | L.
ael ael
For each a € I, F, is closed; thus the statement above shows that {F‘},c; is an open cover of
K; thus the compactness of K provides a finite collection F,,, ---, F,

ay, Where o € I for all
1 < j < N, such that

N N c
KelJr, = (NF) -
=1 j=1
N
which implies that K n [ F,, = &, a contradiction.
j=1

2. Let K = K;, and Fj = Kj for all j € N. Then for any finite subset J of N,

KmﬂF}‘:KmaxJ#@;

jedJ
thus 1 implies that K n () F; # &. o
jeN
Problem 5. Let (M, d) be a metric space, and M itself is a sequentially compact set. Show that if
a0
{Fi}7, is a sequence of closed sets such that int(F}) = &, then M\ |J F}, # .
k=1

Proof. Let U, = F,E Since Fk = ¢ and F}, is closed, 0 F), = E\Fk = F},. Therefore, if x € F}, then
x € Uy, while if x ¢ F},, then x € Uy,. In other words, every point « € M belongs to Uy, so that we have
U, € M < U, for all ke N; that is, Uy, is dense in M for all k € N.

0 ¢]
Claim: () Uy is dense in M.
k=1

Q0
Proof of claim: It suffices to show that B(z,7) n (| Uy # & for all x € M and r > 0 (for this
shows that every z € M is in the closure of (1) Uy).
k=1
Let z € M and r > 0 be given. Since U, is dense in M, B(z,r) n Uy # &. Let x1 € B(x,r) n Uy.

Since B(z,r) n U; is open, there exists r; > 0 such that B(z,2r;) € B(x,r) n U;. Since U, is dense



in M, B(zy,m) nUy # . Let x9 € B(x1,7m1) n Us. By the fact that B(xq,71) n Us is open, there
exists ro > 0 such that B(xq,2ry) © B(z1,7m1) N Uy. Continuing this process, we obtain sequences

{zp}, in M and {r;}{, of positive numbers such that
B(zy, 2ry) € B(ag_1,715-1) N Uy VkeN, where rg = x and ro = r.

Since Blxy, ry| is a closed subset of a (sequentially) compact set M, Blxy, i) is itself a (sequentially)

compact set. Moreover,
B[a:k,rk] - B(.]Zk, 27'k) c B(xk:—lark—l) N Uk c B[l’k_l,rk_l] ,

so {Blzk, ri|}r~; is a nested sequence of compact sets. By the nested set property (2 of Problem @),

0
(| Blzk, k] # &. Therefore, by the fact that
k=1

(x,7) mﬂUk— (x,r) mUlmﬂUkDB(xl,Zrl ﬂUkDBxl,rl ﬂUk

k=2 k=2

) B[ZL’l,Tl] N B(xl,rl) N ﬂ Uk ) B[ZL’l,Tl] N B(xl,rl) N U2 N ﬂ Uk

k=2 k=3
0
2 Blzy, ] 0 Blza, 2] 0 ﬂUk ﬂ [k, 7]
e @]
Therefore, every ball intersects [ U which concludes the claim. o

k=1
Having established the claim, the desired conclusion follows from the fact that a dense subset of

a non-empty metric space cannot be empty. o

Problem 6. Let M = {(z,y) € R?|2? + y*> < 1} with the standard metric

d((z1,91), (22,92) = V(01 — 22)? + (31 — 32)?

Show that A € M is sequentially compact if and only if A is closed.

Problem 7. 1. Let {zx};2; < R be a sequence in (R,| - |) that converges to = and let Ay =
a0

{Zh, Tps1, -~ }. Show that {x} = () Ag. Is this true in any metric space?
k=1

2. Suppose that {K; } ° , is a sequence of comapct non-empty sets satisfying the nested set prop-
erty; that is, K; 2 Kj 4, and diam(K;) — 0 as j — o0, where
diam(K;) = sup {d(z,y) |z,y € K;}.
0
Show that there is exactly one point in [ Kj.
j=1

Proof. 1. By 2, it suffices to show that Ay is non-empty compact set for all k € N and {A4;}*, is a

nested set satisfying diam(Ay) — 0 as k — c0. Note that in class we have shown that the set



11 1
{0} U {1, 3 g } is compact, and similar proof shows that A U {z} is compact; thus

Y

Ay, = Ay, U {x}. Therefore, {4}, is a nested set.

Let € > 0 be given. Since {x}2, converges to z, there exists N > 0 such that d(zy,z) < %
whenever k£ > N. Then 5
d(y,z) < 35 Vy,z € Ay;
thus for j > N,
diam(K;) < % <e

which implies that diam(K;) — 0 as j — o0.

a0 a0

2. First, by the nested set property, (] K; # . Assume that z,y € (]| K;. Then z,y € K; for
j=1 j=1

all j € N; thus
0 < d(z,y) < diam(Kj) VjeN.

By the assumption that diam(K;) — 0 as j — o0, we conclude that d(z,y) = 0; thus by the

property of the metric, x = y. o

Problem 8. Let (M, d) be a metric space, and A be a subset of M satisfying that every sequence
in A has a convergent subsequence (with limit in M). Show that A is pre-compact.
Remark: Together with Remark 3.61 in the lecture note, we conclude that a subset A is pre-compact

if and only if A has the property that “every sequence in A has a convergent subsequence”.

Proof. Let A be a subset of M satisfying that every sequence in A has a convergent subsequence,

and {7,}%_, be a sequence in A. Since A is the collection of limit points of A, each x,, is a limit point
. 1 :
of A; thus for each n € N there exists y,, € A such that d(z,,y,) < - Using the property of A, there

exists a convergent subsequence {y, }7, of {y,},_, with limit y. By the fact that {y,},_, = A, we

must have y € A. Next we show that lim Tn, =Y.
j—00

1
Let € > 0 be given. Choose K > 0 so that I < g. Moreover, since {yy, };?Ozl converges to y, there
exists J > 0 such that
€
d(Yn,,y) < 5 whenever j = J.

Let N = max{K,J}. Then if j > N, we must have

1 1 € €
d(Tp;, Yn;) < n—] < ; < 2 and  d(Yn,,y) < 2
so that
d(n,,y) < d(@n; yn,) + d(yn,,y) <= whenever j > N e

Problem 9. Let (M, d) be a metric space, and A < M. Show that A is disconnected (not connected)
if and only if there exist non-empty closed set F} and F; such that

1.AﬁF1ﬁF2:®; ZAQFl#@, 3AﬂF27’5@, 4.A§F1UF2.



Proof. By definition, A is disconnected if (and only if) there exist non-empty open set U; and Us
such that

(a) AnUnUs=g, bD)A~nU1#T, (c)AnUs#g, (d)AcU ul,.

Therefore, A is disconnected if and only if there exist non-empty closed set Fy = U and Fy, = Uy
such that

(i) AnFinFs=0, (i)AnF#@, (ii)AnF;#g, (iv)AcFuF;.

Note that (i) above is equivalent to that A < Fy u F,, while (iv) above is equivalent to that A N
Fy n Fy, = . Moreover, note that if A, B, C are sets satisfying An BnC = ¢, An B # & and
AnC # O, then

B+ANBcANCY and @g#AnCc An B°.

Therefore, (a), (b) and (c) above imply 2 and 3 above, while (i) together with 2 and 3 above implies
that (b) and (c); thus we establish that A is disconnected if and only if there exist non-empty closed
sets F} and F, such that

Problem 10. Prove that if A is connected in a metric space (M,d) and A € B < A, then B is

connected.

Proof. Suppose the contrary that B is disconnected. Then Problem E implies that there exist two
closed set F; and F, such that

1.BﬁF1ﬁF2:@; QBQF175@, SBKWFQ#@, 4. B Fi1 U F;.

Define Ay = FinAand Ay = Fo,n A. Then A = A, u Ay. If Ay = J, then Ay = A which, together
with 3 of Problem 6 in Exercise 7, implies that

BQA:AQQAﬂFQZAﬂFQ

which implies that B = B n F,. The fact that B n I} n Fy, = & then implies that B n F} <
(Bn FQ)C = B% thus Bn Fy = J, a contradiction. Therefore, A; # . Similarly, A, # . However,
3 of Problem 6 in Exercise 7 implies that

Al(WAQ:AlﬁCl(FQﬂA)gAlﬁﬁzﬁA:AlﬁFggBﬁFlﬁFQIQ

and
AQ(\AI:AQQCI(FlﬁA)gAQﬁplﬂA:AgﬁFlgBﬁFgﬁFlzg,

a contradiction to the assumption that A is connected. O

Problem 11. Let (M, d) be a metric space, and A € M be a subset. Suppose that A is connected

and contain more than one point. Show that A < A’.



Proof. Suppose the contrary that there exists x € A\A’. Since A\ A’ is the collection of isolated point
of A, there exists r > 0 such that B(z,r) n A = {z}. Let U = B(z,r) and V = Bz, g]c Then

1. AnUNV =g
2. AnU={z} # .
3. AnV 2 A\{z} # O since A contains more than one point.
4. AnM=UuV.
Therefore, A is disconnected, a contradiction. O

Problem 12. Show that the Cantor set C' defined in Problem 9 of Exercise 8 is totally disconnected;
that is, if z,y € C, and = # y, then x € U and y € V for some open sets U, V separate C.

Proof. 1t suffices to show that for every =,y € C, x < vy, there exists z € C* and z < z < y. Note

1 a0
that there exists N > 0 such that |z — y| < 3 foralln > N. If C = () E,, where E, is given in
n=1
1
T thus if n > N, the
interval [z,y| is not contained in any interval of E,. In other words, there must be z € (x,y) such

Problem 9 of Exercise 8. Then the length of each interval in F),, has length

that z € EC. Since E' < C*, we establish the existence of x < z < y such that z € C. o

Problem 13. Let F) be a nest of connected compact sets (that is, Fy.; € Fj, and F} is connected
0

for all k € N). Show that (] Fj is connected. Give an example to show that compactness is an
k=1
essential condition and we cannot just assume that Fj, is a nest of closed connected sets.

o0

Proof. Let K = (] Fy. Then the nested set property implies that K # . Suppose the contrary
k=1

that there exist open sets U and V' such that

LKAUNV =g, 2 KnU#g, 3. KnV+@, 4 KcUUV.

Define K1 = K nU' and K, = K n V. Then Ky, K, are non-empty closed sets (Check!!!) of K
such that
K:KluKQ and KlﬁKQZ@.

In other words, K is the disjoint union of two compact subsets K; and K,. By (5) of Problem 7, there
exists 1 € Ky and x5 € Ky such that d(zq,x2) = d(Ky, K3). Since K1 n Ky = &, g9 = d(21, x9) > 0;
thus the definition of the distance of sets implies that

g0 < d(z,vy) Vee Ki,ye K,.

Define Oy = | B([L’, %0) and O, = | B(y, —0). Note that

&
€K1 yeKo 3

KlgOl, Ky <€ Oy and OlﬂOQZ@.

Claim: There exists n € N such that F,, € O; u Os.



Proof. Suppose the contrary that for each ng € N, F,,; € O; U Os. Then
F,nOinOS=F,n(000,)" # & VneN.

Since O; and Oy are open, F,, n O% n Of is a nest of non-empty compact sets; thus the nested set

property shows that

06}
KnObnOf = ﬂ(anOEmOg) #
n=1
thus K &€ O; U O,, a contradiction. o

Having established the claim, by the fact that Ky < F,, n Oy and Ky < F,,, n O4, we find that
Fo,nO1#J and Fo,n Oy # .

Together with the fact that F,, n Oy n Oy = J and F,, < O; u O,, we conclude that £, is
disconnected, a contradiction.

The compactness of F), is crucial to obtain the result or we will have counter-examples. For
example, let F, = R?\(—k,k) x (=1,1). Then clearly F}, is closed but not bounded (hence Fj,

is not compact). Moreover, Fy 2 Fjiq for all £ € N; thus {F;}{, is a nest of sets. However,
a0

Fi, = R:\R x (—1,1) which is disconnected and is the union of two disjoint closed set R x [1, o0)
k=1

Qa0
and R x (—oo0, —1]. Therefore, if {F},}?_, is a nest of closed connected sets, it is possible that (1) Fj
k=1
is disconnected. O
Problem 14. Let {A}}2, be a family of connected subsets of M, and suppose that A is a connected

subset of M such that A, " A # ¢ for all k € N. Show that the union ( U Ak) u A is also connected.
keN

Proof. By the induction argument, it suffices to show that if A and B are connected sets and
An B # &, then A U B is connected. Suppose the contrary that there exist open sets U and
V' such that

L (AUB)nUNV =g,

(4uB)
2. (AUB)nU + &,
3. (AUB) NV # 3,

)

4. (AUB cUuV.

Note that 1 and 4 implies that An U nV = @ and A <€ U u V; thus by the connectedness of A,
either AnU = For AnV = @. W.L.O.G., we assume that A n U = J so that A < V. Then
1 implies that BN U n'V = &, 2 implies that B n U # J, and 4 implies that B € U u V. Next
we show that B n'V # & to reach a contradiction (to that B is connected). Suppose the contrary
that BNV = . Then 3 implies that An B A=AnV # @sothat BNV 2 An B # J, a

contradiction. o



Problem 15. Let A, B < M and A is connected. Suppose that A n B # & and A B® # . Show
that An 0B # (.

Proof. Suppose the contrary that A n 0B = @. Let U = int(B) and V = int(B). If B = (&,
then 0B = B 2 B; thus the assumption that A n B # ¢ implies that A n 0 B # . Similarly, if
int(B%) = ¢, then An 0B # .

Now suppose that U and V are non-empty open sets. If z ¢ U UV, then z € 0 B; thus (UL V)t <
0B and the assumption that A n 0 B = (J further implies that A < U u V. Moreover, U n'V = (J;
thus AnU nV = &. Now we prove that AnU # & and A n'V # J to reach a contradiction.

Suppose the contrary that AnU = . Then AnB < AnB = An(UudB) = &, a contradiction.
Therefore, AnU = . Similarly, if AnV = &, AnB® € AnB® = An(VUédB®) = An(VudB) = &,

a contradiction. o

Problem 16. Let (M, d) be a metric space and A be a non-empty subset of M. A maximal connected

subset of A is called a connected component of A.
1. Let a € A. Show that there is a unique connected components of A containing a.

2. Show that any two distinct connected components of A are disjoint. Therefore, A is the disjoint

union of its connected components.
3. Show that every connected component of A is a closed subset of A.

4. If Ais open, prove that every connected component of A is also open. Therefore, when M = R",

show that A has at most countable infinite connected components.

5. Find the connected components of the set of rational numbers or the set of irrational numbers
in R.

Proof. 1. Let .% be the family % = {C’ c A | x e C and C is connected}. We note that % is not

empty since {z} € .#. Let B= |J C. It then suffices to show that B is connected (since if so,
Ce7F
then it is the maximal connected subset of A containing z).

Claim: A subset A < M is connected if and only if every continuous function defined on A

whose range is a subset of {0, 1} is constant.

Proof. “=" Assume that A is connected and f : A — {0, 1} is a continuous function, and § =
1/2. Suppose the contrary that f~'({0}) # & and f~'({1}) # &. Then A= f~((—4,9))
and B = f~}((1—4,1+6)) are non-empty set. Moreover, the continuity of f implies that
A and B are open relative to A; thus there exist open sets U and V' such that

fH(=68)=UnA and A1 =6,1+68)=VNnA.

Then
(1) AU AV = f1(=6,6) n [ 1= 0,1+6) = &,



(2) AnU# Jand AnV # &,
(3) A< U vV since the range of f is a subset of {0, 1} ;

thus A is disconnect, a contradiction.

“<"” Suppose the contrary that A is disconnected so that there exist open sets U and V' such
that

(1) AnUnV =g, 2AnU#g, B)AnV £y, (A AcULV.
Let f: A — R be defined by

fz) = 0 ifzeAnU,
V=11 ifzecAnV.

We first prove that f is continuous on A. Let a € A. Thenae AnU orae AnV.
Suppose that a € A n U. In particular a € U; thus the openness of U provides r > 0 such
that B(a,r) < U. Note that if x € B(a,r) n A, then z € A < U; thus

|f(x) = fla)]=0 VzeB(ar)nA

which shows the continuity of f at a. Similar argument can be applied to show that f is

continuous at ac An V. o

Now let f : B — {0,1} be a continuous function. Let y € B. Then y € C for some C € Z.
Since C' is a connected set, f: C'— {0, 1} is a constant; thus by the fact that z € C', we must
have f(x) = f(y). Therefore, f(y) = f(x) for all y € B; thus f : B — {0, 1} is a constant. The

claim then shows that B is connected.

. By Problem , the union of two overlapping connected sets is connected; thus distinct con-

nected components of A are disjoint.
. Let C' be a connected component of A.

Claim: C n A is connected.

Proof. Suppose the contrary that there exist open sets U and V' such that
(1) CnAnUnV =g, 2)CnAnU#T, B)CnAnV 2y, A)CnAcUUV.

Note that (1) and (4) implies that C " U nV = @ and C < U UV since C < C n A. If
C nU = &, then C < U’ thus the closedness of U’ implies that C' < U’ which shows that
CnANU = &, a contradiction. Therefore, C nU # . Similarly, C "V # &, so we establish

that C' is disconnected, a contradiction. =

Having established that C' n A is connected, we immediately conclude that C' = C' n A since

C < C n A and C is the largest connected component of A containing points in C.



4. Suppose that A is open and C' is a connected component of A. Let x € C. Then x € A;
thus there exists r > 0 such that B(z,r) < A. Note that B(z,r) is a connected set and
B(z,r) nC 2 {z} # . Therefore, Problem [14 implies that B(x,r) u C is a connected subset
of A containing x. Since C' is the largest connected subset of A containing x, we must have
B(z,r)u C = C; thus B(z,r) < C.

If M = R"™, then each connected component contains a point whose components are all rational.

Since Q™ is countable, we find that an open set in R™ has countable connected components.

5. In (R, | |) every connected set is an interval or a set of a single point. Since Q and

Q" do not contain any intervals, the connected component of Q and Q° are points. =



