Exercise Problem Sets 7

Oct. 28. 2022

Problem 1. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{x_{n}\right\}_{n=1}^{\infty}$ be two sequences of real numbers, and $\left|x_{n}-x_{n+1}\right|<a_{n}$ for all $n \in \mathbb{N}$. Show that $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges if $\sum_{n=1}^{\infty} a_{n}$ converges.
Proof. First we note that if $n>m$,

$$
\begin{aligned}
\left|x_{n}-x_{m}\right| & =\left|x_{n}-x_{n-1}+x_{n-1}-x_{n-2}+\cdots+x_{m+1}-x_{m}\right| \\
& \leqslant\left|x_{n}-x_{n-1}\right|+\left|x_{n-1}-x_{n-2}\right|+\cdots+\left|x_{m+1}-x_{m}\right| \\
& \leqslant a_{n-1}+a_{n-2}+\cdots+a_{m}=\sum_{k=m}^{n-1} a_{k} .
\end{aligned}
$$

Let $\varepsilon>0$ be given. Since $\sum_{k=1}^{\infty} a_{k}$ converges, the Cauchy criterion implies that there exists $N>0$ such that

$$
\left|\sum_{k=n}^{n+p} a_{k}\right|=\left|a_{n}+a_{n+1}+\cdots+a_{n+p}\right|<\varepsilon \quad \text { whenever } \quad n \geqslant N \text { and } p \geqslant 0 .
$$

Therefore, if $n>m \geqslant N$, by the fact $a_{k}>0$ for all $k \in \mathbb{N}$, we have

$$
\left|x_{n}-x_{m}\right| \leqslant \sum_{k=m}^{n-1} a_{k}<\varepsilon
$$

This implies that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence in \mathbb{R}. By the completeness of $\mathbb{R},\left\{x_{n}\right\}_{n=1}^{\infty}$ converges.

Problem 2. Let $\sum_{k=1}^{\infty} a_{k}$ be a conditionally convergent series. Show that $\sum_{k=1}^{\infty}\left[1+\operatorname{sgn}\left(a_{k}\right)\right] a_{k}$ and $\sum_{k=1}^{\infty}\left[1-\operatorname{sgn}\left(a_{k}\right)\right] a_{k}$ both diverge. Here the sign function sgn is defined by

$$
\operatorname{sgn}(a)=\left\{\begin{array}{cl}
1 & \text { if } a>0 \\
0 & \text { if } a=0 \\
-1 & \text { if } a<0
\end{array}\right.
$$

Proof. Claim: Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ and $\left\{y_{n}\right\}_{n=1}^{\infty}$ be sequences of real numbers. If $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges and $\left\{y_{n}\right\}_{n=1}^{\infty}$ diverges, then $\left\{x_{n} \pm y_{n}\right\}_{n=1}^{\infty}$ diverges.

To see the claim, suppose the contrary that $\left\{x_{n}+y_{n}\right\}_{n=1}^{\infty}$ converges. Then Theorem 1.40 in the lecture note implies that $\left\{x_{n}+y_{n}-x_{n}\right\}_{n=1}^{\infty}$ converges, which contradicts the assumption that $\left\{y_{n}\right\}_{n=1}^{\infty}$ diverges. Similarly, $\left\{x_{n}-y_{n}\right\}_{n=1}^{\infty}$ also diverges.

Let $S_{n}=\sum_{k=1}^{n} a_{k}$ and $T_{n}=\sum_{k=1}^{n}\left|a_{k}\right|$. Then $\left\{S_{n}\right\}_{n=1}^{\infty}$ converges but $\left\{T_{n}\right\}_{n=1}^{\infty}$ diverges. Therefore, the claim above shows that $\left\{S_{n} \pm T_{n}\right\}_{n=1}^{\infty}$ diverges. By the fact that $|a|=\operatorname{sgn}(a) a$ for all $a \in \mathbb{R}$, we have

$$
S_{n} \pm T_{n}=\sum_{k=1}^{n}\left(a_{k} \pm\left|a_{k}\right|\right)=\sum_{k=1}^{n}\left[1 \pm \operatorname{sgn}\left(a_{k}\right)\right] a_{k}
$$

so we conclude the desired result.

Problem 3. Let $\left\{a_{k}\right\}_{k=1}^{\infty} \subseteq \mathbb{R}$ ba a sequence. A series $\sum_{k=1}^{\infty} b_{k}$ is said to be a rearrangement of the series $\sum_{k=1}^{\infty} a_{k}$ if there exists a rearrangement π of \mathbb{N}; that is, $\pi: \mathbb{N} \rightarrow \mathbb{N}$ is bijective, such that $b_{k}=a_{\pi(k)}$.

1. Show that if $\sum_{k=1}^{\infty} a_{k}$ converges absolutely, then any rearrangement of the series $\sum_{k=1}^{\infty} a_{k}$ converges and has the value $\sum_{k=1}^{\infty} a_{k}$.
2. Show that if $\sum_{k=1}^{\infty} a_{k}$ is conditionally convergent, then for each $r \in \mathbb{R}$, there exists a rearrangement $\sum_{k=1}^{\infty} a_{\pi(k)}$ of the series $\sum_{k=1}^{\infty} a_{k}$ such that $\sum_{k=1}^{\infty} a_{\pi(k)}=r$.

Proof. 1. Suppose that $\sum_{k=1}^{\infty} a_{k}$ is an absolutely convergent series with limit a, and $\pi: \mathbb{N} \rightarrow \mathbb{N}$ is a rearrangement of \mathbb{N}. Let $\varepsilon>0$ be given. Then there exists $N>0$ such that

$$
\left|\sum_{k=1}^{n} a_{k}-a\right|<\frac{\varepsilon}{2} \quad \text { and } \quad \sum_{k=n+1}^{\infty}\left|a_{k}\right|<\frac{\varepsilon}{2} \quad \text { whenever } \quad n \geqslant N .
$$

Choose $K>0$ such that $\pi(n)>N$ if $n \geqslant K$. In fact, $K=\max \left\{\pi^{-1}(1), \cdots, \pi^{-1}(N)\right\}+1$ suffices the purpose. Then $K \geqslant N$ and if $n \geqslant K, \pi(\{1,2, \cdots, n\}) \supseteq\{1,2, \cdots, N\}$. Therefore, if $n \geqslant K$,

$$
\left|\sum_{k=1}^{n} a_{\pi(k)}-a\right| \leqslant\left|\sum_{k=1}^{n} a_{\pi(k)}-\sum_{k=1}^{N} a_{k}\right|+\left|\sum_{k=1}^{N} a_{k}-a\right| \leqslant \sum_{k=N+1}^{\infty}\left|a_{k}\right|+\frac{\varepsilon}{2}<\varepsilon
$$

which implies that $\sum_{k=1}^{\infty} a_{\pi(k)}=a$.
2. Suppose that $\sum_{k=1}^{\infty} a_{k}$ is conditionally convergent. Let $\left\{a_{k_{j}}\right\}_{j=1}^{\infty}$ denote the subsequence of $\left\{a_{k}\right\}_{k=1}^{\infty}$ so that $a_{k_{j}} \geqslant 0$ for all $j \in \mathbb{N}$ and $a_{k}<0$ if $k \in \mathbb{N} \backslash\left\{k_{1}, k_{2}, \cdots\right\}$. In other words, $\left\{a_{p_{j}}\right\}_{j=1}^{\infty}$ is the maximal subsequence of $\left\{a_{k}\right\}_{k=1}^{\infty}$ with non-negative terms. Let $\left\{a_{n_{j}}\right\}_{j=1}^{\infty}$ be the maximal subsequence of $\left\{a_{k}\right\}_{k=1}^{\infty}$ with negative terms. Then

$$
\sum_{j=1}^{\infty} a_{p_{j}}=\infty \quad \text { and } \quad \sum_{j=1}^{\infty} a_{n_{j}}=-\infty
$$

Let $r \in \mathbb{R}$ be given, and use the notation $\sum_{j=1}^{0}$ to denote summing nothing. Define $k_{0}=0$. Choose $k_{1} \in \mathbb{N}$ be the unique natural number so that $\sum_{j=1}^{k_{1}-1} a_{p_{j}}<r$ but $\sum_{j=1}^{k_{1}} a_{p_{j}}>r$. Since $\sum_{j=1}^{\infty} a_{n_{j}}=-\infty$, there exists a unique $k_{2} \in \mathbb{N}$ such that $\sum_{j=1}^{k_{1}} a_{p_{j}}+\sum_{j=1}^{k_{2}-1} a_{n_{j}}>r$ but $\sum_{j=1}^{k_{1}} a_{p_{j}}+\sum_{j=1}^{k_{2}} a_{n_{j}}<r$. We continue this process, and obtain a sequence $\left\{k_{\ell}\right\}_{\ell=0}^{\infty}$ such that for each $\ell \in \mathbb{N}$,
(a) $\sum_{j=1}^{k_{2 \ell-1}-1} a_{p_{j}}+\sum_{j=1}^{k_{2 \ell-2}} a_{n_{j}}<r$.
(b) $\sum_{j=1}^{k_{2 \ell-1}} a_{p_{j}}+\sum_{j=1}^{k_{2 \ell-2}} a_{n_{j}}>r$.
(c) $\sum_{j=1}^{k_{2 \ell-1}} a_{p_{j}}+\sum_{j=1}^{k_{2 \ell}-1} a_{n_{j}}>r$.
(d) $\sum_{j=1}^{k_{2 \ell-1}} a_{p_{j}}+\sum_{j=1}^{k_{2 \ell}} a_{n_{j}}<r$.

We then obtain a permutation of $\left\{a_{n}\right\}_{n=1}^{\infty}$:

$$
\underbrace{a_{p_{1}}, \cdots, a_{p_{k_{1}}}}_{k_{1} " \geqslant 0 \text { " terms }}, \underbrace{a_{n_{1}}, \cdots, a_{n_{k_{2}}}}_{k_{2} \text { " }<\text { " t trms }}, \underbrace{a_{p_{k_{1}+1}}, \cdots, a_{p_{k_{3}}}}_{k_{3} \text { " } \geqslant 0 \text { " terms }}, \underbrace{a_{n_{k_{2}}+1}, \cdots, a_{n_{k_{4}}}}_{k_{4} "<0 \text { " t trms }}, \cdots .
$$

Denote the permutation above by $\left\{a_{\pi(n)}\right\}_{n=1}^{\infty}$; that is, $\pi(1)=p_{1}, \cdots, \pi\left(k_{1}\right)=p_{k_{1}}, \pi\left(k_{1}+1\right)=n_{1}$, $\cdots, \pi\left(k_{1}+k_{2}\right)=n_{k_{2}}$, and so on. Next we show that $\sum_{k=1}^{\infty} a_{\pi(k)}=r$.
Let $\varepsilon>0$ be given, and define $S_{n}=\sum_{k=1}^{n} a_{\pi(k)}$. Since $\sum_{n=1}^{\infty} a_{n}$ converges, $\lim _{n \rightarrow \infty} a_{n}=0$; thus there exists $N>0$ such that $\left|a_{n}\right|<\varepsilon$ for all $n \geqslant N$. By the construction of $\left\{k_{\ell}\right\}_{\ell=1}^{\infty}$,

$$
\left|S_{n}-S_{n-1}\right|=\left|a_{\pi(n)}\right|<\varepsilon \quad \text { whenever } \quad n \geqslant k_{1}+k_{2}+\cdots+k_{N} .
$$

This implies that $S_{n} \in(r-\varepsilon, r+\varepsilon)$ whenever $n \geqslant k_{1}+k_{2}+\cdots+k_{N}$. Therefore,

$$
\left|\sum_{k=1}^{n} a_{\pi(k)}-r\right|<\varepsilon \quad \text { whenever } \quad n \geqslant k_{1}+k_{2}+\cdots+k_{N}
$$

which shows that $\sum_{k=1}^{\infty} a_{\pi(k)}=r$.
Problem 4. Consider the function $f(x)=\sum_{k=1}^{\infty} \frac{\sin (k x)}{k}$.

1. Find the domain of f.
2. Show that for each $\varepsilon>0$ and $0<\delta<\pi$, there exists $N>0$ and N depends only on ε and δ but is independent of x, such that

$$
\left|\sum_{k=n}^{n+p} \frac{\sin (k x)}{k}\right|<\varepsilon \quad \forall n \geqslant N, p \geqslant 0 \text { and } x \in[\delta, 2 \pi-\delta] .
$$

Proof. Let $S_{n}(x)=\sum_{k=1}^{n} \sin (k x)$.

1. (a) If $x=2 n \pi$ for some $n \in \mathbb{Z}($ or $x=0(\bmod 2 \pi))$, then $S_{n}(x)=0$ for all $n \in \mathbb{N}$; thus for each $x=0(\bmod 2 \pi),\left\{S_{n}(x)\right\}_{n=1}^{\infty}$ is bounded by 1 .
(b) If $x \neq 2 n \pi$ for all $n \in \mathbb{Z}($ or $x \neq 0(\bmod 2 \pi))$, then

$$
\begin{aligned}
2 \sin \frac{x}{2} S_{n}(x) & =\sum_{k=1}^{n} 2 \sin \frac{x}{2} \sin (k x)=\sum_{k=1}^{n} \cos \left(k-\frac{1}{2}\right) x-\cos \left(k+\frac{1}{2}\right) x \\
& =\cos \frac{x}{2}-\cos \left(n+\frac{1}{2}\right) x
\end{aligned}
$$

which implies that

$$
\left|S_{n}(x)\right| \leqslant\left|\frac{\cos \frac{x}{2}-\cos \left(n+\frac{1}{2}\right) x}{2 \sin \frac{x}{2}}\right| \leqslant \frac{1}{\left|\sin \frac{x}{2}\right|} \quad \forall x \neq 0(\bmod 2 \pi) .
$$

In either cases，for each $x \in \mathbb{R}$ there exists $M=M(x) \in \mathbb{R}$ such that $\left|S_{n}(x)\right| \leqslant M$ ．Therefore， the Dirichlet test（with $a_{k}=\sin (k x)$ and $p_{k}=\frac{1}{k}$ ）implies that f is defined everywhere；thus the domain of f is \mathbb{R} ．

2．We mimic the proof of the Dirichlet test．Let $\varepsilon>0$ and $\delta \in(0,2 \pi)$ be given．Then $\csc \frac{\delta}{2}>0$ ； thus the Archimedean property of \mathbb{R} implies that there exists $N>\frac{2}{\varepsilon} \csc \frac{\delta}{2}$ ．If $n \geqslant N, p \geqslant 0$ and $x \in[\delta, 2 \pi-\delta]($ thus $x \neq 0(\bmod 2 \pi))$ ，then

$$
\begin{aligned}
& \left|\sum_{k=n}^{n+p} \frac{\sin (k x)}{k}\right|=\left|\sum_{k=n}^{n+p}\left[S_{k+1}(x)-S_{k}(x)\right] \frac{1}{k}\right| \\
& \quad=\left\lvert\,-S_{n}(x) \frac{1}{n}+S_{n+1}(x)\left(\frac{1}{n}-\frac{1}{n+1}\right)+\cdots+S_{n+p}(x)\left(\frac{1}{n+p-1}-\frac{1}{n+p}\right)\right. \\
& \left.\quad+S_{n+p+1}(x) \frac{1}{n+p} \right\rvert\, \\
& \quad \leqslant \\
& \quad \frac{1}{\left|\sin \frac{x}{2}\right|}\left[\frac{1}{n}+\left(\frac{1}{n}-\frac{1}{n+1}\right)+\cdots+\left(\frac{1}{n+p-1}-\frac{1}{n+p}\right)+\frac{1}{n+p}\right] \\
& \quad=\frac{2}{n\left|\sin \frac{x}{2}\right|}<\frac{\sin \frac{\delta}{2}}{\left|\sin \frac{x}{2}\right|} \varepsilon .
\end{aligned}
$$

Since $x \in[\delta, 2 \pi-\delta], \sin \frac{x}{2}$ attains its minimum at $x=\delta$ or $2 \pi-\delta$ ；thus

$$
0<\sin \frac{\delta}{2} \leqslant \sin \frac{x}{2} \quad \forall x \in[\delta, 2 \pi-\delta] .
$$

Therefore，

$$
\left|\sum_{k=n}^{n+p} \frac{\sin (k x)}{k}\right|<\varepsilon \quad \text { whenever } \quad n \geqslant N, p \geqslant 0 \text { and } x \in[\delta, 2 \pi-\delta] .
$$

In the exercise of Chapter 3，we first introduce the concepts of accumulation points，isolated points and derived set of a set as follows．

Definition 0．1．Let (M, d) be a normed vector space，and A be a subset of M ．
1．A point $x \in M$ is called an accumulation point of A if there exists a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in $A \backslash\{x\}$ such that $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges to x ．

2．A point $x \in A$ is called an isolated point（孤立點）（of A ）if there exists no sequence in $A \backslash\{x\}$ that converges to x ．

3．The derived set of A is the collection of all accumulation points of A ，and is denoted by A^{\prime} ．
Problem 5．Let (M, d) be a metric space，and A be a subset of M ．
1．Show that the collection of all isolated points of A is $A \backslash A^{\prime}$ ．
2．Show that $A^{\prime}=\bar{A} \backslash\left(A \backslash A^{\prime}\right)$ ．In other words，the derived set consists of all limit points that are not isolated points．Also show that $\bar{A} \backslash A^{\prime}=A \backslash A^{\prime}$ ．

Proof. 1. By the definition of isolated points of sets,

$$
\begin{aligned}
x \in A \backslash A^{\prime} & \Leftrightarrow x \in A \text { and } x \text { is not an accumulation point of } A \\
& \Leftrightarrow x \in A \text { and } \exists \varepsilon>0 \ni B(x, \varepsilon) \cap A \backslash\{x\}=\varnothing \\
& \Leftrightarrow x \in A \text { and } \exists \varepsilon>0 \ni B(x, \varepsilon) \cap A \subseteq\{x\} \\
& \Leftrightarrow \exists \varepsilon>0 \ni B(x, \varepsilon) \cap A=\{x\} ;
\end{aligned}
$$

thus x is an isolated point of A if and only if $x \in A \backslash A^{\prime}$.
2. First we show that $\bar{A}=A \cup A^{\prime}$. To see this, let $x \in \bar{A} \backslash A$. By the fact that $A=A \backslash\{x\}$, there exists $\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq A \backslash\{x\}$ such that $\lim _{n \rightarrow \infty} x_{n}=x$. Therefore, $x \in A^{\prime}$ which implies that

$$
\bar{A} \backslash A \subseteq A^{\prime} \subseteq \bar{A}
$$

where we use the fact that $\bar{A} \supseteq A^{\prime}$ to conclude the last inclusion. The inclusion relation above then shows that

$$
\bar{A}=A \cup \bar{A}=A \cup(\bar{A} \backslash A) \subseteq A \cup A^{\prime} \subseteq A \cup \bar{A}=\bar{A} ;
$$

thus we establish that $\bar{A}=A \cup A^{\prime}$. This identity further shows that

$$
\bar{A} \cap A^{\complement}=\left(A \cup A^{\prime}\right) \cap A^{\complement}=A^{\prime} \cap A^{\complement} \subseteq A .
$$

Now, using the identity $A \backslash B=A \cap B^{\complement}$ we find that

$$
\begin{aligned}
\bar{A} \backslash\left(A \backslash A^{\prime}\right) & =\bar{A} \cap\left(A \cap\left(A^{\prime}\right)^{\complement}\right)^{\complement}=\bar{A} \cap\left(A^{\complement} \cup A^{\prime}\right)=\left(\bar{A} \cap A^{\complement}\right) \cup\left(\bar{A} \cap A^{\prime}\right) \\
& =\left(\bar{A} \cap A^{\complement}\right) \cup A^{\prime}=A^{\prime}
\end{aligned}
$$

Moreover, using $\bar{A}=A \cup A^{\prime}$ we also have

$$
\begin{equation*}
\bar{A} \backslash A^{\prime}=\left(A \cup A^{\prime}\right) \cap\left(A^{\prime}\right)^{\complement}=A \cap\left(A^{\prime}\right)^{\complement}=A \backslash A^{\prime} . \tag{ㅁ}
\end{equation*}
$$

Problem 6. Let A and B be subsets of a metric space (M, d). Show that

1. $\operatorname{cl}(\operatorname{cl}(A))=\operatorname{cl}(A)$.
2. $\operatorname{cl}(A \cup B)=\operatorname{cl}(A) \cup \operatorname{cl}(B)$.
3. $\operatorname{cl}(A \cap B) \subseteq \operatorname{cl}(A) \cap \operatorname{cl}(B)$. Find examples of that $\operatorname{cl}(A \cap B) \subsetneq \operatorname{cl}(A) \cap \operatorname{cl}(B)$.

Proof. 1. Since $\operatorname{cl}(A)$ is closed, by the definition of closed set we have $\operatorname{cl}(\operatorname{cl}(A))=\operatorname{cl}(A)$.
2. Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$, we have $\operatorname{cl}(A) \subseteq \operatorname{cl}(A \cup B)$ and $\operatorname{cl}(B) \subseteq \operatorname{cl}(A \cup B)$; thus $\operatorname{cl}(A) \cup \operatorname{cl}(B) \subseteq \operatorname{cl}(A \cup B)$. On the other hand, if $x \in \operatorname{cl}(A \cup B)$, there exists a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in $A \cup B$ such that $\lim _{n \rightarrow \infty} x_{n}=x$. Since $A \cup B$ contains infinitely many terms of $\left\{x_{n}\right\}_{n=1}^{\infty}$, at least one of A and B contains infinitely many terms of $\left\{x_{n}\right\}_{n=1}^{\infty}$. W.L.O.G., suppose that $\#\left\{n \in \mathbb{N} \mid x_{n} \in A\right\}=\infty$. Let

$$
\left\{n \in \mathbb{N} \mid x_{n} \in A\right\}=\left\{n_{k} \in \mathbb{N} \mid n_{k}<n_{k+1}\right\}
$$

Then $\left\{x_{n_{k}}\right\}_{k=1}^{\infty} \in A$. Since $x_{n} \rightarrow x$ as $n \rightarrow \infty$, we must have $x_{n_{k}} \rightarrow x$ as $k \rightarrow \infty$; thus $x \in \operatorname{cl}(A)$. Therefore, $\operatorname{cl}(A \cup B) \subseteq \operatorname{cl}(A) \cup \operatorname{cl}(B)$.
3. Let $x \in \operatorname{cl}(A \cap B)$. Then

$$
(\forall \varepsilon>0)(B(x, \varepsilon) \cap(A \cap B) \neq \varnothing) .
$$

Therefore, by the fact that $B(x, \varepsilon) \cap A \subseteq B(x, \varepsilon) \cap(A \cap B)$ and $B(x, \varepsilon) \cap B \subseteq B(x, \varepsilon) \cap(A \cap B)$, we have

$$
(\forall \varepsilon>0)(B(x, \varepsilon) \cap A \neq \varnothing) \quad \text { and } \quad(\forall \varepsilon>0)(B(x, \varepsilon) \cap B \neq \varnothing)
$$

This implies that $x \in \bar{A} \cap \bar{B}$. Note that if $A=\mathbb{Q}$ and $B=\mathbb{Q}^{C}$, then $\operatorname{cl}(A \cap B)=\varnothing$, while $\bar{A}=\bar{B}=\mathbb{R}$ which provides an example of $\operatorname{cl}(A \cap B) \subsetneq \bar{A} \cap \bar{B}$.

Problem 7. Let A and B be subsets of a metric space (M, d). Show that

1. $\operatorname{int}(\operatorname{int}(A))=\operatorname{int}(A)$.
2. $\operatorname{int}(A \cap B)=\operatorname{int}(A) \cap \operatorname{int}(B)$.
3. $\operatorname{int}(A \cup B) \supseteq \operatorname{int}(A) \cup \operatorname{int}(B)$. Find examples of that $\operatorname{int}(A \cup B) \supsetneq \operatorname{int}(A) \cup \operatorname{int}(B)$.

Proof. 1. Since $\operatorname{int}(A)$ is open, by the definition of open sets we have $\operatorname{int}(\operatorname{int}(A))=\operatorname{int}(A)$.
2. Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$, we have $\operatorname{int}(A \cap B) \subseteq \operatorname{int}(A)$ and $\operatorname{int}(A \cap B) \subseteq \operatorname{int}(B)$; thus $\operatorname{int}(A \cap B) \subseteq \operatorname{int}(A) \cap \operatorname{int}(B)$. On the other hand, let $x \in \operatorname{int}(A) \cap \operatorname{int}(B)$. Then $x \in \operatorname{int}(A)$ and $x \in \operatorname{int}(B)$; thus there exist $r_{1}, r_{0}>0$ such that

$$
B\left(x, r_{1}\right) \subseteq A \quad \text { and } \quad B(x, r) \subseteq B
$$

Let $r=\min \left\{r_{1}, r_{2}\right\}$. Then $r>0$, and $B(x, r) \subseteq B\left(x, r_{1}\right)$ and $B(x, r) \subseteq B\left(x, r_{2}\right)$. Therefore, $B(x, r) \subseteq A$ and $B(x, r) \subseteq B$ which further implies that $B(x, r) \subseteq A \cap B$; thus $x \in \operatorname{int}(A \cap B)$.
3. Let $x \in \AA \cup \dot{A}$. Then $x \in \AA$ or $x \in B$; thus there exists $r>0$ such that $B(x, r) \subseteq A$ or $B(x, r) \subseteq B$. Therefore, there exists $r>0$ such that $B(x, r) \subseteq A \cup B$ which shows that $\operatorname{int}(A \cup B) \supseteq \operatorname{int}(A) \cup \operatorname{int}(B)$. Note that if $A=\mathbb{Q}$ and $B=\mathbb{Q}^{C}$, then $\operatorname{int}(A \cup B)=\mathbb{R}$ while $\operatorname{int}(A)=\operatorname{int}(B)=\varnothing$; thus we obtain an example of $\operatorname{int}(A \cup B) \supsetneq \operatorname{int}(A) \cup \operatorname{int}(B)$.

Problem 8. Let (M, d) be a metric space, and A be a subset of M. Show that

$$
\partial A=(A \cap \operatorname{cl}(M \backslash A)) \cup(\operatorname{cl}(A) \backslash A) .
$$

Proof. By the definition of the boundary, $\partial A=\bar{A} \cap \overline{A^{c}}$; thus

$$
\begin{aligned}
& (A \cap \operatorname{cl}(M \backslash A)) \cup(\operatorname{cl}(A) \backslash A)=\left(A \cap \overline{A^{\complement}}\right) \cup\left(\bar{A} \cap A^{\complement}\right) \\
& \quad=\left[A \cup\left(\bar{A} \cap A^{\complement}\right)\right] \cap\left[\overline{A^{\complement}} \cup\left(\bar{A} \cap A^{\complement}\right)\right]=\bar{A} \cap\left[\left(\overline{A^{\complement}} \cup \bar{A}\right) \cap\left(\overline{A^{\complement}} \cup A^{\complement}\right)\right] \\
& \quad=\bar{A} \cap\left[\left(\overline{A^{\complement}} \cup \bar{A}\right) \cap \overline{A^{\complement}}\right]=\partial A \cap\left(\overline{A^{\complement}} \cup \bar{A}\right)=\partial A,
\end{aligned}
$$

where the last equality follows from that $\partial A \subseteq \bar{A}$ and $\partial A \subseteq \overline{A^{C}}$.
Problem 9. Recall that in a metric space (M, d), a subset A is said to be dense in S if subsets satisfy $A \subseteq S \subseteq \operatorname{cl}(A)$. For example, \mathbb{Q} is dense in \mathbb{R}.

1. Show that if A is dense in S and if S is dense in T, then A is dense in T.
2. Show that if A is dense in S and $B \subseteq S$ is open, then $B \subseteq \operatorname{cl}(A \cap B)$.

Proof. 1. If A is dense in S and if S is dense in T, then $A \subseteq S \subseteq \bar{A}$ and $S \subseteq T \subseteq \bar{S}$. Since $S \subseteq \bar{A}$, we must have $\bar{S} \subseteq \bar{A}$; thus

$$
A \subseteq S \subseteq T \subseteq \bar{S} \subseteq \bar{A}
$$

which shows that A is dense in T.
2. Let $x \in B$. Since B is open, there exists $\varepsilon_{0}>0$ such that $B\left(x, \varepsilon_{0}\right) \subseteq B \subseteq S$. On the other hand, $x \in S$ since B is a subset of S; thus the denseness of A in S implies that

$$
(\forall \varepsilon>0)(B(x, \varepsilon) \cap A \neq \varnothing) .
$$

Therefore, for a given $\varepsilon>0$, if $\varepsilon \geqslant \varepsilon_{0}$, then

$$
\left.B(x, \varepsilon) \cap(A \cap B) \supseteq B\left(x, \varepsilon_{0}\right) \cap(A \cap B)=B\left(x, \varepsilon_{0}\right) \cap A \neq \varnothing\right)
$$

while if $\varepsilon<\varepsilon_{0}$, then

$$
B(x, \varepsilon) \cap(A \cap B)=B(x, \varepsilon) \cap A \neq \varnothing .
$$

This implies that

$$
(\forall \varepsilon>0)(B(x, \varepsilon) \cap(A \cap B) \neq \varnothing) ;
$$

thus $x \in \operatorname{cl}(A \cap B)$.
Problem 10. Let A and B be subsets of a metric space (M, d). Show that

1. $\partial(\partial A) \subseteq \partial(A)$. Find examples of that $\partial(\partial A) \subsetneq \partial A$. Also show that $\partial(\partial A)=\partial A$ if A is closed.
2. $\partial(A \cup B) \subseteq \partial A \cup \partial B \subseteq \partial(A \cup B) \cup A \cup B$. Find examples of that equalities do not hold.
3. If $\operatorname{cl}(A) \cap \operatorname{cl}(B)=\varnothing$, then $\partial(A \cup B)=\partial A \cup \partial B$.
4. $\partial(A \cap B) \subseteq \partial A \cup \partial B$. Find examples of the equalities do not hold.
5. $\partial(\partial(\partial A))=\partial(\partial A)$.

Proof. 1. We note that if F is closed, then

$$
\partial F=\bar{F} \cap \overline{F^{c}}=F \cap \overline{F^{c}} \subseteq F .
$$

Since ∂F is closed, we must have $\partial(\partial A) \subseteq \partial A$. Note that if $A=\mathbb{Q} \cap[0,1]$, then $\partial A=[0,1]$; thus $\partial(\partial A)=\{0,1\} \subsetneq \partial A$. Finally we show that $\partial(\partial A)=\partial A$ if A is closed. Using (\diamond), it suffices to show that $\partial A \subseteq \partial(\partial A)$. Using 2 of Problem 6 ,

$$
\begin{aligned}
\partial(\partial A) & =\partial A \cap \operatorname{cl}\left((\partial A)^{\complement}\right)=\partial A \cap \operatorname{cl}\left(A^{\complement} \cup{\left.\overline{A^{\complement}}\right)=\partial A \cap\left(\overline{A^{\complement}} \cup \operatorname{cl}\left({\overline{A^{\complement}}}^{\complement}\right)\right.}=\left(\partial A \cap \overline{A^{\complement}}\right) \cup\left(\partial A \cap \operatorname{cl}\left({\overline{A^{\complement}}}^{\complement}\right)\right) \supseteq\left(\partial A \cap \overline{A^{\complement}}\right)=\partial A .\right.
\end{aligned}
$$

2. Using 2 and 3 of Problem 6,

$$
\begin{aligned}
\partial(A \cup B) & =\overline{A \cup B} \cap \operatorname{cl}\left((A \cup B)^{\complement}\right)=(\bar{A} \cup \bar{B}) \cap \operatorname{cl}\left(A^{\complement} \cap B^{\complement}\right) \subseteq(\bar{A} \cup \bar{B}) \cap\left(\overline{A^{\complement}} \cap \overline{B^{\complement}}\right) \\
& =\left(\bar{A} \cap \overline{A^{\complement}} \cap \overline{B^{\complement}}\right) \cup\left(\bar{B} \cap \overline{A^{\complement}} \cap \overline{B^{\complement}}\right) \subseteq\left(\bar{A} \cap \overline{A^{\complement}}\right) \cup\left(\bar{B} \cap \overline{B^{\complement}}\right)=\partial A \cup \partial B .
\end{aligned}
$$

On the other hand, since $\partial A=\bar{A} \backslash \AA$ and $\AA \subseteq A$, we have

$$
\bar{A} \subseteq A \cup \partial A \subseteq \AA \cup(\bar{A} \backslash \AA)=\bar{A}
$$

which implies that $A \cup \partial A=\bar{A}$. Therefore,

$$
\partial A \subseteq \bar{A} \subseteq \overline{A \cup B}=A \cup B \cup \partial(A \cup B)
$$

and similarly $\partial B \subseteq A \cup B \cup \partial(A \cup B)$. Therefore,

$$
\partial A \cup \partial B \subseteq \partial(A \cup B) \cup A \cup B
$$

Note that if $A=[-1,0] \cup(\mathbb{Q} \cap[0,1])$ and $B=[-1,0] \cup\left(\mathbb{Q}^{C} \cap[0,1]\right)$, then $A \cup B=[-1,1]$, $\partial A=\partial B=\{-1\} \cup[0,1]$ which implies that

$$
\partial(A \cup B)=\{-1,1\} \subsetneq \partial A \cup \partial B \subsetneq A \cup B=\partial(A \cup B) \cup A \cup B
$$

3. By 2 , it suffices to shows that $\partial A \cup \partial B \subseteq \partial(A \cup B)$ if $\bar{A} \cap \bar{B}=\varnothing$. Let $x \in \partial A \cup \partial B$. W.L.O.G., assume that $x \in \partial A$. Then $x \in \bar{A}$; thus $x \notin \bar{B}$ which further implies that there exists $\varepsilon_{0}>0$ such that $B\left(x, \varepsilon_{0}\right) \cap B=\varnothing$ or equivalently, $B\left(x, \varepsilon_{0}\right) \subseteq B^{\complement}$. Therefore, for given $r>0$, if $r<\varepsilon_{0}$, then

$$
B(x, r) \cap(A \cup B) \supseteq B(x, r) \cap A \neq \varnothing
$$

and

$$
B(x, r) \cap\left((A \cup B)^{\complement}\right)=B(x, r) \cap\left(A^{\complement} \cap B^{\complement}\right)=B(x, r) \cap A^{\complement} \neq \varnothing
$$

while if $r \geqslant \varepsilon_{0}$, then

$$
B(x, r) \cap(A \cup B) \subseteq B\left(x, \varepsilon_{0}\right) \cap(A \cup B) \supseteq B\left(x, \varepsilon_{0}\right) \cap A \neq \varnothing
$$

and

$$
B(x, r) \cap\left((A \cup B)^{\complement}\right) \supseteq B\left(x, \varepsilon_{0}\right) \cap\left(A^{\complement} \cap B^{\complement}\right)=B\left(x, \varepsilon_{0}\right) \cap A^{\complement} \neq \varnothing .
$$

As a consequence, for each $r>0$,

$$
B(x, r) \cap(A \cup B) \neq \varnothing \quad \text { and } \quad B(x, r) \cap(A \cup B)^{\complement} ;
$$

thus $x \in \overline{A \cup B}$ and $x \in \operatorname{cl}\left((A \cup B)^{\mathrm{C}}\right)$ which implies that $x \in \partial(A \cup B)$.
4. Using 2 and 3 of Problem 6,

$$
\begin{aligned}
\partial(A \cap B) & =\overline{A \cap B} \cap \operatorname{cl}\left((A \cap B)^{\complement}\right)=\overline{A \cap B} \cap \operatorname{cl}\left(A^{\complement} \cup B^{\complement}\right) \subseteq(\bar{A} \cap \bar{B}) \cap\left(\overline{A^{\complement}} \cup \overline{B^{\complement}}\right) \\
& =\left[(\bar{A} \cap \bar{B}) \cap \overline{A^{\complement}}\right] \cup\left[(\bar{A} \cap \bar{B}) \cap \overline{B^{\complement}}\right] \subseteq\left(\bar{A} \cap \overline{A^{\complement}}\right) \cup\left(\bar{B} \cap \overline{B^{\complement}}\right)=\partial A \cup \partial B .
\end{aligned}
$$

Note that if $A=\mathbb{Q}$ and $B=\mathbb{Q}^{\complement}$, then $\partial A=\partial B=\mathbb{R}$ but

$$
\partial(A \cap B)=\varnothing \subsetneq \mathbb{R}=\partial A \cap \partial B
$$

5. Since ∂A is closed, 1 implies that $\partial(\partial(\partial A))=\partial(\partial A)$.
