Exercise Problem Sets 6

Problem 1. Let (M, d) be a metric space, and $\{x_n\}_{n=1}^{\infty}$ be a sequence in M. Show that $\{x_n\}_{n=1}^{\infty}$ is Cauchy if and only if

$$\forall \varepsilon > 0, \exists y \in M \ni \# \{ n \in \mathbb{N} \mid x_n \notin B(y, \varepsilon) \} < \infty$$

Proof. " \Rightarrow " Let $\varepsilon > 0$ be given. Since $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence, there exists N > 0 such that

 $d(x_n, x_m) < \varepsilon$ whenever $n, m \ge N$.

Let $y = x_N$. Then

$$\{n \in \mathbb{N} \mid x_n \notin B(y,\varepsilon)\} \subseteq \{1, 2, \cdots, N-1\}$$

which shows that $\#\{n \in \mathbb{N} \mid x_n \notin B(y, \varepsilon)\} < \infty$.

"⇐" Let $\varepsilon > 0$ be given. By assumption there exists $y \in M$ such that $\#\left\{n \in \mathbb{N} \mid x_n \notin B\left(y, \frac{\varepsilon}{2}\right)\right\} < \infty$; thus

$$N \equiv \max\left\{n \in \mathbb{N} \mid x_n \notin B\left(y, \frac{\varepsilon}{2}\right)\right\} < \infty$$

Note that if n > N, $x_n \in B\left(y, \frac{\varepsilon}{2}\right)$ which implies that

$$d(x_n, y) < \frac{\varepsilon}{2}$$
 whenever $n > N$.

Therefore, if n, m > N, the triangle inequality implies that

$$d(x_n, x_m) \leq d(x_n, y) + d(y, x_m) < \varepsilon$$

which shows that $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence.

Problem 2. Let (M, d) be a metric space, and $\{x_k\}_{k=1}^{\infty}$ be a sequence in M. Show that

- 1. If $\{x_k\}_{k=1}^{\infty}$ is convergent, then $\{x_k\}_{k=1}^{\infty}$ is a Cauchy sequence.
- 2. If $\{x_k\}_{k=1}^{\infty}$ is a Cauchy sequence and a subsequence of $\{x_k\}_{k=1}^{\infty}$ converges to x, then $\{x_k\}_{k=1}^{\infty}$ converges to x.
- 3. x is a cluster point of $\{x_k\}_{k=1}^{\infty}$ if and only if $\forall \varepsilon > 0$ and N > 0, $\exists k > N$ with $d(x_k, x) < \varepsilon$.
- 4. x is a cluster point of $\{x_k\}_{k=1}^{\infty}$ if and only if there is a subsequence converging to x.
- 5. $\{x_k\}_{k=1}^{\infty}$ converges to x if and only if every subsequence of $\{x_k\}_{k=1}^{\infty}$ converges to x.
- 6. $\{x_k\}_{k=1}^{\infty}$ converges to x if and only if every proper subsequence of $\{x_k\}_{k=1}^{\infty}$ has a further subsequence that converges to x.

Problem 3. Let $(\mathcal{V}, \|\cdot\|)$ be a norm space, $\{a_k\}_{k=1}^{\infty}$ be a sequence in \mathcal{V} , and $\{b_n\}_{n=1}^{\infty}$ be the Cesàro mean of $\{a_k\}_{k=1}^{\infty}$; that is, $b_n = \frac{1}{n} \sum_{k=1}^{n} a_k$.

- 1. Show that if $\{a_k\}_{k=1}^{\infty}$ converges to a, then $\{b_n\}_{n=1}^{\infty}$ converges to a.
- 2. Is the converse statement "if the Cesàro mean $\{b_n\}_{n=1}^{\infty}$ of a sequence $\{a_k\}_{k=1}^{\infty}$ converges, then the sequence $\{a_k\}_{k=1}^{\infty}$ also converges" true?

Proof. 1. Let $\varepsilon > 0$ be given. Since $\lim_{k \to \infty} a_k = a$, there exists $N_1 > 0$ such that

$$||a_k - a|| < \frac{\varepsilon}{2}$$
 whenever $k \ge N_1$.

Since $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{N_1} |a_k - a| = 0$, there exists $N_2 > 0$ such that

$$\frac{1}{n}\sum_{k=1}^{N_1} \|a_k - a\| < \frac{\varepsilon}{2} \quad \text{whenever} \quad n \ge N_2$$

Let $N = \max\{N_1, N_2\}$. Then if $n \ge N$,

$$\begin{split} \|b_n - a\| &= \left\| \frac{1}{n} \sum_{k=1}^n a_k - a \right\| \le \frac{1}{n} \sum_{k=1}^n \|a_k - a\| \le \frac{1}{n} \sum_{k=1}^{N_1} \|a_k - a\| + \frac{1}{n} \sum_{k=N_1}^n \|a_k - a\| \\ &< \frac{\varepsilon}{2} + \frac{1}{n} \sum_{k=N_1}^n \frac{\varepsilon}{2} = \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \frac{n - N_1 + 1}{n} < \varepsilon \,. \end{split}$$

2. No. For example, let $a_n = (-1)^n$. Then $\lim_{n \to \infty} b_n = 0$ but $\{a_n\}_{n=1}^{\infty}$ does not converge.

Problem 4. Let \mathcal{V} be a vector space over field \mathbb{F} , $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , and $\{\mathbf{e}_1, \cdots, \mathbf{e}_n\}$ be a basis of \mathcal{V} ; that is, every vector $\mathbf{e} \in \mathcal{V}$ can be expressed (uniquely) by $\boldsymbol{x} = \sum_{i=1}^n x_i \mathbf{e}_i$ with $x_i \in \mathbb{F}$ for all $1 \leq i \leq n$. From Example 2.28 in the lecture note we know that $\langle \cdot, \cdot \rangle : \mathcal{V} \times \mathcal{V} \to \mathbb{F}$ defined by

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \sum_{j=1}^n x_i \overline{y_i}$$
 if $\boldsymbol{x} = \sum_{j=1}^n x_j \mathbf{e}_j$ and $\boldsymbol{y} = \sum_{j=1}^n y_j \mathbf{e}_j$.

is an inner product. Show that $(\mathcal{V}, \|\cdot\|_2)$ is a Banach space, where $\|\cdot\|_2$ is the norm induced by the inner product.

Proof. Let $\{\boldsymbol{x}_k\}_{k=1}^{\infty}$ be a Cauchy sequence in $(\mathcal{V}, \|\cdot\|_2)$. Write $\boldsymbol{x}_k = x_k^{(1)} \mathbf{e}_1 + x_k^{(2)} \mathbf{e}_2 + \cdots + x_k^{(n)} \mathbf{e}_n$. For each $1 \leq j \leq n$ and $k, \ell \in \mathbb{N}$, The Cauchy-Schwarz inequality implies that

$$\left|x_{k}^{(j)}-x_{\ell}^{(j)}\right|=\left|\langle \boldsymbol{x}_{k}-\boldsymbol{x}_{\ell},\boldsymbol{e}_{j}\rangle\right|\leqslant \|\boldsymbol{x}_{k}-\boldsymbol{x}_{\ell}\|_{2}\|\boldsymbol{e}_{j}\|_{2}=\|\boldsymbol{x}_{k}-\boldsymbol{x}_{\ell}\|_{2};$$

thus $\{x_k^{(j)}\}_{k=1}^{\infty}$ is a Cauchy sequence in \mathbb{F} for all $1 \leq j \leq n$. Since \mathbb{F} is complete, there exists $x_j \in \mathbb{F}$ such that

$$\lim_{k \to \infty} x_k^{(j)} = x^{(j)} \,.$$

Let $\varepsilon > 0$ be given. Since $\lim_{k \to \infty} x_k^{(j)} = x^{(j)}$ for $1 \le j \le n$, for each $1 \le j \le n$ there exists $N_j > 0$ such that

$$\left|x_{k}^{(j)}-x^{(j)}\right| < \frac{\varepsilon}{\sqrt{n}}$$
 whenever $k \ge N_{j}$.

Let $\boldsymbol{x} = x_1 \mathbf{e}_1 + \dots + x_n \mathbf{e}_n$. Then for $k \ge N \equiv \max\{N_1, N_2, \dots, N_n\}$,

$$\|\boldsymbol{x}_{k} - \boldsymbol{x}\|_{2} \leq \sqrt{(x_{k}^{(1)} - x_{1})^{2} + \dots + (x_{k}^{(n)} - x_{n})^{2}} < \sqrt{\frac{\varepsilon^{2}}{n} + \dots + \frac{\varepsilon^{2}}{n}} = \varepsilon$$

which shows that $\{\boldsymbol{x}_k\}_{k=1}^{\infty}$ converges to \boldsymbol{x} .

Problem 5. Show that $(\mathbb{C}, |\cdot|)$ is complete; that is, every Cauchy sequence $\{z_k\}_{k=1}^n$ in \mathbb{C} converges. *Proof.* Let $\{z_n\}_{n=1}^{\infty}$ be a Cauchy sequence in \mathbb{C} . Write $z_n = x_n + iy_n$, where x_n and y_n are real numbers. Then

$$|x_n - x_m| \leq |z_n - z_m|$$
 and $|y_n - y_m| \leq |z_n - z_m|$ $\forall n, m \in \mathbb{N}$.

Therefore, $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ are Cauchy sequences in \mathbb{R} ; thus by the completeness of \mathbb{R} , $\lim_{n \to \infty} x_n = x$ and $\lim_{n \to \infty} y_n = y$ for some $x, y \in \mathbb{R}$. Let z = x + yi. Then

$$|z_n - z| = \sqrt{(x_n - x)^2 + (y_n - y)^2} \to 0$$
 as $n \to \infty$;

thus we establish that every Cauchy sequence in \mathbb{C} converges to a point in \mathbb{C} . This implies that $(\mathbb{C}, |\cdot|)$ is complete.

Problem 6. Let (M, d) be a metric space. Two Cauchy sequences $\{p_n\}_{n=1}^{\infty}$ and $\{q_n\}_{n=1}^{\infty}$ in M are said to be equivalent, denoted by $\{p_n\}_{n=1}^{\infty} \sim \{q_n\}_{n=1}^{\infty}$, if

$$\lim_{n \to \infty} d(p_n, q_n) = 0$$

- 1. Prove that \sim is an equivalence relation; that is, show that
 - (a) $\{p_n\}_{n=1}^{\infty} \sim \{p_n\}_{n=1}^{\infty}$.
 - (b) If $\{p_n\}_{n=1}^{\infty} \sim \{q_n\}_{n=1}^{\infty}$, then $\{q_n\}_{n=1}^{\infty} \sim \{p_n\}_{n=1}^{\infty}$.
 - (c) If $\{p_n\}_{n=1}^{\infty} \sim \{q_n\}_{n=1}^{\infty}$ and $\{q_n\}_{n=1}^{\infty} \sim \{r_n\}_{n=1}^{\infty}$, then $\{p_n\}_{n=1}^{\infty} \sim \{r_n\}_{n=1}^{\infty}$.
- 2. Let $\{p_n\}_{n=1}^{\infty}$ and $\{q_n\}_{n=1}^{\infty}$ be two Cauchy sequences. Show that the sequence $\{d(p_n, q_n)\}_{n=1}^{\infty}$ is a Cauchy sequence in \mathbb{R} ; thus is convergent.
- 3. Let M^* be the set of all equivalence classes. If $P, Q \in M^*$, we define

$$d^*(P,Q) = \lim_{n \to \infty} d(p_n,q_n) \,,$$

where $\{p_n\}_{n=1}^{\infty} \in P$ and $\{q_n\}_{n=1}^{\infty} \in Q$. Show that the definition above is well-defined; that is, show that if $\{p'_n\}_{n=1}^{\infty} \in P$ and $\{q'_n\}_{n=1}^{\infty} \in Q$ are another two Cauchy sequences, then $\lim_{n \to \infty} d(p_n, q_n) = \lim_{n \to \infty} d(p'_n, q'_n)$.

4. Define $\varphi : M \to M^*$ as follows: for each $x \in M$, $\{x_n\}_{n=1}^{\infty}$, where $x_n \equiv x$ for all $n \in \mathbb{N}$, is a Cauchy sequence in M. Then $\{x_n\}_{n=1}^{\infty} \in \varphi(x)$ for one particular $\varphi(x) \in M^*$. In other words, $\varphi(x)$ is the equivalence class where $\{x_n\}_{n=1}^{\infty}$ belongs to. Show that

$$d^*(\varphi(x),\varphi(y)) = d(x,y) \quad \forall x,y \in M.$$

- 5. Show that $\varphi(M)$ is dense in M^* .
- 6. Show that (M^*, d^*) is a complete metric space. The metric space (M^*, d^*) is called the completion of (M, d).