Exercise Problem Sets 4

Oct. 07. 2022

Problem 1. Let $b \in \mathbb{R}$ and $b>1$.

1. Show the law of exponents holds (for rational exponents); that is, show that
(a) if r, s in \mathbb{Q}, then $b^{r+s}=b^{r} \cdot b^{s}$.
(b) if r, s in \mathbb{Q}, then $b^{r \cdot s}=\left(b^{r}\right)^{s}$.
2. For $x \in \mathbb{R}$, let $B(x)=\left\{b^{t} \in \mathbb{R} \mid t \in \mathbb{Q}, t \leqslant x\right\}$. Show that $\sup B(x)$ exists for all $x \in \mathbb{R}$, and $b^{r}=\sup B(r)$ if $r \in \mathbb{Q}$.
3. Define $b^{x}=\sup B(x)$ for $x \in \mathbb{R}$. Show that $B(x)>0$ for all $x \in \mathbb{R}$ and the law of exponents (for exponents in \mathbb{R})
(a) if x, y in \mathbb{R}, then $b^{x+y}=b^{x} \cdot b^{y}$,
(b) if $x, y>0$, then $b^{x \cdot y}=\left(b^{x}\right)^{y}$,
are also valid.
4. Show that if $x_{1}, x_{2} \in \mathbb{R}$ and $x_{1}<x_{2}$, then $b^{x_{1}}<b^{x_{2}}$. This implies that if x_{1}, x_{2} are two numbers in \mathbb{R} satisfying $b^{x_{1}}=b^{x_{2}}$, then $x_{1}=x_{2}$.
5. Let $y>0$ be given. Show that if $u, v \in \mathbb{R}$ such that $b^{u}<y$ and $b^{v}>y$, then $b^{u+1 / n}<y$ and $b^{v-1 / n}>y$ for sufficiently large n.
6. Let $y>0$ be given, and $A \subseteq \mathbb{R}$ be the set of all w such that $b^{w}<y$. Show that sup A exists and $x=\sup A$ satisfies $b^{x}=y$. The number x (the uniqueness is guaranteed by 4) satisfying $b^{x}=y$ is called the logarithm of y to the base b, and is denoted by $\log _{b} y$.

Hint: Make use of Problem 3 in Exercise 2.
Proof. We note that \mathbb{R} satisfies Archimedean property and the least upper bound property.

1. Note that the exponential law holds if the exponents are integers; that is,

$$
b^{n+m}=b^{n} \cdot b^{m} \quad \text { and } \quad b^{n m}=\left(b^{n}\right)^{m} \quad \forall n, m \in \mathbb{Z} .
$$

For $m, n \in \mathbb{N}$, we "define" $b^{\frac{n}{m}}$ as the n-th power of $b^{\frac{1}{m}}$; that is, $b^{\frac{n}{m}}=\left(b^{\frac{1}{m}}\right)^{n}$. Then for $m, n \in \mathbb{N}$,

$$
\left[\left(b^{\frac{1}{m}}\right)^{n}\right]^{m}=\left(b^{\frac{1}{m}}\right)^{m n}=b^{\frac{m n}{m}}=b^{n}
$$

which implies that $\left(b^{\frac{1}{m}}\right)^{n}$ is the m-th root of b^{n} if $m, n \in \mathbb{N}$. Moreover, $\left(b^{\frac{1}{m n}}\right)^{n}=b^{\frac{1}{m}}$ and $\left(b^{\frac{1}{m n}}\right)^{m}=b^{\frac{1}{n}}$; thus we establish that

$$
b^{\frac{n}{m}}=\left(b^{\frac{1}{m}}\right)^{n}=\left(b^{n}\right)^{\frac{1}{m}} \quad \text { and } \quad b^{\frac{1}{m n}}=\left(b^{\frac{1}{m}}\right)^{\frac{1}{n}} \quad \forall m, n \in \mathbb{N} .
$$

Suppose that $r=\frac{q_{1}}{p_{1}}$ and $s=\frac{q_{2}}{p_{2}}$, where $p_{1}, p_{2}, q_{1}, q_{2} \in \mathbb{N}$. Then $(\boldsymbol{\oplus})$ implies that

$$
\left(b^{r}\right)^{s}=\left(b^{\frac{q_{1}}{p_{1}}}\right)^{\frac{q_{2}}{p_{2}}}=\left(b^{\frac{1}{p_{1}}}\right)^{\frac{q_{1} q_{2}}{p_{2}}}=\left[\left(b^{\frac{1}{p_{1}}}\right)^{\frac{1}{p_{2}}}\right]^{q_{1} q_{2}}=\left(b^{\frac{1}{p_{1} p_{2}}}\right)^{q_{1} q_{2}}=b^{\frac{q_{1} q_{2}}{p_{1} p_{2}}}
$$

and

$$
b^{r+s}=b^{\frac{p_{2} q_{1}+p_{1} q_{2}}{p_{1} p_{2}}}=\left(b^{\frac{1}{p_{1} p_{2}}}\right)^{p_{2} q_{1}+p_{1} q_{2}}=\left(b^{\frac{1}{p_{1} p_{2}}}\right)^{p_{2} q_{1}} \cdot\left(b^{\frac{1}{p_{1} p_{2}}}\right)^{p_{1} q_{2}}=b^{\frac{p_{2} q_{1}}{p_{1} p_{2}}} \cdot b^{\frac{p_{1} q_{2}}{p_{1} p_{2}}}=b^{r} \cdot b^{s} .
$$

Therefore,

$$
\begin{equation*}
b^{r+s}=b^{r} \cdot b^{s} \quad \text { and } \quad b^{r s}=\left(b^{r}\right)^{s} \quad \forall r, s \in \mathbb{Q} \text { and } r, s>0 . \tag{ৎ}
\end{equation*}
$$

For $r \in \mathbb{Q}$ and $r<0$, we define $b^{r}=\left(b^{-r}\right)^{-1}$. Then if $r, s \in \mathbb{Q}$ and $r, s<0$, we have

$$
b^{r+s}=\left(b^{-(r+s)}\right)^{-1}=\left(b^{-r} \cdot b^{-s}\right)^{-1}=\left(b^{-r}\right)^{-1} \cdot\left(b^{-s}\right)^{-1}=b^{r} \cdot b^{s}
$$

and

$$
\left(b^{r}\right)^{s}=\left[\left(b^{-r}\right)^{-1}\right]^{s} .
$$

2. First we show that $x \in \mathbb{R}, B(x)$ is non-empty and bounded from above. By the Archimedean Property, there exists $n \in \mathbb{N}$ such that $-x<n$. Therefore, there exists a rational number $-n$ such that $-n<x$; thus $b^{-n} \in B(x)$ which implies that $B(x)$ is non-empty.

On the other hand, the Archimedean Property implies that there exists $m \in \mathbb{N}$ such that $x<m$. By the fact that

$$
\begin{equation*}
b^{t} \leqslant b^{s} \quad \text { whenever } \quad t \leqslant s \text { and } t, s \in \mathbb{Q}, \tag{*}
\end{equation*}
$$

we conclude that b^{m} is an upper bound for $B(x)$. Therefore, $B(x)$ is bounded from above. By the least upper bound property, we conclude that $\sup B(x)$ exists for all $x \in \mathbb{R}$.

Next we show that $b^{r}=\sup B(r)$ if $r \in \mathbb{Q}$. To see this, we note that $b^{r} \in B(r)$ if $r \in \mathbb{Q}$. On the other hand, (*) implies that b^{r} is an upper bound for $B(r)$; thus $\sup B(r)=b^{r}$.
3. We first show that

$$
\sup (c A)=c \cdot \sup A \quad \forall c>0
$$

where $c A=\{c \cdot x \mid x \in A\}$. To see (\star), we observe that

$$
x \in A \Rightarrow x \leqslant \sup A \Rightarrow c \cdot x \leqslant c \cdot \sup A \text { (by the compatibility of } \cdot \text { and } \leqslant) ;
$$

thus every element in $c A$ is bounded from above by $c \cdot \sup A$. Therefore,

$$
\sup (c A) \leqslant c \cdot \sup A
$$

On the other hand, let $\varepsilon>0$ be given. Then there exists $x \in A$ and $x>\sup A-\frac{\varepsilon}{c}$. Therefore, $c \cdot x>c \cdot \sup A-\varepsilon$; thus

$$
\sup (c A) \geqslant c \cdot x>c \cdot \sup A-\varepsilon
$$

Since $\varepsilon>0$ is given arbitrarily, we find that $\sup (c A) \geqslant c \cdot \sup A$; thus (\star) is concluded.
Next we show that

$$
\sup \left\{b^{t} \mid t \in \mathbb{Q}, t \leqslant x\right\}=\inf \left\{b^{s} \mid s \in \mathbb{Q}, s \geqslant x\right\} .
$$

Let $S(x)=\left\{b^{s} \mid s \in \mathbb{Q}, s \geqslant x\right\}$. If $b^{t} \in B(x)$, then b^{t} is a lower bound for $S(x)$. Therefore, $B(x)$ is a subset of the collection of all lower bounds for $S(x)$. By Problem 3 of Exercise 2,

$$
\sup B(x) \leqslant \sup \{y \mid y \text { is a lower bound for } S(x)\}=\inf S(x) .
$$

Suppose that $\sup B(x)<\inf S(x)$. Since $b^{\frac{1}{n}} \searrow 1$ as $n \rightarrow \infty$ (Problem 3 of Exercise 2), there exists $n \in \mathbb{N}$ such that $\inf S(x)>b^{\frac{1}{n}} \sup B(x)$. By the fact that there exists $r \in \mathbb{Q}$ and $x \leqslant r \leqslant x+\frac{1}{n}$, we find that

$$
\begin{aligned}
\inf S(x) & >b^{\frac{1}{n}} \sup B(x)=\sup \left\{\left.b^{r+\frac{1}{n}} \right\rvert\, r \in \mathbb{Q}, r \leqslant x\right\}=\sup \left\{b^{s} \mid s \in \mathbb{Q}, s \leqslant x+\frac{1}{n}\right\} \\
& \geqslant b^{r} \geqslant \inf \left\{b^{s} \mid s \in \mathbb{Q}, s \geqslant x\right\}=\inf S(x),
\end{aligned}
$$

a contradiction. Observe that

$$
\sup A^{-1}=(\inf A)^{-1} \quad \text { for every subset } A \text { of }(0, \infty)
$$

where $A^{-1}=\left\{t^{-1} \mid t \in A\right\}$ and $(0, \infty)$ is the collection consisting of positive elements in \mathbb{R}. Therefore, (\diamond) implies that for $x \in \mathbb{R}$,

$$
\begin{aligned}
b^{-x} & =\sup \left\{b^{t} \mid t \in \mathbb{Q}, t \leqslant-x\right\}=\sup \left\{b^{-t} \mid t \in \mathbb{Q}, t \geqslant x\right\}=\left[\inf \left\{b^{t} \mid t \in \mathbb{Q}, t \geqslant x\right\}\right]^{-1} \\
& =\left(b^{x}\right)^{-1}
\end{aligned}
$$

Now we show the law of exponential

$$
b^{x} \cdot b^{y}=b^{x+y} \quad \forall x, y \in \mathbb{R}
$$

Let $x, y \in \mathbb{R}$ be given. If $t, s \in \mathbb{Q}$ and $t \leqslant x, s \leqslant y$, then $t+s \in \mathbb{Q}$ and $t+s \leqslant x+y$; thus

$$
b^{t} \cdot b^{s}=b^{t+s} \leqslant \sup B(x+y)=b^{x+y} .
$$

For any given rational $t \leqslant x$, taking the supremum of the left-hand side over all rational $s \leqslant y$ and using ($*$) we find that

$$
\begin{aligned}
b^{-x} & =\sup \left\{b^{t} \mid t \in \mathbb{Q}, t \leqslant-x\right\}=\sup \left\{b^{-t} \mid t \in \mathbb{Q}, t \geqslant x\right\}=\left[\inf \left\{b^{t} \mid t \in \mathbb{Q}, t \geqslant x\right\}\right]^{-1} \\
& =\left(b^{x}\right)^{-1}
\end{aligned}
$$

Taking the supremum of the left-hand side over all rational $t \leqslant x$, using (\star) again we find that

$$
b^{y} \cdot b^{x}=b^{y} \cdot \sup \left\{b^{t} \mid t \in \mathbb{Q}, t \leqslant x\right\}=\sup \left\{b^{t+y} \mid t \in \mathbb{Q}, t \leqslant x\right\} \leqslant b^{x+y}
$$

thus we establish that

$$
b^{x} \cdot b^{y} \leqslant b^{x+y} \quad \forall x, y \in \mathbb{R} .
$$

Now, note that (∞) implies that for all $x, y \in \mathbb{R}$,

$$
b^{y}=b^{-x+x+y} \geqslant b^{-x} \cdot b^{x+y}=\left(b^{x}\right)^{-1} \cdot b^{x+y} \geqslant\left(b^{x}\right)^{-1} \cdot b^{x} \cdot b^{y}=b^{y} .
$$

The inequality above is indeed an equality and we obtain that

$$
b^{y}=b^{-x} b^{x+y} \quad \forall x, y \in \mathbb{R}
$$

This is indeed ($\star \star$) because of that $b^{-x}=\left(b^{x}\right)^{-1}$.
Next we show that $\left(b^{x}\right)^{y}=\sup B(x \cdot y)$ for all $x>0$ and $y \in \mathbb{R}$. For $z>0$, define $A(z)=\{s \in$ $\mathbb{R} \mid s \in \mathbb{Q}, 0<s \leqslant z\}$. Note that if $z>0$, then $b^{z}=\sup A(z)$. Since for $x>0$, we have $b^{x}>1$; thus for $x, y>0$,

$$
\left(b^{x}\right)^{y}=\sup \left\{\left(b^{x}\right)^{t} \mid t \in \mathbb{Q}, 0<t \leqslant y\right\}=\sup _{t \in A(y)}\left(b^{x}\right)^{t}=\sup _{t \in A(y)}\left(\sup _{s \in A(x)} b^{s}\right)^{t} .
$$

By Problem 5 of Exercise 2,

$$
\sup _{t \in A(y)}\left(\sup _{s \in A(x)} b^{s}\right)^{t}=\sup _{(t, s) \in A(y) \times A(x)}\left(b^{s}\right)^{t}=\sup _{(t, s) \in A(y) \times A(x)} b^{s t}=b^{\sup _{(t, s) \in A(y) \times A(x)} t s}=b^{x y} .
$$

4. Let $x_{1}<x_{2}$ be given. Then AP implies that there exists $r, s \in \mathbb{Q}$ such that $x_{1}<r<s<x_{2}$. Therefore, $B\left(x_{1}\right) \subseteq B(r) \subseteq B(s) \subseteq B\left(x_{2}\right)$; thus

$$
b^{x_{1}}=\sup B\left(x_{1}\right) \leqslant \sup B(r) \leqslant \sup B(s) \leqslant \sup B\left(x_{2}\right)=b^{x_{2}} .
$$

Since $B(r)=b^{r}$ and $B(s)=b^{s}$, we must have $B(r)<B(s)$; thus 4 is concluded.
5. Since $\frac{y}{b^{u}}>1$ and $\frac{b^{v}}{y}>1$, by the fact that $b^{\frac{1}{n}} \rightarrow 1$ as $n \rightarrow \infty$, there exist $N_{1}, N_{2}>0$ such that $\left|b^{\frac{1}{n}}-1\right|<\frac{y}{b^{u}}-1$ whenever $n \geqslant N_{1}$ and $\left|b^{\frac{1}{n}}-1\right|<\frac{b^{v}}{y}-1$ whenever $n \geqslant N_{2}$.
Let $N=\max \left\{N_{1}, N_{2}\right\}$. For $n \geqslant N$, we have $b^{\frac{1}{n}}<\frac{y}{b^{u}}$ and $b^{\frac{1}{n}}<\frac{b^{v}}{y}$ or equivalently,

$$
b^{u+\frac{1}{n}}<y \quad \text { and } \quad b^{v-\frac{1}{n}}>y \quad \forall n \geqslant N .
$$

6. Let $A=\left\{w \in \mathbb{R} \mid b^{w}<y\right\}$. Since $b>1,2$ of Problem 3 in Exercise 2 implies that

$$
b^{n}>1+n(b-1) \quad \text { whenever } \quad n \geqslant 2 .
$$

By AP, there exists $N \geqslant 2$ such that $1+N(b-1)>y$; thus A is bounded from above by N. Moreover, there exists $M \geqslant 2$ such that

$$
1+M(b-1)>\frac{1}{y}
$$

thus ($\star \star \star$) implies that $b^{-M}<y$ or $-M \in A$. Therefore, A is non-empty. By LUBP, we conclude that $\sup A$ exists.
Let $x=\sup A$. Then $x+\frac{1}{n} \notin A$; thus $b^{x+\frac{1}{n}} \geqslant y$ for all $n \in \mathbb{N}$. Since $b^{\frac{1}{n}} \rightarrow 1$ sa $n \rightarrow \infty$, we find that

$$
b^{x}=b^{x} \lim _{n \rightarrow \infty} b^{\frac{1}{n}}=\lim _{n \rightarrow \infty} b^{x+\frac{1}{n}} \geqslant y
$$

On the other hand, 4 implies that $x-\frac{1}{n} \in A$; thus $b^{x-\frac{1}{n}}<y$ for all $n \in \infty$ and we have

$$
b^{x}=b^{x} \lim _{n \rightarrow \infty} b^{-\frac{1}{n}}=\lim _{n \rightarrow \infty} b^{x-\frac{1}{n}} \leqslant y
$$

Therefore, $b^{x}=y$.
Problem 2. In this problem we prove the Intermediate Value Theorem:
Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous (at every point of $[a, b]$); that is,

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(\lim _{n \rightarrow \infty} x_{n}\right) \quad \text { for all convergent sequence }\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq[a, b] .
$$

If $f(a) f(b)<0$, then there exists $c \in[a, b]$ such that $f(c)=0$.

Complete the following.

1. W.L.O.G, we can assume that $f(a)<0$. Define the set $S=\{x \in[a, b] \mid f(x)>0\}$. Show that $\inf S$ exists.
2. Let $c=\inf S$. Show that $f(c) \geqslant 0$.
3. Conclude that $f(c) \leqslant 0$ as well.

Hint:

1. Show that S is non-empty and bounded from below.
2. Show that there exists a sequence $\left\{c_{n}\right\}_{n=1}^{\infty}$ in S such that $c_{n} \rightarrow c$ as $n \rightarrow \infty$.
3. Show that there exists a sequence $\left\{c_{n}\right\}_{n=1}^{\infty}$ in $[a, c)$ such that $c_{n} \rightarrow c$ as $n \rightarrow \infty$.

Proof. 1. Since $f(b)>0, b \in S$. Moreover, a is a lower bound for S; thus S is non-empty and bounded from below. By the completeness of $\mathbb{R}, \inf S \in \mathbb{R}$ exists.
2. Let $c=\inf S$. For each $n \in \mathbb{N}$, there exists $c_{n}<c+\frac{1}{n}$ and $c_{n} \in S$. Then $f\left(c_{n}\right)>0$ for all $n \in \mathbb{N}$ and

$$
c \leqslant c_{n}<c+\frac{1}{n} \quad \forall n \in \mathbb{N}
$$

Then the Sandwich Lemma implies that $c_{n} \rightarrow c$ as $n \rightarrow \infty$. By the continuity of f,

$$
f(c)=f\left(\lim _{n \rightarrow \infty} c_{n}\right)=\lim _{n \rightarrow \infty} f\left(c_{n}\right) \geqslant 0 .
$$

3. By $2, a \neq c$. Consider the sequence $\left\{c_{n}\right\}_{n=1}^{\infty}$ defined by $c_{n}=c-\frac{c-a}{n}$. Then $\left\{c_{n}\right\}_{n=1}^{\infty} \subseteq[a, c)$. Moreover, by the fact that $c=\inf S$ and $c_{n}<c, c_{n} \notin S$ for all $n \in \mathbb{N}$. Therefore, $f\left(c_{n}\right) \leqslant 0$ for all $n \in \mathbb{N}$. Since $c_{n} \rightarrow c$ as $n \rightarrow \infty$, by the continuity of f we find that

$$
f(c)=f\left(\lim _{n \rightarrow \infty} c_{n}\right)=\lim _{n \rightarrow \infty} f\left(c_{n}\right) \leqslant 0 .
$$

Problem 3. In this problem we prove the Extreme Value Theorem:

Let $a, b \in \mathbb{R}, a<b$ and $f:[a, b] \rightarrow \mathbb{R}$ be continuous (at every point of $[a, b])$; that is,

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(\lim _{n \rightarrow \infty} x_{n}\right) \quad \text { for all convergent sequence }\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq[a, b] .
$$

Then there exist $c, d \in[a, b]$ such that $f(c)=\sup _{x \in[a, b]} f(x)$ and $f(d)=\inf _{x \in[a, b]} f(x)$.

Complete the following.

1. Show that there exist sequences $\left\{c_{n}\right\}_{n=1}^{\infty}$ and $\left\{d_{n}\right\}_{n=1}^{\infty}$ in $[a, b]$ such that

$$
\lim _{n \rightarrow \infty} f\left(c_{n}\right)=\sup _{x \in[a, b]} f(x) \quad \text { and } \quad \lim _{n \rightarrow \infty} f\left(d_{n}\right)=\inf _{x \in[a, b]} f(x) .
$$

2. Extract convergent subsequences $\left\{c_{n_{k}}\right\}_{k=1}^{\infty}$ and $\left\{d_{n_{k}}\right\}_{k=1}^{\infty}$ with limit c and d, respectively. Show that $c, d \in[a, b]$.
3. Show that $f(c)=\sup _{x \in[a, b]} f(x)$ and $f(d)=\inf _{x \in[a, b]} f(x)$.

Proof. It suffices to show the case of $\sup _{x \in[a, b]} f(x)$ since $\inf _{x \in[a, b]} f(x)=-\sup _{x \in[a, b]}(-f)(x)$ by Problem 2 of Exercise 3.

1. We first show that $f([a, b])$ is bounded. Suppose the contrary that $f([a, b])$ is not bounded. Then for each $n \in \mathbb{N}$, there exists $x_{n} \in[a, b]$ such that $\left|f\left(x_{n}\right)\right|>n$. Since $\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq[a, b],\left\{x_{n}\right\}_{n=1}^{\infty}$ is bounded. By the fact that MSP $\Rightarrow \mathbf{B W P}$, there exists a convergent subsequence $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ of $\left\{x_{n}\right\}_{n=1}^{\infty}$. By the continuity of $f,\left\{f\left(x_{n_{k}}\right)\right\}_{k=1}^{\infty}$ is also convergent; thus Proposition 1.39 in the lecture note implies that $\left\{f\left(x_{n_{k}}\right)\right\}_{k=1}^{\infty}$ is bounded, a contradiction to that $\left|f\left(x_{n_{k}}\right)\right| \geqslant n_{k} \geqslant k$ for all $k \in \mathbb{N}$.

Since $f([a, b])$ is bounded, $M=\sup f([a, b])=\sup _{x \in[a, b]} f(x)$ exists. For each $n \in \mathbb{R}$, there exists $c_{n} \in[a, b]$ such that

$$
M-\frac{1}{n}<f\left(c_{n}\right) \leqslant M
$$

By the Sandwich Lemma, $\lim _{n \rightarrow \infty} f\left(c_{n}\right)=M=\sup _{x \in[a, b]} f(x)$.
2. Since $\left\{c_{n}\right\}_{n=1}^{\infty} \subseteq[a, b],\left\{c_{n}\right\}_{n=1}^{\infty}$ is bounded. By the fact that MSP $\Rightarrow \mathbf{B W P}$, there exists a convergent subsequence $\left\{c_{n_{k}}\right\}_{k=1}^{\infty}$ of $\left\{c_{n}\right\}_{n=1}^{\infty}$ with limit c. Since $a \leqslant c_{n_{k}} \leqslant b$ for all $k \in \mathbb{N}$, by a Proposition that we talked about in class we conclude that $a \leqslant c \leqslant b$.
3. Since $c_{n_{k}} \rightarrow c$ as $k \rightarrow \infty$, the continuity of f implies that

$$
f(c)=f\left(\lim _{k \rightarrow \infty} c_{n_{k}}\right)=\lim _{k \rightarrow \infty} f\left(c_{n_{k}}\right)=\sup _{x \in[a, b]} f(x) .
$$

Problem 4. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ and $\left\{y_{n}\right\}_{n=1}^{\infty}$ be sequences in \mathbb{R}. Prove the following inequalities:

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} x_{n}+\liminf _{n \rightarrow \infty} y_{n} & \leqslant \liminf _{n \rightarrow \infty}\left(x_{n}+y_{n}\right) \leqslant \liminf _{n \rightarrow \infty} x_{n}+\limsup _{n \rightarrow \infty} y_{n} \\
& \leqslant \limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right) \leqslant \limsup x_{n}+\limsup _{n \rightarrow \infty} y_{n} ; \\
\left(\liminf _{n \rightarrow \infty}^{\lim }\left|x_{n}\right|\right)\left(\liminf _{n \rightarrow \infty}\left|y_{n}\right|\right) & \leqslant \liminf _{n \rightarrow \infty}^{\operatorname{limin}}\left|x_{n} y_{n}\right| \leqslant\left(\liminf _{n \rightarrow \infty}\left|x_{n}\right|\right)\left(\limsup _{n \rightarrow \infty}\left|y_{n}\right|\right) \\
& \leqslant \limsup _{n \rightarrow \infty}^{\lim }\left|x_{n} y_{n}\right| \leqslant\left(\limsup _{n \rightarrow \infty}\left|x_{n}\right|\right)\left(\limsup _{n \rightarrow \infty}\left|y_{n}\right|\right) .
\end{aligned}
$$

Give examples showing that the equalities are generally not true.
Proof. 1. Let $k \in \mathbb{N}$ be fixed. Note that for $n \geqslant k$, we have

$$
\inf _{n \geqslant k}\left(x_{n}+y_{n}\right) \leqslant x_{n}+y_{n} \leqslant \sup _{n \geqslant k}\left(x_{n}+y_{n}\right) .
$$

Note that the LHS and the RHS are functions of k and is independent of n. Therefore,

$$
\inf _{n \geqslant k}\left[\inf _{n \geqslant k}\left(x_{n}+y_{n}\right)-y_{n}\right] \leqslant \inf _{n \geqslant k} x_{n} \leqslant \inf _{n \geqslant k}\left[\sup _{n \geqslant k}\left(x_{n}+y_{n}\right)-y_{n}\right]
$$

which further shows that

$$
\inf _{n \geqslant k}\left(x_{n}+y_{n}\right)-\sup _{n \geqslant k} y_{n} \leqslant \inf _{n \geqslant k} x_{n} \leqslant \sup _{n \geqslant k}\left(x_{n}+y_{n}\right)-\sup _{n \geqslant k} y_{n} .
$$

Therefore,

$$
\inf _{n \geqslant k}\left(x_{n}+y_{n}\right) \leqslant \inf _{n \geqslant k} x_{n}+\sup _{n \geqslant k} y_{n} \leqslant \sup _{n \geqslant k}\left(x_{n}+y_{n}\right) \quad \forall k \in \mathbb{N},
$$

and the first inequality follows from the fact that

$$
\inf _{n \geqslant k} x_{n}+\inf _{n \geqslant k} y_{n} \leqslant \inf _{n \geqslant k}\left(x_{n}+y_{n}\right) \leqslant \inf _{n \geqslant k} x_{n}+\sup _{n \geqslant k} y_{n} \leqslant \sup _{n \geqslant k}\left(x_{n}+y_{n}\right) \leqslant \sup _{n \geqslant k} x_{n}+\sup _{n \geqslant k} y_{n}
$$

for each $k \in \mathbb{N}$.
2. Let $k \in \mathbb{N}$ be fixed. Note that for $n \geqslant k$, we have

$$
\inf _{n \geqslant k}\left[\left|x_{n}\right|\left(\left|y_{n}\right|+\frac{1}{k}\right)\right] \leqslant\left|x_{n}\right|\left(\left|y_{n}\right|+\frac{1}{k}\right) \leqslant \sup _{n \geqslant k}\left[\left|x_{n}\right|\left(\left|y_{n}\right|+\frac{1}{k}\right)\right] .
$$

Note that the LHS and the RHS for functions of k and is independent of n. Therefore,

$$
\inf _{n \geqslant k} \frac{\inf _{n \geqslant k}\left[\left|x_{n}\right|\left(\left|y_{n}\right|+\frac{1}{k}\right)\right]}{\left|y_{n}\right|+\frac{1}{k}} \leqslant \inf _{n \geqslant k}\left|x_{n}\right| \leqslant \inf _{n \geqslant k} \frac{\sup _{n \geqslant k}\left[\left|x_{n}\right|\left(\left|y_{n}\right|+\frac{1}{k}\right)\right]}{\left|y_{n}\right|+\frac{1}{k}} .
$$

By the fact that

$$
\inf _{n \geqslant k} \frac{1}{\left|y_{n}\right|+\frac{1}{k}}=\frac{1}{\sup _{n \geqslant k}\left(\left|y_{n}\right|+\frac{1}{k}\right)}
$$

we find that

$$
\frac{\inf _{n \geqslant k}\left[\left|x_{n}\right|\left(\left|y_{n}\right|+\frac{1}{k}\right)\right]}{\sup _{n \geqslant k}\left(\left|y_{n}\right|+\frac{1}{k}\right)} \leqslant \inf _{n \geqslant k}\left|x_{n}\right| \leqslant \inf _{n \geqslant k} \frac{\sup _{n \geqslant k}\left[\left|x_{n}\right|\left(\left|y_{n}\right|+\frac{1}{k}\right)\right]}{\sup _{n \geqslant k}\left(\left|y_{n}\right|+\frac{1}{k}\right)}
$$

thus

$$
\inf _{n \geqslant k}\left[\left|x_{n}\right|\left(\left|y_{n}\right|+\frac{1}{k}\right)\right] \leqslant \inf _{n \geqslant k}\left|x_{n}\right| \sup _{n \geqslant k}\left(\left|y_{n}\right|+\frac{1}{k}\right) \leqslant \sup _{n \geqslant k}\left[\left|x_{n}\right|\left(\left|y_{n}\right|+\frac{1}{k}\right)\right] .
$$

The second inequality follows from the fact that

$$
\begin{aligned}
\inf _{n \geqslant k}\left|x_{n}\right| \inf _{n \geqslant k}\left(\left|y_{n}\right|+\frac{1}{k}\right) & \leqslant \inf _{n \geqslant k}\left[\left|x_{n}\right|\left(\left|y_{n}\right|+\frac{1}{k}\right)\right] \leqslant \inf _{n \geqslant k}\left|x_{n}\right| \sup _{n \geqslant k}\left(\left|y_{n}\right|+\frac{1}{k}\right) \\
& \leqslant \sup _{n \geqslant k}\left[\left|x_{n}\right|\left(\left|y_{n}\right|+\frac{1}{k}\right)\right] \leqslant \sup _{n \geqslant k}\left|x_{n}\right| \sup _{n \geqslant k}\left(\left|y_{n}\right|+\frac{1}{k}\right)
\end{aligned}
$$

for each $k \in \mathbb{N}$, and passing to the limit as $k \rightarrow \infty$.
3. Let $x_{n}=2+\sin n$ and $y_{n}=2+\cos n$. Then $x_{n}, y_{n}>0$, and

$$
\liminf _{n \rightarrow \infty} x_{n}=\liminf _{n \rightarrow \infty} y_{n}=1, \quad \limsup _{n \rightarrow \infty} x_{n}=\limsup _{n \rightarrow \infty} y_{n}=3
$$

By Problem 3, the set $\{x \in[0,2 \pi] \mid x=k(\bmod 2 \pi)$ for some $k \in \mathbb{N}\}$ is dense in $[0,2 \pi]$; thus for each $\theta \in[0,2 \pi]$ there exists an increasing sequence $\left\{k_{j}\right\}_{j=1}^{\infty} \subseteq \mathbb{N}$ such that $x_{k_{j}}=k_{j}(\bmod 2 \pi)$ and $\left\{x_{k_{j}}\right\}_{j=1}^{\infty}$ converges to θ. This implies that for each $\theta \in[-1,1]$, there exists a subsequence $\left\{\cos k_{j}\right\}_{j=1}^{\infty}$ such that

$$
\lim _{j \rightarrow \infty} \cos n_{j}=\cos \theta \quad \text { and } \quad \lim _{j \rightarrow \infty} \sin n_{j}=\sin \theta
$$

Therefore, we have

$$
\liminf _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=4-\sqrt{2}, \quad \limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=4+\sqrt{2}
$$

and

$$
\liminf _{n \rightarrow \infty} x_{n} y_{n}=\frac{9}{2}-2 \sqrt{2}, \quad \limsup _{n \rightarrow \infty} x_{n} y_{n}=\frac{9}{2}+2 \sqrt{2}
$$

Therefore,

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} x_{n}+\liminf _{n \rightarrow \infty} y_{n} & <\liminf _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)<\liminf _{n \rightarrow \infty} x_{n}+\limsup _{n \rightarrow \infty} y_{n} \\
& <\limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)<\limsup _{n \rightarrow \infty} x_{n}+\limsup _{n \rightarrow \infty} y_{n}
\end{aligned}
$$

and

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} x_{n} \cdot \liminf _{n \rightarrow \infty} y_{n} & <\liminf _{n \rightarrow \infty}\left(x_{n} y_{n}\right)<\liminf _{n \rightarrow \infty} x_{n} \cdot \limsup y_{n \rightarrow \infty} \\
& <\limsup _{n \rightarrow \infty}\left(x_{n} y_{n}\right)<\limsup _{n \rightarrow \infty} x_{n} \cdot \limsup _{n \rightarrow \infty} y_{n}
\end{aligned}
$$

Therefore, the equalities are generally not true.

Problem 5. Prove that

$$
\liminf _{n \rightarrow \infty} \frac{\left|x_{n+1}\right|}{\left|x_{n}\right|} \leqslant \liminf _{n \rightarrow \infty} \sqrt[n]{\left|x_{n}\right|} \leqslant \limsup _{n \rightarrow \infty} \sqrt[n]{\left|x_{n}\right|} \leqslant \limsup _{n \rightarrow \infty} \frac{\left|x_{n+1}\right|}{\left|x_{n}\right|} .
$$

Give examples to show that the equalities are not true in general. Is it true that $\lim _{n \rightarrow \infty} \sqrt[n]{\left|x_{n}\right|}$ exists implies that $\lim _{n \rightarrow \infty} \frac{\left|x_{n+1}\right|}{\left|x_{n}\right|}$ also exists?
Proof. W.L.O.G. we can assume that $\liminf _{n \rightarrow \infty} \frac{\left|x_{n+1}\right|}{\left|x_{n}\right|}>0$ and $\limsup _{n \rightarrow \infty} \frac{\left|x_{n+1}\right|}{\left|x_{n}\right|}<\infty$. Let $a=\liminf _{n \rightarrow \infty} \frac{\left|x_{n+1}\right|}{\left|x_{n}\right|}$ and $b=\limsup _{n \rightarrow \infty} \frac{\left|x_{n+1}\right|}{\left|x_{n}\right|}$, and $\varepsilon>0$ be given such that $a-\varepsilon>0$. Then there exists $N>0$ such that

$$
a-\varepsilon<\frac{\left|x_{n+1}\right|}{\left|x_{n}\right|}<b+\varepsilon \quad \forall n \geqslant N .
$$

Therefore,

$$
(a-\varepsilon)\left|x_{n}\right|<\left|x_{n+1}\right|<(b+\varepsilon)\left|x_{n}\right| \quad \forall n \geqslant N
$$

which implies that if $n>N$,

$$
\left|x_{n}\right|>(a-\varepsilon)\left|x_{n-1}\right|>(a-\varepsilon)^{2}\left|x_{n-2}\right|>\cdots>(a-\varepsilon)^{n-N}\left|x_{N}\right|
$$

and

$$
\left|x_{n}\right|<(b+\varepsilon)\left|x_{n-1}\right|<(b+\varepsilon)^{2}\left|x_{n-2}\right|<\cdots<(b+\varepsilon)^{n-N}\left|x_{N}\right| .
$$

The inequality above implies that

$$
(a-\varepsilon)^{1-\frac{N}{n}} \sqrt[n]{\left|x_{N}\right|}<\sqrt[n]{\left|x_{n}\right|}<(b+\varepsilon)^{1-\frac{N}{n}} \sqrt[n]{\left|x_{N}\right|} ;
$$

thus

$$
\liminf _{n \rightarrow \infty}\left[(a-\varepsilon)^{1-\frac{N}{n}} \sqrt[n]{\left|x_{N}\right|}\right] \leqslant \liminf _{n \rightarrow \infty} \sqrt[n]{\left|x_{n}\right|} \leqslant \limsup _{n \rightarrow \infty} \sqrt[n]{\left|x_{n}\right|} \leqslant \limsup _{n \rightarrow \infty}\left[(b+\varepsilon)^{1-\frac{N}{n}} \sqrt[n]{\left|x_{N}\right|}\right]
$$

By Problem 3 of Exercise 2, $\lim _{n \rightarrow \infty} b^{\frac{1}{n}}=1$ for all $b>0$. Therefore,

$$
\liminf _{n \rightarrow \infty}\left[(a-\varepsilon)^{1-\frac{N}{n}} \sqrt[n]{\left|x_{N}\right|}\right]=\lim _{n \rightarrow \infty}(a-\varepsilon)^{1-\frac{N}{n}} \sqrt[n]{\left|x_{N}\right|}=a-\varepsilon=\liminf _{n \rightarrow \infty} \frac{\left|x_{n+1}\right|}{\left|x_{n}\right|}-\varepsilon
$$

and

$$
\limsup _{n \rightarrow \infty}\left[(b+\varepsilon)^{1-\frac{N}{n}} \sqrt[n]{\left|x_{N}\right|}\right]=\lim _{n \rightarrow \infty}(b+\varepsilon)^{1-\frac{N}{n}} \sqrt[n]{\left|x_{N}\right|}=b+\varepsilon=\limsup _{n \rightarrow \infty} \frac{\left|x_{n+1}\right|}{\left|x_{n}\right|}+\varepsilon .
$$

Since the inequality above holds for all $\varepsilon>0$, we conclude that

$$
\liminf _{n \rightarrow \infty} \frac{\left|x_{n+1}\right|}{\left|x_{n}\right|} \leqslant \liminf _{n \rightarrow \infty} \sqrt[n]{\left|x_{n}\right|} \leqslant \limsup _{n \rightarrow \infty} \sqrt[n]{\left|x_{n}\right|} \leqslant \limsup _{n \rightarrow \infty} \frac{\left|x_{n+1}\right|}{\left|x_{n}\right|} .
$$

Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a real sequence defined by

$$
x_{n}= \begin{cases}2^{-n} & \text { if } n \text { is odd }, \\ 4^{-n} & \text { if } n \text { is even },\end{cases}
$$

or $x_{n}=\left(3+(-1)^{n}\right)^{-n}$. Then $\sqrt[n]{\left|x_{n}\right|}=3+(-1)^{n}$ which shows that

$$
\liminf _{n \rightarrow \infty} \sqrt[n]{\left|x_{n}\right|}=\frac{1}{4} \quad \text { and } \quad \limsup _{n \rightarrow \infty} \sqrt[n]{\left|x_{n}\right|}=\frac{1}{2}
$$

To compute the limit superior and limit inferior of $\frac{\left|x_{n+1}\right|}{\left|x_{n}\right|}$, we define

$$
y_{n}=\frac{\left|x_{n+1}\right|}{\left|x_{n}\right|}=\frac{\left(3+(-1)^{n+1}\right)^{-n-1}}{\left(3+(-1)^{n}\right)^{-n}}=\frac{1}{3-(-1)^{n}}\left(\frac{3-(-1)^{n}}{3+(-1)^{n}}\right)^{-n}
$$

and observe that $\lim _{n \rightarrow \infty} y_{2 n}=0$ and $\lim _{n \rightarrow \infty} y_{2 n+1}=\infty$. Since $y_{n} \in[0, \infty)$, we conclude that 0 is the smallest cluster point of $\left\{y_{n}\right\}_{n=1}^{\infty}$ and ∞ is the largest "cluster point" of $\left\{y_{n}\right\}_{n=1}^{\infty}$. This shows that

$$
\liminf _{n \rightarrow \infty} \frac{\left|x_{n+1}\right|}{\left|x_{n}\right|}=0 \quad \text { and } \quad \limsup _{n \rightarrow \infty} \frac{\left|x_{n+1}\right|}{\left|x_{n}\right|}=\infty .
$$

Problem 6. Given the following sets consisting of elements of some sequence of real numbers. Find the limsup and liminf of the sequence.

1. $\{\cos m \mid m=0,1,2, \cdots\}$.
2. $\{\sqrt[m]{|\sin m|} \mid m=1,2, \cdots\}$.
3. $\left\{\left.\left(1+\frac{1}{m}\right) \sin \frac{m \pi}{6} \right\rvert\, m=1,2, \cdots\right\}$.

Hint: 1. First show that for all irrational α, the set

$$
S=\{x \in[0,1] \mid x=k \alpha(\bmod 1) \text { for some } k \in \mathbb{N}\}
$$

is dense in $[0,1]$; that is, for all $y \in[0,1]$ and $\varepsilon>0$, there exists $x \in S \cap(y-\varepsilon, y+\varepsilon)$. Then choose $\alpha=\frac{1}{2 \pi}$ to conclude that

$$
T=\{x \in[0,2 \pi] \mid x=k(\bmod 2 \pi) \text { for some } k \in \mathbb{N}\}
$$

is dense in $[0,2 \pi]$. To prove that S is dense in $[0,1]$, you might want to consider the following set

$$
S_{k}=\{x \in[0,1] \mid x=\ell \alpha(\bmod 1) \text { for some } 1 \leqslant \ell \leqslant k+1\}
$$

Note that there must be two points in S_{k} whose distance is less than $\frac{1}{k}$. What happened to (the multiples of) the difference of these two points?
2. Use the fact that π is a Liouville number; that is, there exists $d \in \mathbb{N}$ such that

$$
\left|\pi-\frac{p}{q}\right| \geqslant \frac{1}{q^{d}} \quad \forall p, q \in \mathbb{Z}, q \neq 0
$$

Proof. 1. Define $S_{k}=\{x \in[0,1] \mid x=\ell \alpha(\bmod 1)$ for some $1 \leqslant \ell \leqslant k+1\}$. Let $1 \leqslant \ell_{1}, \ell_{2} \leqslant k+1$, and $x, y \in[0,1]$ satisfying that $x=\ell_{1} \alpha(\bmod 1)$ and $y=\ell_{2} \alpha(\bmod 1)$. Then by the fact that $\alpha \notin \mathbb{Q}$,

$$
x=y \quad \Leftrightarrow \quad \ell_{1} \alpha=\ell_{2} \alpha(\bmod 1) \quad \Leftrightarrow \quad\left(\ell_{1}-\ell_{2}\right) \alpha \in \mathbb{Z} \quad \Leftrightarrow \quad \ell_{1}-\ell_{2}=0
$$

Therefore, there are $(k+1)$ distinct points in S_{k} (this also shows that each $k \in \mathbb{N}$ corresponds to different point $x=k \alpha(\bmod 1)$ in $S)$. Moreover, $x \notin \mathbb{Q}$ if $x \in S_{k}$. By the pigeonhole principle, there exist x, y in S_{k} satisfying that $0<|x-y|<\frac{1}{k}$.
Let $\varepsilon>0$ be given. Then there exists $n \in \mathbb{N}$ such that $\frac{1}{n}<\varepsilon$. By the discussion above, there exist $x, y \in S_{n}$ such that $0<|x-y|<\varepsilon$. Suppose that $x=n_{1} \alpha(\bmod 1)$ and $y=n_{2} \alpha(\bmod$ 1), and define $m=\left|n_{1}-n_{2}\right|$. The point $z \in[0,1]$ satisfying $z=m \alpha(\bmod 1)$ has the property that $z \in(0, \varepsilon) \cup(1-\varepsilon, 1)$. Therefore,

$$
(\forall \varepsilon>0)(\exists x \in S)(x \in(0, \varepsilon) \cup(1-\varepsilon, 1)) .
$$

Let $y \in[0,1]$ and $\varepsilon>0$ be given. The discussion above provides an $x \in(0,1)$ such that $x=k \alpha$ (mod 1) for some $k \in \mathbb{N}$ and $x \in(0, \varepsilon) \cup(1-\varepsilon, 1)$. Then some constant multiple of x must belong to $(y-\varepsilon, y+\varepsilon)$. If $\ell x \in(y-\varepsilon, y+\varepsilon)$, then $z=k \ell \alpha(\bmod 1)$ in $(y-\varepsilon, y+\varepsilon)$. This shows that S is dense in $[0,1]$.

Having established that S is dense in $[0,1]$, we find that T is dense in $[0,2 \pi]$. Therefore, for each $\theta \in[0,2 \pi]$ there exists an increasing sequence $\left\{m_{j}\right\}_{j=1}^{\infty} \subseteq \mathbb{N}$ such that $x_{m_{j}}=m_{j}(\bmod$ $2 \pi)$ and $\left\{x_{m_{j}}\right\}_{j=1}^{\infty} \subseteq[0,2 \pi]$ converges to θ. In particular, for each $\theta \in[0,2 \pi]$ there exists an increasing sequence $\left\{m_{j}\right\}_{j=1}^{\infty} \subseteq \mathbb{N}$ such that

$$
\lim _{j \rightarrow \infty} \cos m_{j}=\cos \theta \quad \text { and } \quad \lim _{j \rightarrow \infty} \sin m_{j}=\sin \theta
$$

thus we conclude that $\limsup _{m \rightarrow \infty} \cos m=1$ and $\liminf _{m \rightarrow \infty} \cos m=-1$.
2. Since π is not a Liouville number, there exists $d \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|\pi-\frac{p}{q}\right| \geqslant \frac{1}{q^{d}} \quad \forall p, q \in \mathbb{Z}, q \neq 0 . \tag{0.1}
\end{equation*}
$$

For each $m \in \mathbb{N}$, let $q_{m} \in \mathbb{N}$ be such that

$$
\begin{equation*}
\inf _{q \in \mathbb{N}}|q \pi-m|=\left|q_{m} \pi-m\right| \tag{0.2}
\end{equation*}
$$

Such q_{m} exists since the infimum indeed occurs in a finite set of \mathbb{N}. Using (0.1), we find that

$$
\frac{1}{q_{m}^{d-1}} \leqslant\left|q_{m} \pi-m\right| \quad \forall m \in \mathbb{N}
$$

On the other hand, because of (0.2) we must have

$$
\left.\left|q_{m} \pi-m\right| \leqslant \frac{\pi}{2} \quad \forall m \gg 1 \quad \text { (in fact, } m \geqslant 6 \text { is enough }\right)
$$

since we cannot have $\left|q_{m} \pi-m\right|>\frac{\pi}{2},\left|\left(q_{m}+1\right) \pi-m\right|>\frac{\pi}{2}$ and $\left|\left(q_{m}-1\right) \pi-m\right|>\frac{\pi}{2}$ simultaneously. Therefore,

$$
\begin{equation*}
\frac{1}{q_{m}^{d-1}} \leqslant\left|q_{m} \pi-m\right| \leqslant \frac{\pi}{2} \quad \forall m \gg 1 \tag{0.3}
\end{equation*}
$$

which, together with the inequality $\frac{2}{\pi} x \leqslant \sin x$ for all $x \in\left[0, \frac{\pi}{2}\right]$, further shows that

$$
\begin{equation*}
\frac{2}{\pi} \frac{1}{q_{m}^{d-1}} \leqslant \sin \frac{1}{q_{m}^{d-1}} \leqslant|\sin m| \leqslant 1 \quad \forall m \gg 1 \tag{0.4}
\end{equation*}
$$

The inequality above shows that

$$
\left(\frac{2}{\pi q_{m}^{d-1}}\right)^{\frac{1}{m}} \leqslant \sqrt[m]{|\sin m|} \leqslant 1 \quad \forall m \gg 1
$$

Since (0.3) implies that $\frac{m}{\pi}-\frac{1}{2} \leqslant q_{m} \leqslant \frac{m}{\pi}+\frac{1}{2}$ for all $m \gg 1$, the fact that

$$
\lim _{m \rightarrow \infty}\left(\frac{m}{\pi} \pm \frac{1}{2}\right)^{\frac{1}{m}}=1
$$

and the Sandwich Lemma show that

$$
\lim _{m \rightarrow \infty} q_{m}^{\frac{1}{m}}=1
$$

Passing to the limit as $m \rightarrow \infty$ in (0.4), we conclude that $\lim _{m \rightarrow \infty} \sqrt[m]{|\sin m|}=1$. This shows that

$$
\liminf _{m \rightarrow \infty} \sqrt[m]{|\sin m|}=\limsup _{m \rightarrow \infty} \sqrt[m]{|\sin m|}=1
$$

3. Let $x_{m}=\left(1+\frac{1}{m}\right) \sin \frac{m \pi}{6}$. Since $\lim _{m \rightarrow \infty}\left(1+\frac{1}{m}\right)=1>0$ and there are seven cluster points, $\left\{ \pm 1, \pm \frac{\sqrt{3}}{2}, \pm \frac{1}{2}, 0\right\}$, of the sequence $\left\{\sin \frac{m \pi}{6}\right\}_{m=1}^{\infty}$, we expect that

$$
\limsup _{m \rightarrow \infty}\left(1+\frac{1}{m}\right) \sin \frac{m \pi}{6}=1 \quad \text { and } \quad \liminf _{m \rightarrow \infty}\left(1+\frac{1}{m}\right) \sin \frac{m \pi}{6}=-1
$$

To see that our expectation is in fact true, we let $\varepsilon>0$ be given and observe that

$$
\#\left\{m \in \mathbb{N} \mid x_{m}>1+\varepsilon\right\} \leqslant\left[\frac{1}{\varepsilon}\right]+1<\infty
$$

while the set $\left\{m \in \mathbb{N} \mid x_{m}>1+\varepsilon\right\} \supseteq\{12 k+3 \mid k \in \mathbb{N}\}$ so that

$$
\#\left\{m \in \mathbb{N} \mid x_{m}>1+\varepsilon\right\}=\infty .
$$

Therefore, Proposition 1.98 shows that 1 is the limit superior of $\left\{x_{m}\right\}_{m=1}^{\infty}$. Similarly, -1 is the limit inferior of $\left\{x_{m}\right\}_{m=1}^{\infty}$.

