Problem 1. Let $b \in \mathbb{R}$ and b > 1.

- 1. Show the law of exponents holds (for rational exponents); that is, show that
 - (a) if r, s in \mathbb{Q} , then $b^{r+s} = b^r \cdot b^s$.
 - (b) if r, s in \mathbb{Q} , then $b^{r \cdot s} = (b^r)^s$.
- 2. For $x \in \mathbb{R}$, let $B(x) = \{b^t \in \mathbb{R} \mid t \in \mathbb{Q}, t \leq x\}$. Show that $\sup B(x)$ exists for all $x \in \mathbb{R}$, and $b^r = \sup B(r)$ if $r \in \mathbb{Q}$.
- 3. Define $b^x = \sup B(x)$ for $x \in \mathbb{R}$. Show that B(x) > 0 for all $x \in \mathbb{R}$ and the law of exponents (for exponents in \mathbb{R})
 - (a) if x, y in \mathbb{R} , then $b^{x+y} = b^x \cdot b^y$, (b) if x, y > 0, then $b^{x \cdot y} = (b^x)^y$,

are also valid.

- 4. Show that if $x_1, x_2 \in \mathbb{R}$ and $x_1 < x_2$, then $b^{x_1} < b^{x_2}$. This implies that if x_1, x_2 are two numbers in \mathbb{R} satisfying $b^{x_1} = b^{x_2}$, then $x_1 = x_2$.
- 5. Let y > 0 be given. Show that if $u, v \in \mathbb{R}$ such that $b^u < y$ and $b^v > y$, then $b^{u+1/n} < y$ and $b^{v-1/n} > y$ for sufficiently large n.
- 6. Let y > 0 be given, and $A \subseteq \mathbb{R}$ be the set of all w such that $b^w < y$. Show that $\sup A$ exists and $x = \sup A$ satisfies $b^x = y$. The number x (the uniqueness is guaranteed by 4) satisfying $b^x = y$ is called the logarithm of y to the base b, and is denoted by $\log_b y$.

Hint: Make use of Problem 3 in Exercise 2.

Proof. We note that \mathbb{R} satisfies Archimedean property and the least upper bound property.

1. Note that the exponential law holds if the exponents are integers; that is,

$$b^{n+m} = b^n \cdot b^m$$
 and $b^{nm} = (b^n)^m$ $\forall n, m \in \mathbb{Z}$.

For $m, n \in \mathbb{N}$, we "define" $b^{\frac{n}{m}}$ as the *n*-th power of $b^{\frac{1}{m}}$; that is, $b^{\frac{n}{m}} = \left(b^{\frac{1}{m}}\right)^n$. Then for $m, n \in \mathbb{N}$,

$$\left[\left(b^{\frac{1}{m}}\right)^{n}\right]^{m} = \left(b^{\frac{1}{m}}\right)^{mn} = b^{\frac{mn}{m}} = b^{n}$$

which implies that $(b^{\frac{1}{m}})^n$ is the m-th root of b^n if $m, n \in \mathbb{N}$. Moreover, $(b^{\frac{1}{mn}})^n = b^{\frac{1}{m}}$ and $(b^{\frac{1}{mn}})^m = b^{\frac{1}{n}}$; thus we establish that

$$b^{\frac{n}{m}} = \left(b^{\frac{1}{m}}\right)^n = (b^n)^{\frac{1}{m}}$$
 and $b^{\frac{1}{mn}} = \left(b^{\frac{1}{m}}\right)^{\frac{1}{n}}$ $\forall m, n \in \mathbb{N}$.

Suppose that $r = \frac{q_1}{p_1}$ and $s = \frac{q_2}{p_2}$, where $p_1, p_2, q_1, q_2 \in \mathbb{N}$. Then (\spadesuit) implies that

$$(b^r)^s = \left(b^{\frac{q_1}{p_1}}\right)^{\frac{q_2}{p_2}} = \left(b^{\frac{1}{p_1}}\right)^{\frac{q_1q_2}{p_2}} = \left[\left(b^{\frac{1}{p_1}}\right)^{\frac{1}{p_2}}\right]^{q_1q_2} = \left(b^{\frac{1}{p_1p_2}}\right)^{q_1q_2} = b^{\frac{q_1q_2}{p_1p_2}}$$

and

$$b^{r+s} = b^{\frac{p_2q_1+p_1q_2}{p_1p_2}} = \left(b^{\frac{1}{p_1p_2}}\right)^{p_2q_1+p_1q_2} = \left(b^{\frac{1}{p_1p_2}}\right)^{p_2q_1} \cdot \left(b^{\frac{1}{p_1p_2}}\right)^{p_1q_2} = b^{\frac{p_2q_1}{p_1p_2}} \cdot b^{\frac{p_1q_2}{p_1p_2}} = b^r \cdot b^s \,.$$

Therefore,

$$b^{r+s} = b^r \cdot b^s$$
 and $b^{rs} = (b^r)^s$ $\forall r, s \in \mathbb{Q}$ and $r, s > 0$. (\heartsuit)

For $r \in \mathbb{Q}$ and r < 0, we define $b^r = (b^{-r})^{-1}$. Then if $r, s \in \mathbb{Q}$ and r, s < 0, we have

$$b^{r+s} = (b^{-(r+s)})^{-1} = (b^{-r} \cdot b^{-s})^{-1} = (b^{-r})^{-1} \cdot (b^{-s})^{-1} = b^r \cdot b^s$$

and

$$(b^r)^s = [(b^{-r})^{-1}]^s$$
.

2. First we show that $x \in \mathbb{R}$, B(x) is non-empty and bounded from above. By the Archimedean Property, there exists $n \in \mathbb{N}$ such that -x < n. Therefore, there exists a rational number -n such that -n < x; thus $b^{-n} \in B(x)$ which implies that B(x) is non-empty.

On the other hand, the Archimedean Property implies that there exists $m \in \mathbb{N}$ such that x < m. By the fact that

$$b^t \leqslant b^s$$
 whenever $t \leqslant s \text{ and } t, s \in \mathbb{Q}$, (*)

we conclude that b^m is an upper bound for B(x). Therefore, B(x) is bounded from above. By the least upper bound property, we conclude that $\sup B(x)$ exists for all $x \in \mathbb{R}$.

Next we show that $b^r = \sup B(r)$ if $r \in \mathbb{Q}$. To see this, we note that $b^r \in B(r)$ if $r \in \mathbb{Q}$. On the other hand, (*) implies that b^r is an upper bound for B(r); thus $\sup B(r) = b^r$.

3. We first show that

$$\sup(cA) = c \cdot \sup A \qquad \forall c > 0, \tag{*}$$

where $cA = \{c \cdot x \mid x \in A\}$. To see (\star) , we observe that

 $x \in A \Rightarrow x \leq \sup A \Rightarrow c \cdot x \leq c \cdot \sup A$ (by the compatibility of \cdot and \leq);

thus every element in cA is bounded from above by $c \cdot \sup A$. Therefore,

$$\sup(cA) \leq c \cdot \sup A$$
.

On the other hand, let $\varepsilon > 0$ be given. Then there exists $x \in A$ and $x > \sup A - \frac{\varepsilon}{c}$. Therefore, $c \cdot x > c \cdot \sup A - \varepsilon$; thus

$$\sup(cA) \geqslant c \cdot x > c \cdot \sup A - \varepsilon.$$

Since $\varepsilon > 0$ is given arbitrarily, we find that $\sup(cA) \ge c \cdot \sup A$; thus (\star) is concluded.

Next we show that

$$\sup \left\{ b^t \,\middle|\, t \in \mathbb{Q}, t \leqslant x \right\} = \inf \left\{ b^s \,\middle|\, s \in \mathbb{Q}, s \geqslant x \right\}. \tag{\diamond}$$

Let $S(x) = \{b^s \mid s \in \mathbb{Q}, s \ge x\}$. If $b^t \in B(x)$, then b^t is a lower bound for S(x). Therefore, B(x) is a subset of the collection of all lower bounds for S(x). By Problem 3 of Exercise 2,

$$\sup B(x) \leqslant \sup \{y \mid y \text{ is a lower bound for } S(x)\} = \inf S(x).$$

Suppose that $\sup B(x) < \inf S(x)$. Since $b^{\frac{1}{n}} \setminus 1$ as $n \to \infty$ (Problem 3 of Exercise 2), there exists $n \in \mathbb{N}$ such that $\inf S(x) > b^{\frac{1}{n}} \sup B(x)$. By the fact that there exists $r \in \mathbb{Q}$ and $x \le r \le x + \frac{1}{n}$, we find that

$$\inf S(x) > b^{\frac{1}{n}} \sup B(x) = \sup \left\{ b^{r+\frac{1}{n}} \, \middle| \, r \in \mathbb{Q}, r \leqslant x \right\} = \sup \left\{ b^{s} \, \middle| \, s \in \mathbb{Q}, s \leqslant x + \frac{1}{n} \right\}$$

$$\geqslant b^{r} \geqslant \inf \left\{ b^{s} \, \middle| \, s \in \mathbb{Q}, s \geqslant x \right\} = \inf S(x),$$

a contradiction. Observe that

$$\sup A^{-1} = \left(\inf A\right)^{-1} \quad \text{for every subset } A \text{ of } (0, \infty),$$

where $A^{-1} = \{t^{-1} \mid t \in A\}$ and $(0, \infty)$ is the collection consisting of positive elements in \mathbb{R} . Therefore, (\diamond) implies that for $x \in \mathbb{R}$,

$$b^{-x} = \sup \left\{ b^t \, \middle| \, t \in \mathbb{Q}, t \leqslant -x \right\} = \sup \left\{ b^{-t} \, \middle| \, t \in \mathbb{Q}, t \geqslant x \right\} = \left[\inf \left\{ b^t \, \middle| \, t \in \mathbb{Q}, t \geqslant x \right\} \right]^{-1} = (b^x)^{-1}.$$

Now we show the law of exponential

$$b^x \cdot b^y = b^{x+y} \qquad \forall x, y \in \mathbb{R} \,.$$
 $(\star\star)$

Let $x, y \in \mathbb{R}$ be given. If $t, s \in \mathbb{Q}$ and $t \leq x, s \leq y$, then $t + s \in \mathbb{Q}$ and $t + s \leq x + y$; thus

$$b^t \cdot b^s = b^{t+s} \leqslant \sup B(x+y) = b^{x+y}$$
.

For any given rational $t \leq x$, taking the supremum of the left-hand side over all rational $s \leq y$ and using (\star) we find that

$$b^{-x} = \sup \left\{ b^t \mid t \in \mathbb{Q}, t \leqslant -x \right\} = \sup \left\{ b^{-t} \mid t \in \mathbb{Q}, t \geqslant x \right\} = \left[\inf \left\{ b^t \mid t \in \mathbb{Q}, t \geqslant x \right\} \right]^{-1}$$
$$= (b^x)^{-1}.$$

Taking the supremum of the left-hand side over all rational $t \leq x$, using (\star) again we find that

$$b^y \cdot b^x = b^y \cdot \sup \{b^t \mid t \in \mathbb{Q}, t \leqslant x\} = \sup \{b^{t+y} \mid t \in \mathbb{Q}, t \leqslant x\} \leqslant b^{x+y};$$

thus we establish that

$$b^x \cdot b^y \leqslant b^{x+y} \qquad \forall \, x, y \in \mathbb{R} \,. \tag{\diamond}$$

Now, note that (\diamondsuit) implies that for all $x, y \in \mathbb{R}$,

$$b^y = b^{-x+x+y} \geqslant b^{-x} \cdot b^{x+y} = (b^x)^{-1} \cdot b^{x+y} \geqslant (b^x)^{-1} \cdot b^x \cdot b^y = b^y$$
.

The inequality above is indeed an equality and we obtain that

$$b^y = b^{-x}b^{x+y} \qquad \forall x, y \in \mathbb{R}.$$

This is indeed $(\star\star)$ because of that $b^{-x} = (b^x)^{-1}$.

Next we show that $(b^x)^y = \sup B(x \cdot y)$ for all x > 0 and $y \in \mathbb{R}$. For z > 0, define $A(z) = \{s \in \mathbb{R} \mid s \in \mathbb{Q}, 0 < s \leq z\}$. Note that if z > 0, then $b^z = \sup A(z)$. Since for x > 0, we have $b^x > 1$; thus for x, y > 0,

$$(b^x)^y = \sup \{(b^x)^t \mid t \in \mathbb{Q}, 0 < t \le y\} = \sup_{t \in A(y)} (b^x)^t = \sup_{t \in A(y)} (\sup_{s \in A(x)} b^s)^t.$$

By Problem 5 of Exercise 2,

$$\sup_{t \in A(y)} \big(\sup_{s \in A(x)} b^s \big)^t = \sup_{(t,s) \in A(y) \times A(x)} (b^s)^t = \sup_{(t,s) \in A(y) \times A(x)} b^{st} = b^{\sup_{(t,s) \in A(y) \times A(x)} ts} = b^{xy}.$$

4. Let $x_1 < x_2$ be given. Then **AP** implies that there exists $r, s \in \mathbb{Q}$ such that $x_1 < r < s < x_2$. Therefore, $B(x_1) \subseteq B(r) \subseteq B(s) \subseteq B(x_2)$; thus

$$b^{x_1} = \sup B(x_1) \leq \sup B(r) \leq \sup B(s) \leq \sup B(x_2) = b^{x_2}$$
.

Since $B(r) = b^r$ and $B(s) = b^s$, we must have B(r) < B(s); thus 4 is concluded.

5. Since $\frac{y}{b^u} > 1$ and $\frac{b^v}{y} > 1$, by the fact that $b^{\frac{1}{n}} \to 1$ as $n \to \infty$, there exist $N_1, N_2 > 0$ such that

$$\left|b^{\frac{1}{n}}-1\right| < \frac{y}{b^u}-1$$
 whenever $n \geqslant N_1$ and $\left|b^{\frac{1}{n}}-1\right| < \frac{b^v}{y}-1$ whenever $n \geqslant N_2$.

Let $N = \max\{N_1, N_2\}$. For $n \ge N$, we have $b^{\frac{1}{n}} < \frac{y}{b^u}$ and $b^{\frac{1}{n}} < \frac{b^v}{y}$ or equivalently,

$$b^{u+\frac{1}{n}} < y$$
 and $b^{v-\frac{1}{n}} > y$ $\forall n \geqslant N$.

6. Let $A = \{w \in \mathbb{R} \mid b^w < y\}$. Since b > 1, 2 of Problem 3 in Exercise 2 implies that

$$b^n > 1 + n(b-1)$$
 whenever $n \ge 2$. $(\star\star\star)$

By **AP**, there exists $N \ge 2$ such that 1 + N(b-1) > y; thus A is bounded from above by N. Moreover, there exists $M \ge 2$ such that

$$1 + M(b-1) > \frac{1}{y};$$

thus $(\star\star\star)$ implies that $b^{-M} < y$ or $-M \in A$. Therefore, A is non-empty. By **LUBP**, we conclude that $\sup A$ exists.

Let $x = \sup A$. Then $x + \frac{1}{n} \notin A$; thus $b^{x + \frac{1}{n}} \geqslant y$ for all $n \in \mathbb{N}$. Since $b^{\frac{1}{n}} \to 1$ sa $n \to \infty$, we find that

$$b^{x} = b^{x} \lim_{n \to \infty} b^{\frac{1}{n}} = \lim_{n \to \infty} b^{x + \frac{1}{n}} \ge y$$
.

On the other hand, 4 implies that $x - \frac{1}{n} \in A$; thus $b^{x - \frac{1}{n}} < y$ for all $n \in \infty$ and we have

$$b^{x} = b^{x} \lim_{n \to \infty} b^{-\frac{1}{n}} = \lim_{n \to \infty} b^{x - \frac{1}{n}} \le y$$
.

Therefore, $b^x = y$.

Problem 2. In this problem we prove the Intermediate Value Theorem:

Let $f:[a,b]\to\mathbb{R}$ be continuous (at every point of [a,b]); that is,

$$\lim_{n\to\infty} f(x_n) = f\left(\lim_{n\to\infty} x_n\right) \quad \text{for all convergent sequence } \{x_n\}_{n=1}^{\infty} \subseteq [a,b].$$

If f(a)f(b) < 0, then there exists $c \in [a, b]$ such that f(c) = 0.

Complete the following.

- 1. W.L.O.G, we can assume that f(a) < 0. Define the set $S = \{x \in [a, b] \mid f(x) > 0\}$. Show that inf S exists.
- 2. Let $c = \inf S$. Show that $f(c) \ge 0$.
- 3. Conclude that $f(c) \leq 0$ as well.

Hint:

- 1. Show that S is non-empty and bounded from below.
- 2. Show that there exists a sequence $\{c_n\}_{n=1}^{\infty}$ in S such that $c_n \to c$ as $n \to \infty$.
- 3. Show that there exists a sequence $\{c_n\}_{n=1}^{\infty}$ in [a,c) such that $c_n \to c$ as $n \to \infty$.
- *Proof.* 1. Since f(b) > 0, $b \in S$. Moreover, a is a lower bound for S; thus S is non-empty and bounded from below. By the completeness of \mathbb{R} , $\inf S \in \mathbb{R}$ exists.
 - 2. Let $c = \inf S$. For each $n \in \mathbb{N}$, there exists $c_n < c + \frac{1}{n}$ and $c_n \in S$. Then $f(c_n) > 0$ for all $n \in \mathbb{N}$ and

$$c \leqslant c_n < c + \frac{1}{n} \quad \forall n \in \mathbb{N}.$$

Then the Sandwich Lemma implies that $c_n \to c$ as $n \to \infty$. By the continuity of f,

$$f(c) = f\left(\lim_{n \to \infty} c_n\right) = \lim_{n \to \infty} f(c_n) \ge 0.$$

3. By 2, $a \neq c$. Consider the sequence $\{c_n\}_{n=1}^{\infty}$ defined by $c_n = c - \frac{c-a}{n}$. Then $\{c_n\}_{n=1}^{\infty} \subseteq [a,c)$. Moreover, by the fact that $c = \inf S$ and $c_n < c$, $c_n \notin S$ for all $n \in \mathbb{N}$. Therefore, $f(c_n) \leq 0$ for all $n \in \mathbb{N}$. Since $c_n \to c$ as $n \to \infty$, by the continuity of f we find that

$$f(c) = f\left(\lim_{n \to \infty} c_n\right) = \lim_{n \to \infty} f(c_n) \le 0.$$

Problem 3. In this problem we prove the Extreme Value Theorem:

Let $a, b \in \mathbb{R}$, a < b and $f : [a, b] \to \mathbb{R}$ be continuous (at every point of [a, b]); that is, $\lim_{n \to \infty} f(x_n) = f\left(\lim_{n \to \infty} x_n\right) \quad \text{for all convergent sequence } \{x_n\}_{n=1}^{\infty} \subseteq [a, b].$

Then there exist $c, d \in [a, b]$ such that $f(c) = \sup_{x \in [a, b]} f(x)$ and $f(d) = \inf_{x \in [a, b]} f(x)$.

Complete the following.

1. Show that there exist sequences $\{c_n\}_{n=1}^{\infty}$ and $\{d_n\}_{n=1}^{\infty}$ in [a,b] such that

$$\lim_{n \to \infty} f(c_n) = \sup_{x \in [a,b]} f(x) \quad \text{and} \quad \lim_{n \to \infty} f(d_n) = \inf_{x \in [a,b]} f(x).$$

- 2. Extract convergent subsequences $\{c_{n_k}\}_{k=1}^{\infty}$ and $\{d_{n_k}\}_{k=1}^{\infty}$ with limit c and d, respectively. Show that $c, d \in [a, b]$.
- 3. Show that $f(c) = \sup_{x \in [a,b]} f(x)$ and $f(d) = \inf_{x \in [a,b]} f(x)$.

Proof. It suffices to show the case of $\sup_{x \in [a,b]} f(x)$ since $\inf_{x \in [a,b]} f(x) = -\sup_{x \in [a,b]} (-f)(x)$ by Problem 2 of Exercise 3.

1. We first show that f([a, b]) is bounded. Suppose the contrary that f([a, b]) is not bounded. Then for each $n \in \mathbb{N}$, there exists $x_n \in [a, b]$ such that $|f(x_n)| > n$. Since $\{x_n\}_{n=1}^{\infty} \subseteq [a, b]$, $\{x_n\}_{n=1}^{\infty}$ is bounded. By the fact that $\mathbf{MSP} \Rightarrow \mathbf{BWP}$, there exists a convergent subsequence $\{x_{n_k}\}_{k=1}^{\infty}$ of $\{x_n\}_{n=1}^{\infty}$. By the continuity of f, $\{f(x_{n_k})\}_{k=1}^{\infty}$ is also convergent; thus Proposition 1.39 in the lecture note implies that $\{f(x_{n_k})\}_{k=1}^{\infty}$ is bounded, a contradiction to that $|f(x_{n_k})| \ge n_k \ge k$ for all $k \in \mathbb{N}$.

Since f([a,b]) is bounded, $M = \sup f([a,b]) = \sup_{x \in [a,b]} f(x)$ exists. For each $n \in \mathbb{R}$, there exists $c_n \in [a,b]$ such that

$$M - \frac{1}{n} < f(c_n) \le M.$$

By the Sandwich Lemma, $\lim_{n\to\infty} f(c_n) = M = \sup_{x\in[a,b]} f(x)$.

2. Since $\{c_n\}_{n=1}^{\infty} \subseteq [a, b]$, $\{c_n\}_{n=1}^{\infty}$ is bounded. By the fact that $\mathbf{MSP} \Rightarrow \mathbf{BWP}$, there exists a convergent subsequence $\{c_{n_k}\}_{k=1}^{\infty}$ of $\{c_n\}_{n=1}^{\infty}$ with limit c. Since $a \leq c_{n_k} \leq b$ for all $k \in \mathbb{N}$, by a Proposition that we talked about in class we conclude that $a \leq c \leq b$.

3. Since $c_{n_k} \to c$ as $k \to \infty$, the continuity of f implies that

$$f(c) = f(\lim_{k \to \infty} c_{n_k}) = \lim_{k \to \infty} f(c_{n_k}) = \sup_{x \in [a,b]} f(x).$$

Problem 4. Let $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ be sequences in \mathbb{R} . Prove the following inequalities:

$$\lim_{n \to \infty} \inf x_n + \lim_{n \to \infty} \inf y_n \leq \lim_{n \to \infty} \inf (x_n + y_n) \leq \lim_{n \to \infty} \inf x_n + \lim_{n \to \infty} \sup y_n \\
\leq \lim_{n \to \infty} \sup (x_n + y_n) \leq \lim_{n \to \infty} \sup x_n + \lim_{n \to \infty} \sup y_n ; \\
\left(\lim_{n \to \infty} \inf |x_n| \right) \left(\lim_{n \to \infty} \inf |y_n| \right) \leq \lim_{n \to \infty} \inf |x_n y_n| \leq \left(\lim_{n \to \infty} \inf |x_n| \right) \left(\lim_{n \to \infty} \sup |y_n| \right) \\
\leq \lim_{n \to \infty} \sup |x_n y_n| \leq \left(\lim_{n \to \infty} \sup |x_n| \right) \left(\lim_{n \to \infty} \sup |y_n| \right) .$$

Give examples showing that the equalities are generally not true.

Proof. 1. Let $k \in \mathbb{N}$ be fixed. Note that for $n \ge k$, we have

$$\inf_{n \geqslant k} (x_n + y_n) \leqslant x_n + y_n \leqslant \sup_{n \geqslant k} (x_n + y_n).$$

Note that the LHS and the RHS are functions of k and is independent of n. Therefore,

$$\inf_{n \ge k} \left[\inf_{n \ge k} (x_n + y_n) - y_n \right] \le \inf_{n \ge k} x_n \le \inf_{n \ge k} \left[\sup_{n \ge k} (x_n + y_n) - y_n \right]$$

which further shows that

$$\inf_{n \geqslant k} (x_n + y_n) - \sup_{n \geqslant k} y_n \leqslant \inf_{n \geqslant k} x_n \leqslant \sup_{n \geqslant k} (x_n + y_n) - \sup_{n \geqslant k} y_n.$$

Therefore,

$$\inf_{n \geqslant k} (x_n + y_n) \leqslant \inf_{n \geqslant k} x_n + \sup_{n \geqslant k} y_n \leqslant \sup_{n \geqslant k} (x_n + y_n) \qquad \forall k \in \mathbb{N},$$

and the first inequality follows from the fact that

$$\inf_{n\geqslant k}x_n+\inf_{n\geqslant k}y_n\leqslant\inf_{n\geqslant k}(x_n+y_n)\leqslant\inf_{n\geqslant k}x_n+\sup_{n\geqslant k}y_n\leqslant\sup_{n\geqslant k}(x_n+y_n)\leqslant\sup_{n\geqslant k}x_n+\sup_{n\geqslant k}y_n$$

for each $k \in \mathbb{N}$.

2. Let $k \in \mathbb{N}$ be fixed. Note that for $n \ge k$, we have

$$\inf_{n \geqslant k} \left[|x_n| \left(|y_n| + \frac{1}{k} \right) \right] \leqslant |x_n| \left(|y_n| + \frac{1}{k} \right) \leqslant \sup_{n > k} \left[|x_n| \left(|y_n| + \frac{1}{k} \right) \right].$$

Note that the LHS and the RHS for functions of k and is independent of n. Therefore,

$$\inf_{n\geqslant k} \frac{\inf_{n\geqslant k} \left[|x_n| \left(|y_n| + \frac{1}{k} \right) \right]}{|y_n| + \frac{1}{k}} \leqslant \inf_{n\geqslant k} |x_n| \leqslant \inf_{n\geqslant k} \frac{\sup_{n\geqslant k} \left[|x_n| \left(|y_n| + \frac{1}{k} \right) \right]}{|y_n| + \frac{1}{k}}.$$

By the fact that

$$\inf_{n \ge k} \frac{1}{|y_n| + \frac{1}{k}} = \frac{1}{\sup_{n \ge k} (|y_n| + \frac{1}{k})},$$

we find that

$$\frac{\inf\limits_{n\geqslant k}\left[|x_n|\left(|y_n|+\frac{1}{k}\right)\right]}{\sup\limits_{n\geqslant k}\left(|y_n|+\frac{1}{k}\right)}\leqslant \inf\limits_{n\geqslant k}|x_n|\leqslant \inf\limits_{n\geqslant k}\frac{\sup\limits_{n\geqslant k}\left[|x_n|\left(|y_n|+\frac{1}{k}\right)\right]}{\sup\limits_{n\geqslant k}\left(|y_n|+\frac{1}{k}\right)};$$

thus

$$\inf_{n \geqslant k} \left[|x_n| \left(|y_n| + \frac{1}{k} \right) \right] \leqslant \inf_{n \geqslant k} |x_n| \sup_{n \geqslant k} \left(|y_n| + \frac{1}{k} \right) \leqslant \sup_{n \geqslant k} \left[|x_n| \left(|y_n| + \frac{1}{k} \right) \right].$$

The second inequality follows from the fact that

$$\inf_{n \geqslant k} |x_n| \inf_{n \geqslant k} \left(|y_n| + \frac{1}{k} \right) \leqslant \inf_{n \geqslant k} \left[|x_n| \left(|y_n| + \frac{1}{k} \right) \right] \leqslant \inf_{n \geqslant k} |x_n| \sup_{n \geqslant k} \left(|y_n| + \frac{1}{k} \right)$$

$$\leqslant \sup_{n \geqslant k} \left[|x_n| \left(|y_n| + \frac{1}{k} \right) \right] \leqslant \sup_{n \geqslant k} |x_n| \sup_{n \geqslant k} \left(|y_n| + \frac{1}{k} \right)$$

for each $k \in \mathbb{N}$, and passing to the limit as $k \to \infty$.

3. Let $x_n = 2 + \sin n$ and $y_n = 2 + \cos n$. Then $x_n, y_n > 0$, and

$$\lim_{n \to \infty} \inf x_n = \lim_{n \to \infty} \inf y_n = 1, \quad \limsup_{n \to \infty} x_n = \lim_{n \to \infty} \sup y_n = 3.$$

By Problem 3, the set $\{x \in [0, 2\pi] \mid x = k \pmod{2\pi} \text{ for some } k \in \mathbb{N}\}$ is dense in $[0, 2\pi]$; thus for each $\theta \in [0, 2\pi]$ there exists an increasing sequence $\{k_j\}_{j=1}^{\infty} \subseteq \mathbb{N}$ such that $x_{k_j} = k_j \pmod{2\pi}$ and $\{x_{k_j}\}_{j=1}^{\infty}$ converges to θ . This implies that for each $\theta \in [-1, 1]$, there exists a subsequence $\{\cos k_j\}_{j=1}^{\infty}$ such that

$$\lim_{j \to \infty} \cos n_j = \cos \theta \quad \text{and} \quad \lim_{j \to \infty} \sin n_j = \sin \theta.$$

Therefore, we have

$$\liminf_{n \to \infty} (x_n + y_n) = 4 - \sqrt{2}, \quad \limsup_{n \to \infty} (x_n + y_n) = 4 + \sqrt{2},$$

and

$$\liminf_{n \to \infty} x_n y_n = \frac{9}{2} - 2\sqrt{2} \,, \quad \limsup_{n \to \infty} x_n y_n = \frac{9}{2} + 2\sqrt{2} \,.$$

Therefore,

$$\lim_{n \to \infty} \inf x_n + \lim_{n \to \infty} \inf y_n < \lim_{n \to \infty} \inf (x_n + y_n) < \lim_{n \to \infty} \inf x_n + \lim_{n \to \infty} \sup y_n < \lim_{n \to \infty} \sup (x_n + y_n) < \lim_{n \to \infty} \sup x_n + \lim_{n \to \infty} \sup y_n$$

and

$$\lim_{n \to \infty} \inf x_n \cdot \lim_{n \to \infty} \inf y_n < \lim_{n \to \infty} \inf (x_n y_n) < \lim_{n \to \infty} \inf x_n \cdot \lim_{n \to \infty} \sup y_n < \lim_{n \to \infty} \sup (x_n y_n) < \lim_{n \to \infty} \sup x_n \cdot \lim_{n \to \infty} \sup y_n.$$

Therefore, the equalities are generally not true.

Problem 5. Prove that

$$\liminf_{n\to\infty}\frac{|x_{n+1}|}{|x_n|}\leqslant \liminf_{n\to\infty}\sqrt[n]{|x_n|}\leqslant \limsup_{n\to\infty}\sqrt[n]{|x_n|}\leqslant \limsup_{n\to\infty}\frac{|x_{n+1}|}{|x_n|}\,.$$

Give examples to show that the equalities are not true in general. Is it true that $\lim_{n\to\infty} \sqrt[n]{|x_n|}$ exists implies that $\lim_{n\to\infty} \frac{|x_{n+1}|}{|x_n|}$ also exists?

Proof. W.L.O.G. we can assume that $\liminf_{n\to\infty} \frac{|x_{n+1}|}{|x_n|} > 0$ and $\limsup_{n\to\infty} \frac{|x_{n+1}|}{|x_n|} < \infty$. Let $a = \liminf_{n\to\infty} \frac{|x_{n+1}|}{|x_n|}$ and $b = \limsup_{n\to\infty} \frac{|x_{n+1}|}{|x_n|}$, and $\varepsilon > 0$ be given such that $a - \varepsilon > 0$. Then there exists N > 0 such that

$$a - \varepsilon < \frac{|x_{n+1}|}{|x_n|} < b + \varepsilon \qquad \forall \, n \geqslant N \,.$$

Therefore,

$$(a-\varepsilon)|x_n| < |x_{n+1}| < (b+\varepsilon)|x_n| \qquad \forall n \geqslant N$$

which implies that if n > N,

$$|x_n| > (a - \varepsilon)|x_{n-1}| > (a - \varepsilon)^2|x_{n-2}| > \dots > (a - \varepsilon)^{n-N}|x_N|$$

and

$$|x_n| < (b+\varepsilon)|x_{n-1}| < (b+\varepsilon)^2|x_{n-2}| < \dots < (b+\varepsilon)^{n-N}|x_N|.$$

The inequality above implies that

$$(a-\varepsilon)^{1-\frac{N}{n}}\sqrt[n]{|x_N|} < \sqrt[n]{|x_n|} < (b+\varepsilon)^{1-\frac{N}{n}}\sqrt[n]{|x_N|};$$

thus

$$\liminf_{n\to\infty} \left[(a-\varepsilon)^{1-\frac{N}{n}} \sqrt[n]{|x_N|} \right] \leqslant \liminf_{n\to\infty} \sqrt[n]{|x_n|} \leqslant \limsup_{n\to\infty} \sqrt[n]{|x_n|} \leqslant \limsup_{n\to\infty} \left[(b+\varepsilon)^{1-\frac{N}{n}} \sqrt[n]{|x_N|} \right].$$

By Problem 3 of Exercise 2, $\lim_{n\to\infty} b^{\frac{1}{n}} = 1$ for all b > 0. Therefore,

$$\liminf_{n\to\infty}\left[(a-\varepsilon)^{1-\frac{N}{n}}\sqrt[n]{|x_N|}\right]=\lim_{n\to\infty}(a-\varepsilon)^{1-\frac{N}{n}}\sqrt[n]{|x_N|}=a-\varepsilon=\liminf_{n\to\infty}\frac{|x_{n+1}|}{|x_n|}-\varepsilon$$

and

$$\limsup_{n\to\infty} \left[(b+\varepsilon)^{1-\frac{N}{n}} \sqrt[n]{|x_N|} \right] = \lim_{n\to\infty} (b+\varepsilon)^{1-\frac{N}{n}} \sqrt[n]{|x_N|} = b + \varepsilon = \limsup_{n\to\infty} \frac{|x_{n+1}|}{|x_n|} + \varepsilon.$$

Since the inequality above holds for all $\varepsilon > 0$, we conclude that

$$\liminf_{n \to \infty} \frac{|x_{n+1}|}{|x_n|} \leqslant \liminf_{n \to \infty} \sqrt[n]{|x_n|} \leqslant \limsup_{n \to \infty} \sqrt[n]{|x_n|} \leqslant \limsup_{n \to \infty} \frac{|x_{n+1}|}{|x_n|}.$$

Let $\{x_n\}_{n=1}^{\infty}$ be a real sequence defined by

$$x_n = \begin{cases} 2^{-n} & \text{if } n \text{ is odd,} \\ 4^{-n} & \text{if } n \text{ is even,} \end{cases}$$

or $x_n = (3 + (-1)^n)^{-n}$. Then $\sqrt[n]{|x_n|} = 3 + (-1)^n$ which shows that

$$\liminf_{n \to \infty} \sqrt[n]{|x_n|} = \frac{1}{4} \quad \text{and} \quad \limsup_{n \to \infty} \sqrt[n]{|x_n|} = \frac{1}{2}.$$

To compute the limit superior and limit inferior of $\frac{|x_{n+1}|}{|x_n|}$, we define

$$y_n = \frac{|x_{n+1}|}{|x_n|} = \frac{(3 + (-1)^{n+1})^{-n-1}}{(3 + (-1)^n)^{-n}} = \frac{1}{3 - (-1)^n} \left(\frac{3 - (-1)^n}{3 + (-1)^n}\right)^{-n}$$

and observe that $\lim_{n\to\infty} y_{2n} = 0$ and $\lim_{n\to\infty} y_{2n+1} = \infty$. Since $y_n \in [0,\infty)$, we conclude that 0 is the smallest cluster point of $\{y_n\}_{n=1}^{\infty}$ and ∞ is the largest "cluster point" of $\{y_n\}_{n=1}^{\infty}$. This shows that

$$\liminf_{n \to \infty} \frac{|x_{n+1}|}{|x_n|} = 0 \quad \text{and} \quad \limsup_{n \to \infty} \frac{|x_{n+1}|}{|x_n|} = \infty.$$

Problem 6. Given the following sets consisting of elements of some sequence of real numbers. Find the limsup and liminf of the sequence.

- 1. $\{\cos m \mid m = 0, 1, 2, \cdots \}$.
- 2. $\{ \sqrt[m]{|\sin m|} \mid m = 1, 2, \dots \}.$
- 3. $\left\{ \left(1 + \frac{1}{m}\right) \sin \frac{m\pi}{6} \,\middle|\, m = 1, 2, \cdots \right\}.$

Hint: 1. First show that for all irrational α , the set

$$S = \{x \in [0, 1] \mid x = k\alpha \pmod{1} \text{ for some } k \in \mathbb{N} \}$$

is dense in [0,1]; that is, for all $y \in [0,1]$ and $\varepsilon > 0$, there exists $x \in S \cap (y-\varepsilon,y+\varepsilon)$. Then choose $\alpha = \frac{1}{2\pi}$ to conclude that

$$T = \{x \in [0, 2\pi] \mid x = k \pmod{2\pi} \text{ for some } k \in \mathbb{N} \}$$

is dense in $[0, 2\pi]$. To prove that S is dense in [0, 1], you might want to consider the following set

$$S_k = \{x \in [0,1] \mid x = \ell \alpha \pmod{1} \text{ for some } 1 \leqslant \ell \leqslant k+1\}$$

Note that there must be two points in S_k whose distance is less than $\frac{1}{k}$. What happened to (the multiples of) the difference of these two points?

2. Use the fact that π is a Liouville number; that is, there exists $d \in \mathbb{N}$ such that

$$\left|\pi - \frac{p}{q}\right| \geqslant \frac{1}{q^d} \quad \forall p, q \in \mathbb{Z}, q \neq 0.$$

Proof. 1. Define $S_k = \{x \in [0,1] \mid x = \ell \alpha \pmod{1} \text{ for some } 1 \leq \ell \leq k+1\}$. Let $1 \leq \ell_1, \ell_2 \leq k+1$, and $x, y \in [0,1]$ satisfying that $x = \ell_1 \alpha \pmod{1}$ and $y = \ell_2 \alpha \pmod{1}$. Then by the fact that $\alpha \notin \mathbb{Q}$,

$$x = y \iff \ell_1 \alpha = \ell_2 \alpha \pmod{1} \iff (\ell_1 - \ell_2) \alpha \in \mathbb{Z} \iff \ell_1 - \ell_2 = 0.$$

Therefore, there are (k+1) distinct points in S_k (this also shows that each $k \in \mathbb{N}$ corresponds to different point $x = k\alpha \pmod 1$ in S). Moreover, $x \notin \mathbb{Q}$ if $x \in S_k$. By the pigeonhole principle, there exist x, y in S_k satisfying that $0 < |x - y| < \frac{1}{k}$.

Let $\varepsilon > 0$ be given. Then there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < \varepsilon$. By the discussion above, there exist $x, y \in S_n$ such that $0 < |x - y| < \varepsilon$. Suppose that $x = n_1 \alpha \pmod{1}$ and $y = n_2 \alpha \pmod{1}$, and define $m = |n_1 - n_2|$. The point $z \in [0, 1]$ satisfying $z = m\alpha \pmod{1}$ has the property that $z \in (0, \varepsilon) \cup (1 - \varepsilon, 1)$. Therefore,

$$(\forall \varepsilon > 0)(\exists x \in S) (x \in (0, \varepsilon) \cup (1 - \varepsilon, 1)).$$

Let $y \in [0,1]$ and $\varepsilon > 0$ be given. The discussion above provides an $x \in (0,1)$ such that $x = k\alpha$ (mod 1) for some $k \in \mathbb{N}$ and $x \in (0,\varepsilon) \cup (1-\varepsilon,1)$. Then some constant multiple of x must belong to $(y-\varepsilon,y+\varepsilon)$. If $\ell x \in (y-\varepsilon,y+\varepsilon)$, then $z = k\ell\alpha \pmod 1$ in $(y-\varepsilon,y+\varepsilon)$. This shows that S is dense in [0,1].

Having established that S is dense in [0,1], we find that T is dense in $[0,2\pi]$. Therefore, for each $\theta \in [0,2\pi]$ there exists an increasing sequence $\{m_j\}_{j=1}^{\infty} \subseteq \mathbb{N}$ such that $x_{m_j} = m_j$ (mod 2π) and $\{x_{m_j}\}_{j=1}^{\infty} \subseteq [0,2\pi]$ converges to θ . In particular, for each $\theta \in [0,2\pi]$ there exists an increasing sequence $\{m_j\}_{j=1}^{\infty} \subseteq \mathbb{N}$ such that

$$\lim_{j \to \infty} \cos m_j = \cos \theta \quad \text{and} \quad \lim_{j \to \infty} \sin m_j = \sin \theta \,;$$

thus we conclude that $\limsup_{m\to\infty}\cos m=1$ and $\liminf_{m\to\infty}\cos m=-1$.

2. Since π is not a Liouville number, there exists $d \in \mathbb{N}$ such that

$$\left|\pi - \frac{p}{q}\right| \geqslant \frac{1}{q^d} \qquad \forall p, q \in \mathbb{Z}, q \neq 0.$$
 (0.1)

For each $m \in \mathbb{N}$, let $q_m \in \mathbb{N}$ be such that

$$\inf_{q \in \mathbb{N}} |q\pi - m| = |q_m\pi - m|. \tag{0.2}$$

Such q_m exists since the infimum indeed occurs in a finite set of N. Using (0.1), we find that

$$\frac{1}{q_m^{d-1}} \leqslant |q_m \pi - m| \qquad \forall \, m \in \mathbb{N} \,.$$

On the other hand, because of (0.2) we must have

$$|q_m \pi - m| \le \frac{\pi}{2}$$
 $\forall m \gg 1$ (in fact, $m \ge 6$ is enough)

since we cannot have $|q_m\pi-m|>\frac{\pi}{2},$ $|(q_m+1)\pi-m|>\frac{\pi}{2}$ and $|(q_m-1)\pi-m|>\frac{\pi}{2}$ simultaneously. Therefore,

$$\frac{1}{q_m^{d-1}} \leqslant |q_m \pi - m| \leqslant \frac{\pi}{2} \qquad \forall \, m \gg 1 \tag{0.3}$$

which, together with the inequality $\frac{2}{\pi}x \leq \sin x$ for all $x \in [0, \frac{\pi}{2}]$, further shows that

$$\frac{2}{\pi} \frac{1}{q_m^{d-1}} \leqslant \sin \frac{1}{q_m^{d-1}} \leqslant |\sin m| \leqslant 1 \qquad \forall \, m \gg 1 \,. \tag{0.4}$$

The inequality above shows that

$$\left(\frac{2}{\pi q_m^{d-1}}\right)^{\frac{1}{m}} \leqslant \sqrt[m]{|\sin m|} \leqslant 1 \qquad \forall \, m \gg 1.$$

Since (0.3) implies that $\frac{m}{\pi} - \frac{1}{2} \leq q_m \leq \frac{m}{\pi} + \frac{1}{2}$ for all $m \gg 1$, the fact that

$$\lim_{m \to \infty} \left(\frac{m}{\pi} \pm \frac{1}{2} \right)^{\frac{1}{m}} = 1$$

and the Sandwich Lemma show that

$$\lim_{m \to \infty} q_m^{\frac{1}{m}} = 1.$$

Passing to the limit as $m \to \infty$ in (0.4), we conclude that $\lim_{m \to \infty} \sqrt[m]{|\sin m|} = 1$. This shows that

$$\liminf_{m \to \infty} \sqrt[m]{|\sin m|} = \limsup_{m \to \infty} \sqrt[m]{|\sin m|} = 1.$$

3. Let $x_m = \left(1 + \frac{1}{m}\right) \sin \frac{m\pi}{6}$. Since $\lim_{m \to \infty} \left(1 + \frac{1}{m}\right) = 1 > 0$ and there are seven cluster points, $\left\{\pm 1, \pm \frac{\sqrt{3}}{2}, \pm \frac{1}{2}, 0\right\}$, of the sequence $\left\{\sin \frac{m\pi}{6}\right\}_{m=1}^{\infty}$, we expect that

$$\limsup_{m\to\infty} \left(1+\frac{1}{m}\right) \sin\frac{m\pi}{6} = 1 \qquad \text{and} \qquad \liminf_{m\to\infty} \left(1+\frac{1}{m}\right) \sin\frac{m\pi}{6} = -1 \,.$$

To see that our expectation is in fact true, we let $\varepsilon > 0$ be given and observe that

$$\#\{m \in \mathbb{N} \mid x_m > 1 + \varepsilon\} \leqslant \left[\frac{1}{\varepsilon}\right] + 1 < \infty$$

while the set $\{m \in \mathbb{N} \mid x_m > 1 + \varepsilon\} \supseteq \{12k + 3 \mid k \in \mathbb{N}\}$ so that

$$\#\{m \in \mathbb{N} \mid x_m > 1 + \varepsilon\} = \infty.$$

Therefore, Proposition 1.98 shows that 1 is the limit superior of $\{x_m\}_{m=1}^{\infty}$. Similarly, -1 is the limit inferior of $\{x_m\}_{m=1}^{\infty}$.