Exercise Problem Sets 3

Problem 1. Let $(\mathbb{F}, +, \cdot, \leq)$ be an ordered field (satisfying the least upper bound property), and A be a non-empty subset of \mathbb{F} . Show that if $a \in A$ is an upper bound for A, then a is the least upper bound for A.

Proof. Let $\varepsilon > 0$ be given. There exists $x \in A$, namely x = a, such that $x > a - \varepsilon$. In other words, $a - \varepsilon$ cannot be an upper bound for A for all $\varepsilon > 0$; thus the fact that a is an upper bound for A implies that a is the least upper bound for A.

Problem 2. Let $(\mathbb{F}, +, \cdot, \leq)$ be an ordered field satisfying the least upper bound property, and A be a non-empty set of \mathbb{F} which is bounded below. Define the set -A by $-A \equiv \{-x \in \mathbb{F} \mid x \in A\}$. Prove that

$$\inf A = -\sup(-A)$$

Note that this problem shows that if \mathbb{F} satisfies the least upper bound property, then \mathbb{F} satisfies the greatest lower bound property.

Proof. Let C be a subset of \mathbb{F} . Then

b is a lower bound for a set $C \Leftrightarrow b \leqslant c$ for all $c \in C \Leftrightarrow -b \ge -c$ for all $c \in C$

 $\Leftrightarrow -b \ge -c$ for all $-c \in -C \Leftrightarrow -b \ge c$ for all $c \in -C \Leftrightarrow -b$ is an upper bound for -C.

Therefore, we conclude that

b is a lower bound for a set C if and only if -b is an upper bound for -C. (*)

Now, since A is bounded from below implies that -A is bounded from above. The least upper bound property then implies that $b = \sup(-A) \in \mathbb{F}$ exists. From (*), we find that -b is a lower bound for A. Suppose that -b is not the greatest lower bound for A. Then there exists m > -b such that $m \leq x$ for all $x \in A$. This implies that m is a lower bound for A; thus (*) shows that -m is an upper bound for -A. By the fact that -m < b, we conclude that b is not the least upper bound for -A, a contradiction to that b is the least upper bound for -A.

Problem 3. Let $(\mathbb{F}, +, \cdot, \leq)$ be an Archimedean ordered field. A number $x \in \mathbb{F}$ is called an *accumulation point* of a set $A \subseteq \mathbb{F}$ if for all $\delta > 0$, $(x - \delta, x + \delta)$ contains at least one point of A distinct from x. In logic notation,

x is an accumulation point of $A \iff (\forall \delta > 0) (A \cap (x - \delta, x + \delta) \setminus \{x\} \neq \emptyset)$.

1. Show that if $\{x_n\}_{n=1}^{\infty}$ is a sequence in \mathbb{F} so that $x_i \neq x_j$ for all $i, j \in \mathbb{N}$ and $A = \{x_k \mid k \in \mathbb{N}\}$, then x is an accumulation of A if and only if x is a cluster point of $\{x_n\}_{n=1}^{\infty}$.

2. How about if the condition $x_i \neq x_j$ for all $i, j \in \mathbb{N}$ is removed? Is the statement in 1 still valid?

Proof. 1. We show that

x is an accumulation point of A if and only if $(\forall \delta > 0) (\#(A \cap (x - \delta, x + \delta)) = \infty)$.

The direction " \Leftarrow " is trivial since if $\#(A \cap (x - \delta, x + \delta)) = \infty$, $A \cap (x - \delta, x + \delta)$ contains some point distinct from x.

 (\Rightarrow) Let $\delta_1 = 1$, by the definition of the accumulation points, there exists $x_1 \in A \cap (x - \delta_1, x + \delta_1)$ and $x_1 \neq x$. Define $\delta_2 = \min\{|x_1 - x|, \frac{1}{2}\}$. Then $\delta_2 > 0$; thus there exists $x_2 \in A \cap (x - \delta_2, x + \delta_2)$ and $x_2 \neq x$. We continue this process and obtain a sequence $\{x_n\}_{n=1}^{\infty} \subseteq A \setminus \{x\}$ satisfying that

 $x_1 \in A \cap (x-1,x+1), \quad x_n \in A \cap (x-\delta_n,x+\delta_n) \text{ with } \delta_n = \min\left\{|x-x_{n-1}|,\frac{1}{n}\right\}.$

By Archimedean property, $\{x_n\}_{n=1}^{\infty}$ converges to x since $|x - x_n| < \delta_n \leq \frac{1}{n}$. Let $\delta > 0$ be given. There exists N > 0 such that $\frac{1}{N} < \delta$; thus

$$A \cap (x - \delta, x + \delta) \supseteq A \cap \left(x - \frac{1}{N}, x + \frac{1}{N}\right) \supseteq \left\{x_N, x_{N+1}, x_{N+2}, \cdots\right\}.$$

П

Since $x_i \neq x_j$ for all $i, j \in \mathbb{N}$, we must have $\#(A \cap (x - \delta, x + \delta)) = \infty$.

Problem 4. Let $(\mathbb{F}, +, \cdot, \leq)$ be an ordered field, and $\{x_n\}_{n=1}^{\infty}$ be a sequence in \mathbb{F} . Show that the following three statements are equivalent.

- 1. $\{x_n\}_{n=1}^{\infty}$ converges.
- 2. Every proper subsequence of $\{x_n\}_{n=1}^{\infty}$ converges.
- 3. Every subsequence of $\{x_n\}_{n=1}^{\infty}$ converges.
- *Proof.* "1 \Rightarrow 2" Suppose that $\{x_n\}_{n=1}^{\infty}$ converges. Then $\{x_n\}_{n=1}^{\infty}$ converges to some $x \in \mathbb{F}$; thus Proposition 1.60 of the lecture note shows that every proper subsequence of $\{x_n\}_{n=1}^{\infty}$ converges to x. Therefore, every proper subsequence of $\{x_n\}_{n=1}^{\infty}$ converges.
- "2 \Rightarrow 3" Suppose that every proper subsequence of $\{x_n\}_{n=1}^{\infty}$ converges. Then $\{x_{n+1}\}_{n=1}^{\infty}$ converges to some $x \in \mathbb{F}$; thus $\{x_n\}_{n=1}^{\infty}$ converges to x. This implies that every subsequence of $\{x_n\}_{n=1}^{\infty}$ converges (since $\{x_n\}_{n=1}^{\infty}$ is the only non-proper subsequence of $\{x_n\}_{n=1}^{\infty}$).
- " $3 \Rightarrow 1$ " Suppose that every subsequence of $\{x_n\}_{n=1}^{\infty}$ converges. In particular, the fact that $\{x_n\}_{n=1}^{\infty}$ is a subsequence of $\{x_n\}_{n=1}^{\infty}$ implies that $\{x_n\}_{n=1}^{\infty}$ converges.

Problem 5. Let $(\mathbb{F}, +, \cdot, \leq)$ be an Archimedean ordered field, and $\{x_n\}_{n=1}^{\infty} \subseteq \mathbb{F}$ be a sequence satisfying $|x_n - x_{n+1}| < \frac{1}{n}$ for all $n \in \mathbb{N}$. Prove or disprove that there exists a subsequence $\{x_{n_k}\}_{k=1}^{\infty}$ of $\{x_n\}_{n=1}^{\infty}$ so that $\{x_{n_k}\}_{k=1}^{\infty}$ is a Cauchy sequence.

Solution. Let $\mathbb{F} = \mathbb{R}$, and define sequence $\{x_n\}_{n=1}^{\infty}$ as follows: $x_1 = 0$ and for each $n \in \mathbb{N}$,

$$x_{n+1} = \frac{1}{2} \sum_{k=1}^{n} \frac{1}{k}.$$

Then $|x_1 - x_2| = \frac{1}{2} < \frac{1}{1}$ and $|x_n - x_{n+1}| = \frac{1}{2} \cdot \frac{1}{n} < \frac{1}{n}$ for all $n \ge 2$. Therefore, the sequence $\{x_n\}_{n=1}^{\infty}$ satisfies the required properties. However, such an $\{x_n\}_{n=1}^{\infty}$ is an increasing sequence which is not bounded from above so that any subsequence of $\{x_n\}_{n=1}^{\infty}$ is also increasing and is not bounded from above. Therefore, any subsequence of $\{x_n\}_{n=1}^{\infty}$ diverges; thus any subsequence of $\{x_n\}_{n=1}^{\infty}$ cannot be Cauchy sequence (since Cauchy sequence in \mathbb{R} must converge).

Problem 6. Let $(\mathbb{F}, +, \cdot, \leq)$ be an Archimedean ordered field, and $f : \mathbb{F} \to \mathbb{F}$ be a function so that

$$|f(x) - f(y)| \leq \alpha |x - y| \qquad \forall x, y \in \mathbb{F},$$

where $\alpha \in \mathbb{F}$ is a constant satisfying $0 < \alpha < 1$. Pick an arbitrary $x_1 \in \mathbb{F}$, and define $x_{k+1} = f(x_k)$ for all $k \in \mathbb{N}$. Show that $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence in \mathbb{F} .

Proof. Since $0 < \alpha < 1$, Problem 2 in Exercise 2 shows that $\lim_{n \to \infty} \alpha^n = 0$. By the fact that $|f(x) - f(y)| \leq \alpha |x - y|$ and $x_{k+1} = f(x_k)$ for all $k \in \mathbb{N}$, we have

$$|x_{n+1} - x_n| = |f(x_n) - f(x_{n-1})| \le \alpha |x_n - x_{n-1}| \qquad \forall n \ge 2;$$

thus

$$|x_{n+1} - x_n| \leq \alpha |x_n - x_{n-1}| \stackrel{\text{(if } n \geq 3)}{\leq} \alpha^2 |x_{n-1} - x_{n-2}| \leq \dots \leq \alpha^{n-1} |x_2 - x_1|.$$

Therefore, if n > m,

$$|x_n - x_m| = |x_n - x_{n-1} + x_{n-1} - x_{n-2} + x_{n-2} - \dots - x_{m+1} + x_{m+1} - x_m|$$

$$\leq |x_n - x_{n-1}| + |x_{n-1} - x_{n-2}| + \dots + |x_{m+1} - x_m|$$

$$\leq \alpha^{n-2} |x_2 - x_1| + \alpha^{n-3} |x_2 - x_1| + \dots + \alpha^{m-1} |x_2 - x_1|$$

$$= (\alpha^{n-2} + \alpha^{n-3} + \alpha^{m-1}) |x_2 - x_1| \leq \frac{\alpha^{m-1}}{1 - \alpha} |x_2 - x_1|.$$

Let $\varepsilon > 0$ be given. Since $\lim_{n \to \infty} \alpha^n = 0$, there exists N > 0 such that $\frac{\alpha^{n-1}}{1-\alpha} |x_2 - x_1| < \varepsilon$ whenever $n \ge N$.

Then if $n > m \ge N$, by the fact that $|x_n - x_m| \le \frac{\alpha^{m-1}}{1 - \alpha} |x_2 - x_1|$ we obtain that $|x_n - x_m| < \varepsilon$. **Problem 7.** Let $(\mathbb{F}, +, \cdot, \le)$ be an ordered field with Archimedean Property, $I \subseteq \mathbb{F}$ be a non-empty interval, and $f: I \to \mathbb{F}$ be a function.

1. f is said to have a limit at $c \in I$ or we say that the limit of f at c exists if

 $\lim_{n\to\infty} f(x_n) \text{ exists for all convergent sequences } \{x_n\}_{n=1}^{\infty} \subseteq I \setminus \{c\} \text{ with limit } c.$

Show that the limit of f at c exists if and only if there exists $L \in \mathbb{F}$ satisfying that for every $\varepsilon > 0$ there exists $\delta > 0$ such that

$$|f(x) - L| < \varepsilon$$
 whenever $0 < |x - c| < \delta$ and $x \in I$.

2. f is said to be continuous at a point $c \in I$ if

 $\lim_{n \to \infty} f(x_n) = f(c) \quad \text{for all convergent sequences } \{x_n\}_{n=1}^{\infty} \subseteq I \text{ with limit } c.$

Show that f is continuous at c if and only if for every $\varepsilon > 0$ there exists $\delta > 0$ such that

$$|f(x) - f(c)| < \varepsilon$$
 whenever $|x - c| < \delta$ and $x \in I$.

Proof. 1. (" \Rightarrow ") Suppose that the limit of f at c exists.

Claim: If $\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty} \subseteq I \setminus \{c\}$ and $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = c$, then $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} f(y_n)$. **Proof of claim**: Define z_n by

$$z_n = \begin{cases} x_{\frac{n+1}{2}} & \text{if } n \text{ is odd}, \\ y_{\frac{n}{2}} & \text{if } n \text{ is even}. \end{cases}$$

Then $\lim_{n\to\infty} z_n = c$; thus by the assumption that the limit of f at c exists, we find that $\lim_{n\to\infty} f(z_n)$ exists. On the other hand, since $\lim_{n\to\infty} f(x_n)$ and $\lim_{n\to\infty} f(y_n)$ both exist, we must have

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} f(z_n) = \lim_{n \to \infty} f(y_n) \,.$$

Having established the claim, we find that there exists $L \in \mathbb{F}$ such that $\lim_{n \to \infty} f(x_n) = L$ whenever $\{x_n\}_{n=1}^{\infty} \subseteq I \setminus \{c\}$ is a convergent sequence with limit c.

Suppose the contrary that there exists $\varepsilon > 0$ such that for each $\delta > 0$ there exists $x \in I$ satisfying $0 < |x - c| < \delta$ and $|f(x) - L| \ge \varepsilon$. In particular, for each $n \in \mathbb{N}$, there exists $x_n \in I$ satisfying

$$0 < |x_n - c| < \frac{1}{n}$$
 and $|f(x_n) - L| \ge \varepsilon$.

Then $\{x_n\}_{n=1}^{\infty} \subseteq I \setminus \{c\}$ and Archimedean Property implies that $\lim_{n \to \infty} x_n = c$. Therefore, the claim shows that $\lim_{n \to \infty} f(x_n) = L$ which contradicts to the inequality $|f(x_n) - L| \ge \varepsilon$.

(" \Leftarrow ") Let $\{x_n\}_{n=1}^{\infty} \subseteq I \setminus \{c\}$ be a convergent sequence with limit c, and $\varepsilon > 0$ be given. By assumption, there exists $\delta > 0$ such that

$$|f(x) - L| < \varepsilon$$
 whenever $0 < |x - c| < \delta$ and $x \in I$.

By the fact that $\lim_{n \to \infty} x_n = c$, there exists N > 0 such that

$$|x_n - c| < \delta$$
 whenever $n \ge N$.

Therefore, if $n \ge N$, then $0 < |x_n - c| < \delta$ and $x_n \in I$ so that $|f(x_n) - L| < \varepsilon$. This implies that $\lim_{n \to \infty} f(x_n) = L$; thus

 $\lim_{n \to \infty} f(x_n) \text{ exists for all convergent sequences } \{x_n\}_{n=1}^{\infty} \subseteq I \setminus \{c\} \text{ with limit } c.$

2. (" \Rightarrow ") Suppose that f is continuous at a point $c \in I$; that is,

 $\lim_{n \to \infty} f(x_n) = f(c) \quad \text{for all convergent sequences } \{x_n\}_{n=1}^{\infty} \subseteq I \text{ with limit } c.$

In particular, for all convergent sequences $\{x_n\}_{n=1}^{\infty} \subseteq I \setminus \{c\}$ with limit c we have $\lim_{n \to \infty} f(x_n) = f(c)$. Therefore, 1 implies that

$$(\forall \varepsilon > 0)(\exists \delta > 0) (|f(x) - f(c)| < \varepsilon \text{ whenever } 0 < |x - c| < \delta \text{ and } x \in I).$$

We note that we must have $|f(c) - f(c)| < \varepsilon$; thus the statement above implies that

$$(\forall \varepsilon > 0)(\exists \delta > 0)(|f(x) - f(c)| < \varepsilon \text{ whenever } |x - c| < \delta \text{ and } x \in I).$$

(" \Leftarrow ") We note that the assumption in particular implies that

$$(\forall \varepsilon > 0)(\exists \delta > 0)(|f(x) - f(c)| < \varepsilon \text{ whenever } 0 < |x - c| < \delta \text{ and } x \in I)$$

thus 1 implies that

$$\lim_{n \to \infty} f(x_n) = f(c) \text{ for all convergent sequences } \{x_n\}_{n=1}^{\infty} \subseteq I \setminus \{c\} \text{ with limit } c.$$
(0.1)

Now suppose the contrary that there exists a convergent sequence $\{x_n\}_{n=1}^{\infty} \subseteq I$ with limit c but $\lim_{n \to \infty} f(x_n) \neq f(c)$. Then (0.1) implies that

$$\#\{n \in \mathbb{N} \mid x_n = c\} = \infty$$

- (a) If $\#\{n \in \mathbb{N} \mid x_n \neq c\} < \infty$, then there exists N > 0 such that $x_n = c$ for all $n \ge N$. This implies that $|f(x_n) f(c)| = 0 < \varepsilon$ whenever $n \ge N$, a contradiction to that $\lim_{n \to \infty} f(x_n) \neq f(c)$.
- (b) If $\#\{n \in \mathbb{N} \mid x_n \neq c\} = \infty$, then $\{n \in \mathbb{N} \mid x_n \neq c\} = \{n_j \in \mathbb{N} \mid j \in \mathbb{N}, n_j < n_{j+1}\}$ and $\{x_{n_j}\}_{j=1}^{\infty} \subseteq I \setminus \{c\}$ is a convergent sequence with limit c. Therefore, (0.1) implies that

$$\lim_{j \to \infty} f(x_{n_j}) = f(c) \,.$$

Let $\varepsilon > 0$ be given. The limit above shows that there exists J > 0 such that $|f(x_{n_j}) - f(c)| < \varepsilon$ whenever $j \ge J$. Let $N = n_J$. Then for all $n \ge N$, we have either $x_n = c$ or $x_n = x_{n_j}$ for some $j \ge J$; thus

$$|f(x_n) - f(c)| < \varepsilon$$
 whenever $n \ge N$,

a contradiction to that $\lim_{n \to \infty} f(x_n) \neq f(c)$.