Exercise Problem Sets 2

Sept. 23. 2022

Problem 1. Complete the following.

1. Verify the Wallis's formula: if n is a non-negative integer, then

$$
\int_{0}^{\frac{\pi}{2}} \sin ^{2 n+1} x d x=\int_{0}^{\frac{\pi}{2}} \cos ^{2 n+1} x d x=\frac{\left(2^{n} n!\right)^{2}}{(2 n+1)!}
$$

and

$$
\int_{0}^{\frac{\pi}{2}} \sin ^{2 n} x d x=\int_{0}^{\frac{\pi}{2}} \cos ^{2 n} x d x=\frac{(2 n)!}{\left(2^{n} n!\right)^{2}} \cdot \frac{\pi}{2}
$$

2. Let $I_{n}=\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x$. Show that $\lim _{n \rightarrow \infty} \frac{I_{2 n+1}}{I_{2 n}}=1$.
3. Let $s_{n}=\frac{n!}{n^{n+0.5} e^{-n}}$. Show that $\left\{s_{n}\right\}_{n=1}^{\infty}$ is a decreasing sequence; that is, $s_{n} \geqslant s_{n+1}$ for all $n \in \mathbb{N}$.
4. Suppose that you know that \mathbb{R} satisfies MSP. Then explain why the limit $\lim _{n \rightarrow \infty} s_{n}$ exists. Find the limit of $\left\{s_{n}\right\}_{n=1}^{\infty}$.

Hint:

2. Show that $I_{2 n+2} \leqslant I_{2 n+1} \leqslant I_{2 n}$ for all $n \in \mathbb{N}$ and then apply the Sandwich lemma.
3. Consider the function $f(x)=\left(1+\frac{1}{x}\right)^{x+0.5}$.

Proof. 1. Integrating by parts, we find that

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x & =-\left.\sin ^{n-1} x \cos x\right|_{x=0} ^{x=\frac{\pi}{2}}+(n-1) \int_{0}^{\frac{\pi}{2}} \sin ^{n-2} x \cos ^{2} x d x \\
& =(n-1) \int_{0}^{\frac{\pi}{2}} \sin ^{n-2} x\left(1-\sin ^{2} x\right) d x \\
& =(n-1) \int_{0}^{\frac{\pi}{2}} \sin ^{n-2} x d x-(n-1) \int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x ;
\end{aligned}
$$

thus

$$
\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x=\frac{n-1}{n} \int_{0}^{\frac{\pi}{2}} \sin ^{n-2} x d x .
$$

Therefore,

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} \sin ^{2 n+1} x d x & =\frac{2 n}{2 n+1} \int_{0}^{\frac{\pi}{2}} \sin ^{2 n-1} x d x=\frac{2 n}{2 n+1} \cdot \frac{2 n-2}{2 n-1} \int_{0}^{\frac{\pi}{2}} \sin ^{2 n-3} x d x=\cdots \\
& =\frac{2 n}{2 n+1} \cdot \frac{2 n-2}{2 n-1} \cdot \frac{2 n-4}{2 n-3} \cdots \frac{2}{3} \int_{0}^{\frac{\pi}{2}} \sin x d x=\frac{2}{3} \cdot \frac{4}{5} \cdots \frac{2 n}{2 n+1} \\
& =\frac{2^{2} 4^{2} \cdots(2 n)^{2}}{(2 n+1)!}=\frac{\left(2^{n} n!\right)^{2}}{(2 n+1)!}
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} \sin ^{2 n} x d x & =\frac{2 n-1}{2 n} \int_{0}^{\frac{\pi}{2}} \sin ^{2 n-2} x d x=\frac{2 n-1}{2 n} \cdot \frac{2 n-3}{2 n-2} \int_{0}^{\frac{\pi}{2}} \sin ^{2 n-4} x d x=\cdots \\
& =\frac{2 n-1}{2 n} \cdot \frac{2 n-3}{2 n-2} \cdot \frac{2 n-5}{2 n-4} \cdots \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \sin ^{0} x d x=\frac{1}{2} \cdot \frac{3}{4} \cdots \frac{2 n-1}{2 n} \cdot \frac{\pi}{2} \\
& =\frac{(2 n)!}{2^{2} 4^{2} \cdots(2 n)^{2}} \cdot \frac{\pi}{2}=\frac{(2 n)!}{\left(2^{n} n!\right)^{2}} \cdot \frac{\pi}{2}
\end{aligned}
$$

2. On the interval $\left[0, \frac{\pi}{2}\right], 0 \leqslant \sin x \leqslant 1$; thus

$$
\sin ^{2 n+2} x \leqslant \sin ^{2 n+1} x \leqslant \sin ^{2 n} x \quad \forall x \in\left[0, \frac{\pi}{2}\right] .
$$

Therefore, $I_{2 n+2} \leqslant I_{2 n+1} \leqslant I_{2 n}$ so that

$$
\frac{I_{2 n+2}}{I_{2 n}} \leqslant \frac{I_{2 n+1}}{I_{2 n}} \leqslant 1 \quad \forall n \in \mathbb{N}
$$

Since $\frac{I_{2 n+2}}{I_{2 n}}=\frac{2 n+1}{2(n+1)}$, the Sandwich Lemma implies that

$$
\lim _{n \rightarrow \infty} \frac{I_{2 n+1}}{I_{2 n}}=1
$$

3. Since $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n+0.5}=e$ and $\frac{s_{n}}{s_{n+1}}=\frac{\frac{n!}{n^{n+0.5} e^{-n}}}{\frac{(n+1)!}{(n+1)^{n+1.5} e^{-n-1}}}=\frac{1}{e}\left(1+\frac{1}{n}\right)^{n+0.5}$, it suffices to show that the function $f(x) \equiv\left(1+\frac{1}{x}\right)^{x+0.5}$ is decreasing on $[1, \infty)$. Nevertheless, this is the same as proving that the function $g(x) \equiv(1+x)^{\frac{1}{x}+\frac{1}{2}}$ is increasing on $(0,1]$.
Differentiate g, we find that

$$
\begin{aligned}
g^{\prime}(x) & =g(x) \frac{\left[\ln (1+x)+\frac{2+x}{1+x}\right] 2 x-2(2+x) \ln (1+x)}{4 x^{2}} \\
& =\frac{2 x+x^{2}-2(1+x) \ln (1+x)}{2 x^{2}(1+x)}
\end{aligned}
$$

To see the sign of the denominator $h(x)=2 x+x^{2}-2(1+x) \ln (1+x)$ on $(0,1]$, we differentiate h and find that

$$
h^{\prime}(x)=2+2 x-2 \ln (1+x)-2=2[x-\ln (1+x)]
$$

and one more differentiation shows that

$$
h^{\prime \prime}(x)=1-\frac{1}{1+x}=\frac{x}{1+x}>0 \quad \forall x \in(0,1] .
$$

Therefore, h^{\prime} in increasing on $(0,1]$ which implies that $h^{\prime}(x) \geqslant h^{\prime}(0)=0$ for all $x \in(0,1]$. This further implies that $h(x) \geqslant h(0)=0$ for all $x \in(0,1]$; thus $g^{\prime}(x) \geqslant 0$ for all $x \in(0,1]$.
4. Since $\left\{s_{n}\right\}_{n=1}^{\infty}$ is a decreasing sequence and is bounded from below. By the monotone sequence property, $\lim _{n \rightarrow \infty} s_{n}=s$ exists. Note that

$$
\begin{aligned}
\frac{I_{2 n+1}}{I_{2 n}} & =\frac{2}{\pi} \frac{\left(2^{n} n!\right)^{4}}{(2 n)!(2 n+1)!}=\frac{2^{4 n+1}}{\pi} \frac{s_{n}^{4}}{s_{2 n} s_{2 n+1}} \frac{\left(n^{n+0.5} e^{-n}\right)^{4}}{(2 n)^{2 n+0.5} e^{-2 n}(2 n+1)^{2 n+1.5} e^{-(2 n+1)}} \\
& =\frac{e}{2 \pi} \frac{s_{n}^{4}}{s_{2 n} s_{2 n+1}} \frac{(2 n)^{2 n+1.5}}{(2 n+1)^{2 n+1.5}}=\frac{e}{2 \pi} \frac{s_{n}^{4}}{s_{2 n} s_{2 n+1}}\left(1+\frac{1}{2 n}\right)^{-2 n-1.5} .
\end{aligned}
$$

Therefore, 2 implies that

$$
1=\lim _{n \rightarrow \infty} \frac{I_{2 n+1}}{I_{2 n}}=\lim _{n \rightarrow \infty} \frac{e}{2 \pi} \frac{s_{n}^{4}}{s_{2 n} s_{2 n+1}} \frac{(2 n)^{2 n+1.5}}{(2 n+1)^{2 n+1.5}}=\frac{e}{2 \pi} s^{2} \lim _{n \rightarrow \infty}\left(1+\frac{1}{2 n}\right)^{-2 n-1.5}=\frac{s^{2}}{2 \pi} ;
$$

thus $s=\sqrt{2 \pi}\left(\right.$ since $\left.s_{n} \geqslant 0\right)$.
Problem 2. Let $(\mathbb{F},+, \cdot, \leqslant)$ be an Archimedean ordered field, and $0<\alpha<1$. Show that $\lim _{n \rightarrow \infty} \alpha^{n}=0$. Proof. Since $0<\alpha<1$, we have $\frac{1}{\alpha}>1$; thus by the fact that $\lim _{n \rightarrow \infty} \frac{1}{n}=0$ (which is from Archimedean property), there exists $p>0$ such that

$$
1+\frac{1}{p}<\frac{1}{\alpha} .
$$

Therefore,

$$
\frac{1}{\alpha^{p}}>\left(1+\frac{1}{p}\right)^{p} \geqslant 1+C_{1}^{p} \frac{1}{p}=2
$$

which implies that

$$
0<\alpha^{p}<\frac{1}{2}
$$

By the fact that $2^{n} \geqslant n$ for all $n \geqslant \mathbb{N}$ (which can be shown by induction), we find from the Sandwich Lemma that

$$
\lim _{n \rightarrow \infty} \alpha^{p n}=0
$$

Let $\varepsilon>0$ be given. The identity above shows the existence of $N_{1}>0$ such that $\left|\alpha^{p n}\right|<\varepsilon$ whenever $n \geqslant N_{1}$. Let $N=p N_{1}$. Then if $n \geqslant N$,

$$
\left|\alpha^{n}\right| \leqslant\left|\alpha^{p N_{1}}\right|<\varepsilon .
$$

Therefore, $\lim _{n \rightarrow \infty} \alpha^{n}=0$.
Problem 3. Let $(\mathbb{F},+, \cdot, \leqslant)$ an ordered field satisfying the monotone sequence property, and $y \in \mathbb{F}$ satisfying $y>1$. Complete the following.

1. Define $y^{1 / n}$ properly. (Hint: see how we define \sqrt{y} in the last example in class).
2. Show that $y^{n}-1>n(y-1)$ for all $n \in \mathbb{N} \backslash\{1\}$; thus $y-1>n\left(y^{1 / n}-1\right)$.
3. Show that if $t>1$ and $n>(y-1) /(t-1)$, then $y^{1 / n}<t$.
4. Show that $\lim _{n \rightarrow \infty} y^{1 / n}=1$ as $n \rightarrow \infty$.

Proof. 1. For each $k \in \mathbb{N}$, let N_{k} be the largest integer satisfying that $\left(\frac{N_{k}}{2^{k}}\right)^{n} \leqslant y$ but $\left(\frac{N_{k}+1}{2^{k}}\right)^{n}>y$ (the existence of such an N_{k} requires the Archimedean property, why?) Define $x_{k}=\frac{N_{k}}{2^{k}}$. Then
(a) By binomial expansion, for each $k \in \mathbb{N}$ we have

$$
x_{k}^{n} \leqslant y<1+C_{1}^{n} y+C_{2}^{n} y^{2}+\cdots+C_{n}^{n} y^{n}=(1+y)^{n} ;
$$

thus Problem 2 in Exercise 1 implies that $x_{k}<1+y$. Therefore, $\left\{x_{k}\right\}_{k=1}^{\infty}$ is bounded from above.
(b) For each $k \in \mathbb{N},\left(\frac{2 N_{k}}{2^{k+1}}\right)^{n}=\left(\frac{N_{k}}{2^{k}}\right)^{n} \leqslant y$; thus $N_{k+1} \geqslant 2 N_{k}$. Therefore, for each $k \in \mathbb{N}$,

$$
x_{k}=\frac{N_{k}}{2^{k}}=\frac{2 N_{k}}{2^{k+1}} \leqslant \frac{N_{k+1}}{2^{k+1}}=x_{k+1}
$$

which shows that $\left\{x_{k}\right\}_{k=1}^{\infty}$ is increasing.
Therefore, MSP implies that $\left\{x_{k}\right\}_{k=1}^{\infty}$ converges. Assume that $x_{k} \rightarrow x$ as $k \rightarrow \infty$ for some $x \in \mathbb{F}$. Then the fact that $x_{k}^{n} \leqslant y$ for all $k \in \mathbb{N}$ implies that $x^{n} \leqslant y$. On the other hand,

$$
\left(x_{k}+\frac{1}{2^{k}}\right)^{n} \geqslant y \quad \forall k \in \mathbb{N}
$$

thus AP (a consequence of MSP) implies that

$$
x^{n}=\left(\lim _{k \rightarrow \infty} x_{k}+\lim _{k \rightarrow \infty} \frac{1}{2^{k}}\right)^{n}=\lim _{k \rightarrow \infty}\left(x_{k}+\frac{1}{2^{k}}\right)^{n} \geqslant y .
$$

Therefore, $x^{n}=y$. Problem 2 then shows that there is only one $x>0$ satisfying $x^{n}=y$. This x will be denoted by $y^{\frac{1}{n}}$.
2. For $y>1$, let $z=y-1$. Then $z>0$ so that for $n>1$, the binomial expansion shows that

$$
\begin{aligned}
y^{n}-1 & =(1+z)^{n}-1=1+C_{1}^{n} z+C_{2}^{n} z^{2}+\cdots+C_{n}^{n} z^{n}-1=C_{1}^{n} z+C_{2}^{n} z^{2}+\cdots+C_{n}^{n} z^{n} \\
& >n z=n(y-1) .
\end{aligned}
$$

Therefore, replacing y by $y^{\frac{1}{n}}$ in the inequality above, we conclude that

$$
y-1>n\left(y^{\frac{1}{n}}-1\right) \quad \forall n \in \mathbb{N} \backslash\{1\} .
$$

3. Suppose that $y^{\frac{1}{n}} \geqslant t>1$. Then 2 implies that for $n \in \mathbb{N} \backslash\{1\}$,

$$
y-1>n\left(y^{\frac{1}{n}}-1\right) \geqslant n(t-1)
$$

Therefore, $n \leqslant \frac{y-1}{t-1}$, a contradiction.
4. Let $k \in \mathbb{N}$ and $t=1+\frac{1}{k}$ in 3 . Then for $n>k(y-1)$,

$$
1 \leqslant y^{\frac{1}{n}}<1+\frac{1}{k}
$$

Since $n \rightarrow \infty$ as $k \rightarrow \infty$, by the Sandwich Lemma we conclude that $\lim _{n \rightarrow \infty} y^{\frac{1}{n}}=1$.

Problem 4. Let $(\mathbb{F},+, \cdot, \leqslant)$ be an ordered field satisfying the least upper bound property, and $S \subseteq \mathbb{F}$ be non-empty.

1. Show that if S is bounded from below, then

$$
\inf S=\sup \{x \in \mathbb{F} \mid x \text { is a lower bound for } S\}
$$

2. Show that if S is bounded from above, then

$$
\sup S=\inf \{x \in \mathbb{F} \mid x \text { is an upper bound for } S\}
$$

Proof. Define $A=\{x \in \mathbb{F} \mid x$ is a lower bound for $S\}$. Since S is non-empty, every element in S is an upper bound for A; thus A is bounded from above. By the least upper bound property, $b=\sup A \in \mathbb{F}$ exists. Note that by the definition of A,

$$
\text { if } x \in A \text {, then } x \leqslant s \text { for all } s \in S \text {. }
$$

Let $\varepsilon>0$ be given. Then $b-\varepsilon$ is not an upper bound for A; thus there exists $x \in A$ such that $b-\varepsilon<x$. Then (\star) implies that $b-\varepsilon<s$ for all $s \in S$. Since $\varepsilon>0$ is given arbitrarily, $b \leqslant s$ for all $s \in S$; thus b is a lower bound for S.

Suppose that b is not the greatest lower bound for S. There exists $m>b$ such that $m \leqslant s$ for all $s \in S$. Therefore, $m \in A$; thus $m \leqslant b$, a contradiction.

Problem 5. Let A, B be two sets, and $f: A \times B \rightarrow \mathbb{F}$ be a function, where $(\mathbb{F},+, \cdot, \leqslant)$ is an ordered field satisfying the least upper bound property. Show that

$$
\sup _{(x, y) \in A \times B} f(x, y)=\sup _{y \in B}\left(\sup _{x \in A} f(x, y)\right)=\sup _{x \in A}\left(\sup _{y \in B} f(x, y)\right) .
$$

Proof. Note that

$$
f(x, y) \leqslant \sup _{(x, y) \in A \times B} f(x, y) \quad \forall(x, y) \in A \times B ;
$$

thus

$$
\sup _{x \in A} f(x, y) \leqslant \sup _{(x, y) \in A \times B} f(x, y) \quad \forall y \in B .
$$

The inequality above further shows that

$$
\sup _{y \in B}\left(\sup _{x \in A} f(x, y)\right) \leqslant \sup _{(x, y) \in A \times B} f(x, y) .
$$

Now we show the reverse inequality.

1. Suppose that $\sup _{(x, y) \in A \times B} f(x, y)=M<\infty$. Then for each $k \in \mathbb{N}$, there exists $\left(x_{k}, y_{k}\right) \in A \times B$ such that

$$
f\left(x_{k}, y_{k}\right)>M-\frac{1}{k}
$$

Therefore,

$$
M-\frac{1}{k}<f\left(x_{k}, y_{k}\right) \leqslant \sup _{x \in A} f\left(x, y_{k}\right)
$$

which further implies that

$$
M-\frac{1}{k}<f\left(x_{k}, y_{k}\right) \leqslant \sup _{y \in B}\left(\sup _{x \in A} f(x, y)\right) .
$$

Since the inequality above holds for all $k \in \mathbb{N}$, we find that $\sup _{y \in B}\left(\sup _{x \in A} f(x, y)\right) \geqslant M$.
2. Suppose that $\sup _{(x, y) \in A \times B} f(x, y)=\infty$. Then for each $k \in \mathbb{N}$, there exists $\left(x_{k}, y_{k}\right) \in A \times B$ such that

$$
f\left(x_{k}, y_{k}\right)>k .
$$

Therefore,

$$
k<f\left(x_{k}, y_{k}\right) \leqslant \sup _{x \in A} f\left(x, y_{k}\right)
$$

which further implies that

$$
k<f\left(x_{k}, y_{k}\right) \leqslant \sup _{y \in B}\left(\sup _{x \in A} f(x, y)\right) .
$$

Since the inequality above holds for all $k \in \mathbb{N}$, we find that $\sup _{y \in B}\left(\sup _{x \in A} f(x, y)\right)=\infty$.
With the help of (\star), we conclude that $\sup _{(x, y) \in A \times B} f(x, y)=\sup _{y \in B}\left(\sup _{x \in A} f(x, y)\right)$.
Problem 6. Let $(\mathbb{F},+, \cdot, \leqslant)$ be an ordered field satisfying the least upper bound property, and $\boldsymbol{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in \mathbb{F}^{n}$. Define

$$
\|\boldsymbol{x}\|_{1}=\sum_{k=1}^{n}\left|x_{k}\right| \quad \text { and } \quad\|\boldsymbol{x}\|_{\infty}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \cdots,\left|x_{n}\right|\right\} .
$$

Show that

$$
\text { 1. }\|\boldsymbol{x}\|_{1}=\sup \left\{\sum_{k=1}^{n} x_{k} y_{k} \mid\|\boldsymbol{y}\|_{\infty}=1\right\} . \quad \text { 2. }\|\boldsymbol{y}\|_{\infty}=\sup \left\{\sum_{k=1}^{n} x_{k} y_{k} \mid\|\boldsymbol{x}\|_{1}=1\right\} .
$$

Proof. Let $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{F}^{n}$ be given. Then

$$
\sum_{k=1}^{n} x_{k} y_{k} \leqslant \sum_{k=1}^{n}\left|x_{k}\right|\left|y_{k}\right| \leqslant \sum_{k=1}^{n}\left|x_{k}\right|\|\boldsymbol{y}\|_{\infty}=\|\boldsymbol{y}\|_{\infty} \sum_{k=1}^{n}\left|x_{k}\right|=\|\boldsymbol{y}\|_{\infty}\|\boldsymbol{x}\|_{1} .
$$

Therefore,

$$
\sup \left\{\sum_{k=1}^{n} x_{k} y_{k} \mid\|\boldsymbol{y}\|_{\infty}=1\right\} \leqslant\|\boldsymbol{x}\|_{1} \quad \text { and } \quad \sup \left\{\sum_{k=1}^{n} x_{k} y_{k} \mid\|\boldsymbol{x}\|_{1}=1\right\} \leqslant\|\boldsymbol{y}\|_{\infty} .
$$

Next we show that the two inequalities are in fact equalities by showing that the right-hand side of the inequalities belongs to the sets (this is because if $b \in A$ is an upper bound for A, then b is the least upper bound for A).

1. $\sup \left\{\sum_{k=1}^{n} x_{k} y_{k} \mid\|\boldsymbol{y}\|_{\infty}=1\right\}=\|\boldsymbol{x}\|_{1}$: W.L.O.G. we can assume that $\boldsymbol{x} \neq \mathbf{0}$. For a given $\boldsymbol{x} \in \mathbb{F}^{n}$, define $y_{k} \in \mathbb{F}$ by

$$
y_{k}=\left\{\begin{array}{cl}
\frac{\overline{x_{k}}}{\left|x_{k}\right|} & \text { if } x_{k} \neq 0 \\
0 & \text { if } x_{k}=0
\end{array}\right.
$$

where $\overline{x_{k}}$ denotes the complex conjugate of x_{k}. Then $\boldsymbol{y}=\left(y_{1}, y_{2}, \cdots, y_{n}\right)$ satisfies $\|\boldsymbol{y}\|_{\infty}=1$ (since at least one component of \boldsymbol{x} is non-zero), and

$$
\sum_{k=1}^{n} x_{k} y_{k}=\sum_{k=1}^{n}\left|x_{k}\right|=\|\boldsymbol{x}\|_{1} .
$$

2. $\sup \left\{\sum_{k=1}^{n} x_{k} y_{k} \mid\|\boldsymbol{x}\|_{1}=1\right\}=\|\boldsymbol{y}\|_{\infty}$: W.L.O.G. we can assume that $\boldsymbol{y} \neq \mathbf{0}$. Suppose that $\|\boldsymbol{y}\|_{\infty}=\left|y_{m}\right| \neq 0$ for some $1 \leqslant m \leqslant n$; that is, the maximum of the absolute value of components occurs at the m-th component. Define $x_{j} \in \mathbb{F}$ by

$$
x_{j}=\left\{\begin{array}{cl}
\frac{\overline{y_{m}}}{\left|y_{m}\right|} & \text { if } j=m, \\
0 & \text { if } j \neq m,
\end{array}\right.
$$

where $\overline{y_{m}}$ is the complex conjugate of y_{m}. Then $\boldsymbol{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ satisfies $\|\boldsymbol{x}\|_{1}=1$ (since only one component of \boldsymbol{x} is non-zero), and

$$
\sum_{k=1}^{n} x_{k} y_{k}=\frac{\overline{y_{m}}}{\left|y_{m}\right|} y_{m}=\left|y_{m}\right|=\|\boldsymbol{y}\|_{\infty}
$$

Problem 7. Let $(\mathbb{F},+, \cdot, \leqslant)$ be an ordered field satisfying the least upper bound property, and A, B be non-empty subsets of \mathbb{F}. Define $A+B=\{x+y \mid x \in A, y \in B\}$. Justify if the following statements are true or false by providing a proof for the true statement and giving a counter-example for the false ones.

1. $\sup (A+B)=\sup A+\sup B$.
2. $\inf (A+B)=\inf A+\inf B$.
3. $\sup (A \cap B) \leqslant \min \{\sup A, \sup B\}$.
4. $\sup (A \cap B)=\min \{\sup A, \sup B\}$.
5. $\sup (A \cup B) \geqslant \max \{\sup A, \sup B\}$.
6. $\sup (A \cup B)=\max \{\sup A, \sup B\}$.

Proof. 1. Let $a=\sup A, b=\sup B$, and $\varepsilon>0$ be given. W.L.O.G. we can assume that $a, b \in \mathbb{F}$ for otherwise $a=\infty$ or $b=\infty$ so that $A+B$ is not bounded from above.
(a) Let $z \in A+B$. Then $z=x+y$ for some $x \in A$ and $y \in B$. By the fact that $x \leqslant a$ and $y \leqslant b$, we find that $z \leqslant a+b$. Therefore, $a+b$ is an upper bound for $A+B$.
(b) There exists $x \in A$ and $y \in B$ such that $x>a-\frac{\varepsilon}{2}$ and $y>b-\frac{\varepsilon}{2}$; thus there exists $z=x+y \in A+B$ such that

$$
z=x+y>a+b-\varepsilon
$$

Therefore, $a+b=\sup (A+B)$.
2. By Problem 1,

$$
\begin{aligned}
\inf (A+B) & =-\sup (-(A+B))=-\sup (-A+(-B))=-\sup (-A)-\sup (-B) \\
& =\inf (A)+\inf (B)
\end{aligned}
$$

3. The desired inequality hold if $A \cap B=\varnothing$ (since then $\sup A \cap B=-\infty$), so we assume that $A \cap B \neq \varnothing$. Then $A \cap B \subseteq A$ and $A \cap B \subseteq B$. Therefore,

$$
\sup (A \cap B) \leqslant \sup A \quad \text { and } \quad \sup (A \cap B) \leqslant \sup B
$$

The inequalities above then implies that $\sup (A \cap B) \leqslant \min \{\sup A, \sup B\}$.
4. If A and B are non-empty bounded sets but $A \cap B=\varnothing$, then $\sup (A \cap B)=-\infty$ but $\sup A, \sup B \in \mathbb{F}$. In such a case $\sup (A \cap B) \neq \min \{\sup A, \sup B\}$.
5. Similar to 3 , we have $A \subseteq A \cup B$ and $B \subseteq A \cup B$; thus

$$
\sup A \leqslant \sup (A \cup B) \quad \text { and } \quad \sup B \leqslant \sup (A \cup B)
$$

Therefore, $\max \{\sup A, \sup B\} \leqslant \sup (A \cup B)$.
6. If one of A and B is not bounded from above, then $\sup (A \cup B)=\max \{\sup A, \sup B\}=\infty$. Suppose that A and B are bounded from above. Then $A \cup B$ are bounded from above by $\max \{\sup A, \sup B\}$ since if $x \in A \cup B$, then $x \in A$ or $x \in B$ which implies that $x \leqslant \sup A$ or $x \leqslant \sup B$; thus $x \leqslant \max \{\sup A, \sup B\}$ for all $x \in A \cup B$. This shows that

$$
\sup (A \cup B) \leqslant \max \{\sup A, \sup B\} .
$$

Together with 5 , we conclude that $\sup (A \cup B)=\max \{\sup A, \sup B\}$.

