
Exercise Problem Sets 2
Sept. 23. 2022

Problem 1. Complete the following.

1. Verify the Wallis’s formula: if n is a non-negative integer, then
ż π

2

0

sin2n+1 x dx =

ż π
2

0

cos2n+1 x dx =
(2nn!)2

(2n+ 1)!

and
ż π

2

0

sin2n x dx =

ż π
2

0

cos2n x dx =
(2n)!

(2nn!)2
¨
π

2
.

2. Let In =
ż π

2

0
sinn x dx. Show that lim

nÑ8

I2n+1

I2n
= 1.

3. Let sn =
n!

nn+0.5e´n
. Show that tsnu8

n=1 is a decreasing sequence; that is, sn ě sn+1 for all
n P N.

4. Suppose that you know that R satisfies MSP. Then explain why the limit lim
nÑ8

sn exists. Find
the limit of tsnu8

n=1.

Hint:

2. Show that I2n+2 ď I2n+1 ď I2n for all n P N and then apply the Sandwich lemma.

3. Consider the function f(x) =
(
1 +

1

x

)x+0.5.

Proof. 1. Integrating by parts, we find that
ż π

2

0

sinn x dx = ´ sinn´1 x cosx
ˇ

ˇ

ˇ

x=π
2

x=0
+ (n ´ 1)

ż π
2

0

sinn´2 x cos2 x dx

= (n ´ 1)

ż π
2

0

sinn´2 x(1 ´ sin2 x) dx

= (n ´ 1)

ż π
2

0

sinn´2 x dx ´ (n ´ 1)

ż π
2

0

sinn x dx ;

thus
ż π

2

0

sinn x dx =
n ´ 1

n

ż π
2

0

sinn´2 x dx .

Therefore,
ż π

2

0

sin2n+1 x dx =
2n

2n+ 1

ż π
2

0

sin2n´1 x dx =
2n

2n+ 1
¨
2n ´ 2

2n ´ 1

ż π
2

0

sin2n´3 x dx = ¨ ¨ ¨

=
2n

2n+ 1
¨
2n ´ 2

2n ´ 1
¨
2n ´ 4

2n ´ 3
¨ ¨ ¨

2

3

ż π
2

0

sinx dx =
2

3
¨
4

5
¨ ¨ ¨

2n

2n+ 1

=
2242 ¨ ¨ ¨ (2n)2

(2n+ 1)!
=

(2nn!)2

(2n+ 1)!



and
ż π

2

0

sin2n x dx =
2n ´ 1

2n

ż π
2

0

sin2n´2 x dx =
2n ´ 1

2n
¨
2n ´ 3

2n ´ 2

ż π
2

0

sin2n´4 x dx = ¨ ¨ ¨

=
2n ´ 1

2n
¨
2n ´ 3

2n ´ 2
¨
2n ´ 5

2n ´ 4
¨ ¨ ¨

1

2

ż π
2

0

sin0 x dx =
1

2
¨
3

4
¨ ¨ ¨

2n ´ 1

2n
¨
π

2

=
(2n)!

2242 ¨ ¨ ¨ (2n)2
¨
π

2
=

(2n)!

(2nn!)2
¨
π

2
.

2. On the interval
[
0,

π

2

]
, 0 ď sinx ď 1; thus

sin2n+2 x ď sin2n+1 x ď sin2n x @x P
[
0,

π

2

]
.

Therefore, I2n+2 ď I2n+1 ď I2n so that

I2n+2

I2n
ď

I2n+1

I2n
ď 1 @n P N .

Since I2n+2

I2n
=

2n+ 1

2(n+ 1)
, the Sandwich Lemma implies that

lim
nÑ8

I2n+1

I2n
= 1 .

3. Since lim
nÑ8

(
1+

1

n

)n+0.5

= e and sn
sn+1

=

n!

nn+0.5e´n

(n+ 1)!

(n+ 1)n+1.5e´n´1

=
1

e

(
1+

1

n

)n+0.5

, it suffices to show

that the function f(x) ”
(
1+

1

x

)x+0.5 is decreasing on [1,8). Nevertheless, this is the same as
proving that the function g(x) ” (1 + x)

1
x
+ 1

2 is increasing on (0, 1].

Differentiate g, we find that

g 1(x) = g(x)

[
ln(1 + x) +

2 + x

1 + x

]
2x ´ 2(2 + x) ln(1 + x)

4x2

=
2x+ x2 ´ 2(1 + x) ln(1 + x)

2x2(1 + x)
.

To see the sign of the denominator h(x) = 2x+x2 ´2(1+x) ln(1+x) on (0, 1], we differentiate
h and find that

h 1(x) = 2 + 2x ´ 2 ln(1 + x) ´ 2 = 2
[
x ´ ln(1 + x)

]
and one more differentiation shows that

h 11(x) = 1 ´
1

1 + x
=

x

1 + x
ą 0 @x P (0, 1] .

Therefore, h 1 in increasing on (0, 1] which implies that h 1(x) ě h 1(0) = 0 for all x P (0, 1]. This
further implies that h(x) ě h(0) = 0 for all x P (0, 1]; thus g 1(x) ě 0 for all x P

(
0, 1].



4. Since tsnu8
n=1 is a decreasing sequence and is bounded from below. By the monotone sequence

property, lim
nÑ8

sn = s exists. Note that

I2n+1

I2n
=

2

π

(2nn!)4

(2n)!(2n+ 1)!
=

24n+1

π

s4n
s2ns2n+1

(nn+0.5e´n)4

(2n)2n+0.5e´2n(2n+ 1)2n+1.5e´(2n+1)

=
e

2π

s4n
s2ns2n+1

(2n)2n+1.5

(2n+ 1)2n+1.5
=

e

2π

s4n
s2ns2n+1

(
1 +

1

2n

)´2n´1.5

.

Therefore, 2 implies that

1 = lim
nÑ8

I2n+1

I2n
= lim

nÑ8

e

2π

s4n
s2ns2n+1

(2n)2n+1.5

(2n+ 1)2n+1.5
=

e

2π
s2 lim

nÑ8

(
1 +

1

2n

)´2n´1.5

=
s2

2π
;

thus s =
?
2π (since sn ě 0). ˝

Problem 2. Let (F,+, ¨,ď) be an Archimedean ordered field, and 0 ă α ă 1. Show that lim
nÑ8

αn = 0.

Proof. Since 0 ă α ă 1, we have 1

α
ą 1; thus by the fact that lim

nÑ8

1

n
= 0 (which is from Archimedean

property), there exists p ą 0 such that
1 +

1

p
ă

1

α
.

Therefore,
1

αp
ą

(
1 +

1

p

)p

ě 1 + Cp
1

1

p
= 2

which implies that
0 ă αp ă

1

2
.

By the fact that 2n ě n for all n ě N (which can be shown by induction), we find from the Sandwich
Lemma that

lim
nÑ8

αpn = 0 .

Let ε ą 0 be given. The identity above shows the existence of N1 ą 0 such that
ˇ

ˇαpn
ˇ

ˇ ă ε whenever
n ě N1. Let N = pN1. Then if n ě N ,

ˇ

ˇαn
ˇ

ˇ ď
ˇ

ˇαpN1
ˇ

ˇ ă ε .

Therefore, lim
nÑ8

αn = 0. ˝

Problem 3. Let (F,+, ¨,ď) an ordered field satisfying the monotone sequence property, and y P F
satisfying y ą 1. Complete the following.

1. Define y1/n properly. (Hint: see how we define ?
y in the last example in class).

2. Show that yn ´ 1 ą n(y ´ 1) for all n P Nzt1u; thus y ´ 1 ą n(y1/n ´ 1).

3. Show that if t ą 1 and n ą (y ´ 1)/(t ´ 1), then y1/n ă t.

4. Show that lim
nÑ8

y1/n = 1 as n Ñ 8.



Proof. 1. For each k P N, let Nk be the largest integer satisfying that
(Nk

2k

)n
ď y but

(Nk + 1

2k

)n
ą y

(the existence of such an Nk requires the Archimedean property, why?) Define xk =
Nk

2k
. Then

(a) By binomial expansion, for each k P N we have

xn
k ď y ă 1 + Cn

1 y + Cn
2 y

2 + ¨ ¨ ¨ + Cn
ny

n = (1 + y)n ;

thus Problem 2 in Exercise 1 implies that xk ă 1+ y. Therefore, txku8
k=1 is bounded from

above.

(b) For each k P N,
( 2Nk

2k+1

)n
=

(Nk

2k

)n
ď y; thus Nk+1 ě 2Nk. Therefore, for each k P N,

xk =
Nk

2k
=

2Nk

2k+1
ď

Nk+1

2k+1
= xk+1

which shows that txku8
k=1 is increasing.

Therefore, MSP implies that txku8
k=1 converges. Assume that xk Ñ x as k Ñ 8 for some

x P F. Then the fact that xn
k ď y for all k P N implies that xn ď y. On the other hand,(

xk +
1

2k

)n

ě y @ k P N ;

thus AP (a consequence of MSP) implies that

xn =
(

lim
kÑ8

xk + lim
kÑ8

1

2k

)n

= lim
kÑ8

(
xk +

1

2k

)n

ě y .

Therefore, xn = y. Problem 2 then shows that there is only one x ą 0 satisfying xn = y. This
x will be denoted by y

1
n .

2. For y ą 1, let z = y ´ 1. Then z ą 0 so that for n ą 1, the binomial expansion shows that

yn ´ 1 = (1 + z)n ´ 1 = 1 + Cn
1 z + Cn

2 z
2 + ¨ ¨ ¨ + Cn

nz
n ´ 1 = Cn

1 z + Cn
2 z

2 + ¨ ¨ ¨ + Cn
nz

n

ą nz = n(y ´ 1) .

Therefore, replacing y by y
1
n in the inequality above, we conclude that

y ´ 1 ą n(y
1
n ´ 1) @n P Nzt1u .

3. Suppose that y
1
n ě t ą 1. Then 2 implies that for n P Nzt1u,

y ´ 1 ą n(y
1
n ´ 1) ě n(t ´ 1) .

Therefore, n ď
y ´ 1

t ´ 1
, a contradiction.

4. Let k P N and t = 1 +
1

k
in 3. Then for n ą k(y ´ 1),

1 ď y
1
n ă 1 +

1

k
.

Since n Ñ 8 as k Ñ 8, by the Sandwich Lemma we conclude that lim
nÑ8

y
1
n = 1. ˝



Problem 4. Let (F,+, ¨,ď) be an ordered field satisfying the least upper bound property, and S Ď F
be non-empty.

1. Show that if S is bounded from below, then

infS = sup
␣

x P F
ˇ

ˇx is a lower bound for S
(

2. Show that if S is bounded from above, then

supS = inf
␣

x P F
ˇ

ˇx is an upper bound for S
(

.

Proof. Define A =
␣

x P F
ˇ

ˇx is a lower bound for S
(

. Since S is non-empty, every element in S is an
upper bound for A; thus A is bounded from above. By the least upper bound property, b = supA P F
exists. Note that by the definition of A,

if x P A, then x ď s for all s P S. (‹)

Let ε ą 0 be given. Then b ´ ε is not an upper bound for A; thus there exists x P A such that
b ´ ε ă x. Then (‹) implies that b ´ ε ă s for all s P S. Since ε ą 0 is given arbitrarily, b ď s for all
s P S; thus b is a lower bound for S.

Suppose that b is not the greatest lower bound for S. There exists m ą b such that m ď s for all
s P S. Therefore, m P A; thus m ď b, a contradiction. ˝

Problem 5. Let A,B be two sets, and f : AˆB Ñ F be a function, where (F,+, ¨,ď) is an ordered
field satisfying the least upper bound property. Show that

sup
(x,y)PAˆB

f(x, y) = sup
yPB

(
sup
xPA

f(x, y)
)
= sup

xPA

(
sup
yPB

f(x, y)
)
.

Proof. Note that
f(x, y) ď sup

(x,y)PAˆB

f(x, y) @ (x, y) P A ˆ B ;

thus
sup
xPA

f(x, y) ď sup
(x,y)PAˆB

f(x, y) @ y P B .

The inequality above further shows that

sup
yPB

(
sup
xPA

f(x, y)
)

ď sup
(x,y)PAˆB

f(x, y) . (‹)

Now we show the reverse inequality.

1. Suppose that sup
(x,y)PAˆB

f(x, y) = M ă 8. Then for each k P N, there exists (xk, yk) P A ˆ B

such that
f(xk, yk) ą M ´

1

k
.



Therefore,
M ´

1

k
ă f(xk, yk) ď sup

xPA
f(x, yk)

which further implies that

M ´
1

k
ă f(xk, yk) ď sup

yPB

(
sup
xPA

f(x, y)
)
.

Since the inequality above holds for all k P N, we find that sup
yPB

(
sup
xPA

f(x, y)
)

ě M .

2. Suppose that sup
(x,y)PAˆB

f(x, y) = 8. Then for each k P N, there exists (xk, yk) P A ˆ B such

that
f(xk, yk) ą k .

Therefore,
k ă f(xk, yk) ď sup

xPA
f(x, yk)

which further implies that

k ă f(xk, yk) ď sup
yPB

(
sup
xPA

f(x, y)
)
.

Since the inequality above holds for all k P N, we find that sup
yPB

(
sup
xPA

f(x, y)
)
= 8.

With the help of (‹), we conclude that sup
(x,y)PAˆB

f(x, y) = sup
yPB

(
sup
xPA

f(x, y)
)
. ˝

Problem 6. Let (F,+, ¨,ď) be an ordered field satisfying the least upper bound property, and
x = (x1, x2, ¨ ¨ ¨ , xn) P Fn. Define

}x}1 =
n
ÿ

k=1

|xk| and }x}8 = max
␣

|x1|, |x2|, ¨ ¨ ¨ , |xn|
(

.

Show that

1. }x}1 = sup
!

n
ÿ

k=1

xkyk

ˇ

ˇ

ˇ
}y}8 = 1

)

. 2. }y}8 = sup
!

n
ÿ

k=1

xkyk

ˇ

ˇ

ˇ
}x}1 = 1

)

.

Proof. Let x,y P Fn be given. Then
n
ÿ

k=1

xkyk ď

n
ÿ

k=1

|xk||yk| ď

n
ÿ

k=1

|xk|}y}8 = }y}8

n
ÿ

k=1

|xk| = }y}8}x}1 .

Therefore,

sup
!

n
ÿ

k=1

xkyk

ˇ

ˇ

ˇ
}y}8 = 1

)

ď }x}1 and sup
!

n
ÿ

k=1

xkyk

ˇ

ˇ

ˇ
}x}1 = 1

)

ď }y}8 .

Next we show that the two inequalities are in fact equalities by showing that the right-hand side of
the inequalities belongs to the sets (this is because if b P A is an upper bound for A, then b is the
least upper bound for A).



1. sup
! n
ř

k=1

xkyk

ˇ

ˇ

ˇ
}y}8 = 1

)

= }x}1: W.L.O.G. we can assume that x ‰ 0. For a given x P Fn,

define yk P F by

yk =

$

&

%

xk
|xk|

if xk ‰ 0 ,

0 if xk = 0 ,

where xk denotes the complex conjugate of xk. Then y = (y1, y2, ¨ ¨ ¨ , yn) satisfies }y}8 = 1

(since at least one component of x is non-zero), and
n
ÿ

k=1

xkyk =
n
ÿ

k=1

|xk| = }x}1 .

2. sup
! n
ř

k=1

xkyk

ˇ

ˇ

ˇ
}x}1 = 1

)

= }y}8: W.L.O.G. we can assume that y ‰ 0. Suppose that

}y}8 = |ym| ‰ 0 for some 1 ď m ď n; that is, the maximum of the absolute value of
components occurs at the m-th component. Define xj P F by

xj =

$

&

%

ym
|ym|

if j = m,

0 if j ‰ m,

where ym is the complex conjugate of ym. Then x = (x1, x2, ¨ ¨ ¨ , xn) satisfies }x}1 = 1 (since
only one component of x is non-zero), and

n
ÿ

k=1

xkyk =
ym

|ym|
ym = |ym| = }y}8 . ˝

Problem 7. Let (F,+, ¨,ď) be an ordered field satisfying the least upper bound property, and A,B

be non-empty subsets of F. Define A+B = tx+ y |x P A, y P Bu. Justify if the following statements
are true or false by providing a proof for the true statement and giving a counter-example for the
false ones.

1. sup(A+B) = supA+ supB. 2. inf(A+B) = infA+ infB.

3. sup(A X B) ď mintsupA, supBu. 4. sup(A X B) = mintsupA, supBu.

5. sup(A Y B) ě maxtsupA, supBu. 6. sup(A Y B) = maxtsupA, supBu.

Proof. 1. Let a = supA, b = supB, and ε ą 0 be given. W.L.O.G. we can assume that a, b P F for
otherwise a = 8 or b = 8 so that A+B is not bounded from above.

(a) Let z P A + B. Then z = x + y for some x P A and y P B. By the fact that x ď a and
y ď b, we find that z ď a+ b. Therefore, a+ b is an upper bound for A+B.

(b) There exists x P A and y P B such that x ą a ´
ε

2
and y ą b ´

ε

2
; thus there exists

z = x+ y P A+B such that

z = x+ y ą a+ b ´ ε .



Therefore, a+ b = sup(A+B).

2. By Problem 1,

inf(A+B) = ´ sup(´(A+B)) = ´ sup(´A+ (´B)) = ´ sup(´A) ´ sup(´B)

= inf(A) + inf(B) .

3. The desired inequality hold if A X B = H (since then supA X B = ´8), so we assume that
A X B ‰ H. Then A X B Ď A and A X B Ď B. Therefore,

sup(A X B) ď supA and sup(A X B) ď supB .

The inequalities above then implies that sup(A X B) ď mintsupA, supBu.

4. If A and B are non-empty bounded sets but A X B = H, then sup(A X B) = ´8 but
supA, supB P F. In such a case sup(A X B) ‰ mintsupA, supBu.

5. Similar to 3, we have A Ď A Y B and B Ď A Y B; thus

supA ď sup(A Y B) and supB ď sup(A Y B) .

Therefore, maxtsupA, supBu ď sup(A Y B).

6. If one of A and B is not bounded from above, then sup(A Y B) = maxtsupA, supBu = 8.
Suppose that A and B are bounded from above. Then A Y B are bounded from above by
maxtsupA, supBu since if x P A Y B, then x P A or x P B which implies that x ď supA or
x ď supB; thus x ď maxtsupA, supBu for all x P A Y B. This shows that

sup(A Y B) ď maxtsupA, supBu .

Together with 5, we conclude that sup(A Y B) = maxtsupA, supBu. ˝


