Exercise Problem Sets 4

Mar. 11. 2022

Problem 1. Let (M, d) and (N, ρ) be metric spaces, $A \subseteq M$, and $f_k : A \to N$ be a sequence of functions such that for some function $f : A \to N$, we have that for all $x \in A$, if $\{x_k\}_{k=1}^{\infty} \subseteq A$ and $x_k \to x$ as $k \to \infty$, then

$$\lim_{k \to \infty} f_k(x_k) = f(x) \,.$$

Show that

- 1. ${f_k}_{k=1}^{\infty}$ converges pointwise to f.
- 2. If $\{f_{k_j}\}_{j=1}^{\infty}$ is a subsequence of $\{f_k\}_{k=1}^{\infty}$, and $\{x_j\}_{j=1}^{\infty} \subseteq A$ is a convergent sequence satisfying that $\lim_{j\to\infty} x_j = x$, then

$$\lim_{j \to \infty} f_{k_j}(x_j) = f(x)$$

3. Show that if in addition A is compact and f is continuous on A, then $\{f_k\}_{k=1}^{\infty}$ converges uniformly f on A.

Proof. 1. Let $x \in A$ be given. Define $\{x_k\}_{k=1}^{\infty}$ by $x_k = x$ for all $k \in \mathbb{N}$. Then $\lim_{k \to \infty} x_k = x$; thus

$$\lim_{k \to \infty} f_k(x) = \lim_{k \to \infty} f_k(x_k) = f(x)$$

which shows that $\{f_k\}_{k=1}^{\infty}$ converges pointwise to f.

2. Let $\{f_{k_j}\}_{j=1}^{\infty}$ be a subsequence of $\{f_k\}_{k=1}^{\infty}$, and $\{x_j\}_{j=1}^{\infty}$ be a convergent sequence with limits x. Define a new sequence $\{y_\ell\}_{\ell=1}^{\infty}$ by

$$y_1, \cdots, y_{k_1} = x_1, \ y_{k_1+1}, \cdots, y_{k_2} = x_2, \ \cdots, \ y_{k_{\ell}+1}, \cdots, y_{k_{\ell+1}} = x_{\ell+1}, \cdots$$

that is, the first k_1 terms of $\{y_\ell\}_{\ell=1}^{\infty}$ is x_1 , the next $(k_2 - k_1)$ terms of $\{y_\ell\}_{\ell=1}^{\infty}$ is x_2 , and so on. Then $\{y_\ell\}_{\ell=1}^{\infty}$ converges to x;

$$\lim_{\ell \to \infty} f_\ell(y_\ell) = f(x)$$

Since $\{f_{k_j}(x_j)\}_{j=1}^{\infty}$ is a subsequence of $\{f_\ell(y_\ell)\}_{\ell=1}^{\infty}$, $\lim_{j\to\infty} f_{k_j}(x_j) = f(x)$.

3. Suppose the contrary that $\{f_k\}_{k=1}^{\infty}$ does not converge uniformly to f on A. Then there exists $\varepsilon > 0$ such that for each k > 0 there exist $n_k \ge k$ (W.L.O.G. we can assume that $n_{k+1} > n_k$ for all $k \in \mathbb{N}$) and $x_k \in A$ such that

$$\rho(f_{n_k}(x_k), f(x_k)) \ge \varepsilon$$

By the compactness of A, there exists a convergent subsequence $\{x_{k_j}\}_{j=1}^{\infty}$ of $\{x_k\}_{k=1}^{\infty}$. Suppose that $\lim_{j\to\infty} x_{k_j} = x$. Since

$$\rho(f_{n_{k_j}}(x_{k_j}), f(x_{k_j})) \ge \varepsilon \qquad \forall j \in \mathbb{N},$$

by the fact that $\lim_{j\to\infty} f_{n_{k_j}}(x_{k_j}) = f(x)$ and that f is continuous at x, we obtain that

$$\rho(f(x), f(x)) = \lim_{j \to \infty} \rho(f(x_{k_j}), f(x)) \ge \lim_{j \to \infty} \left[\rho(f_{n_{k_j}}(x_{k_j}), f(x_{k_j})) - \rho(f_{n_{k_j}}(x_{k_j}), f(x)) \right]$$
$$= \lim_{j \to \infty} \rho(f_{n_{k_j}}(x_{k_j}), f(x_{k_j})) \ge \frac{\varepsilon}{2},$$

a contradiction.

Remark. Using the inequality

$$\rho(f_k(x_k), f(x)) \leq \rho(f(x_k), f(x)) + \sup_{x \in A} \rho(f_k(x), f(x)),$$

we find that if $\{f_k\}_{k=1}^{\infty}$ converges uniformly to a continuous function f, then $\lim_{k\to\infty} f_k(x_k) = f(x)$ as long as $\lim_{k\to\infty} x_k = x$. Together with the conclusion in 3, we conclude that

Let (M, d), (N, ρ) be metric spaces, $K \subseteq M$ be a compact set, $f_k : K \to N$ be a function for each $k \in \mathbb{N}$, and $f : K \to N$ be continuous. The sequence $\{f_k\}_{k=1}$ converges uniformly to f if and only if $\lim_{k \to \infty} f_k(x_k) = f(x)$ whenever sequence $\{x_k\}_{k=1}^{\infty} \subseteq K$ converges to x.

Problem 2. Let (M, d) be a metric space, $A \subseteq M$, (N, ρ) be a complete metric space, and $f_k : A \to N$ be a sequence of functions (not necessary continuous) which converges uniformly on A. Suppose that $a \in cl(A)$ and

$$\lim_{x \to \infty} f_k(x) = L_k$$

exists for all $k \in \mathbb{N}$. Show that $\{L_k\}_{k=1}^{\infty}$ converges, and

$$\lim_{x \to a} \lim_{k \to \infty} f_k(x) = \lim_{k \to \infty} \lim_{x \to a} f_k(x) \,.$$

Proof. Let $\varepsilon > 0$ be given. Since $\{f_k\}_{k=1}^{\infty}$ converges uniformly, there exists $N_1 > 0$ such that

$$\rho(f_k(x), f_\ell(x)) < \frac{\varepsilon}{3} \quad whenever \quad k, \ell \ge N_1 \text{ and } x \in A.$$
(*)

If $a \in cl(A)$, then the inequality above implies that

$$\rho(L_k, L_\ell) = \lim_{x \to a} \rho(f_k(x), f_\ell(x)) \leq \frac{\varepsilon}{3} < \varepsilon \quad whenever \quad k, \ell \geq N_1;$$

thus $\{L_k\}_{k=1}^{\infty}$ is a Cauchy sequence in (N, ρ) . Therefore, $\{L_k\}_{k=1}^{\infty}$ converges. Suppose that $\lim_{k \to \infty} L_k = L$ and $\{f_k\}_{k=1}^{\infty}$ converges uniformly to f. There exists $N_2 > 0$ such that $\rho(L_k, L) < \frac{\varepsilon}{3}$ whenever $k \ge N_2$. Moreover, passing to the limit as $\ell \to \infty$ in (\star) , we obtain that

$$\rho(f_k(x), f(x)) \leq \frac{\varepsilon}{3} \quad whenever \quad k \ge N_1 \text{ and } x \in A.$$

Let $n = \max\{N_1, N_2\}$. Since $\lim_{x \to a} f_n(x) = L_n$, there exists $\delta > 0$ such that

$$\rho(f_n(x), L_n) < \frac{\varepsilon}{3} \quad whenever \quad x \in B(a, \delta) \cap A \setminus \{a\}.$$

-	-
L	
L	-

Then if $x \in B(a, \delta) \cap A \setminus \{a\},\$

$$\rho(f(x),L) \leq \rho(f(x),f_n(x)) + \rho(f_n(x),L_n) + \rho(L_n,L) < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Therefore, $\lim_{x \to a} f(x) = L$ which shows that $\lim_{x \to a} \lim_{k \to \infty} f_k(x) = \lim_{k \to \infty} \lim_{x \to a} f_k(x)$.

Problem 3. Prove the Dini theorem:

Let K be a compact set, and $f_k : K \to \mathbb{R}$ be continuous for all $k \in \mathbb{N}$ such that $\{f_k\}_{k=1}$ converges pointwise to a continuous function $f : K \to \mathbb{R}$. Suppose that $f_k \leq f_{k+1}$ for all $k \in \mathbb{N}$. Then $\{f_k\}_{k=1}^{\infty}$ converges uniformly to f on K.

Hint: Mimic the proof of showing that $\{c_k\}_{k=1}^{\infty}$ converges to 0 in Lemma 6.64 in the lecture note. *Proof.* Suppose the contrary that there exist $\varepsilon > 0$ such that

$$\limsup_{k \to \infty} \sup_{x \in K} \left| f_k(x) - f(x) \right| \ge 2\varepsilon.$$

Then there exists $1 \leq k_1 < k_2 < \cdots$ such that

$$\max_{x \in K} \left| f_{k_j}(x) - f(x) \right| = \sup_{x \in K} \left| f_{k_j}(x) - f(x) \right| > \varepsilon.$$

In other words, for some $\varepsilon > 0$ and strictly increasing sequence $\{k_j\}_{j=1}^{\infty} \subseteq \mathbb{N}$,

$$F_j \equiv \left\{ x \in K \, \middle| \, f(x) - f_{k_j}(x) \ge \varepsilon \right\} \neq \emptyset \qquad \forall \, j \in \mathbb{N} \, .$$

Note that since $f_k \leq f_{k+1}$ for all $k \in \mathbb{N}$, $F_j \supseteq F_{j+1}$ for all $j \in \mathbb{N}$. Moreover, by the continuity of f_k and f, F_j is a closed subset of K; thus F_j is compact. Therefore, the nested set property for compact sets implies that $\bigcap_{j=1}^{\infty} F_j$ is non-empty. In other words, there exists $x \in K$ such that $f(x) - f_{k_j}(x) \ge \varepsilon$ for all $j \in \mathbb{N}$ which contradicts to the fact that $f_k \to f$ p.w. on K.

Problem 4. Let (M, d) and (N, ρ) be metric spaces, $A \subseteq M$, and $f_k : A \to N$ be uniformly continuous functions, and $\{f_k\}_{k=1}^{\infty}$ converges uniformly to $f : A \to N$ on A. Show that f is uniformly continuous on A.

Proof. Let $\varepsilon > 0$ be given. Since $\{f_k\}_{k=1}^{\infty}$ converges uniformly to f, there exists N > 0 such that

$$\rho(f_k(x), f(x)) < \frac{\varepsilon}{3} \quad \text{whenever} \quad k \ge N \text{ and } x \in A.$$

Since f_N is uniformly continuous, there exists $\delta > 0$ such that

$$\rho(f_N(x_1), f_N(x_2)) < \frac{\varepsilon}{3}$$
 whenever $x_1, x_2 \in A$ and $d(x_1, x_2) < \delta$.

Therefore, if $x_1, x_2 \in A$ satisfying $d(x_1, x_2) < \delta$, we have

$$\rho(f(x_1), f(x_2)) \leq \rho(f(x_1), f_N(x_1)) + \rho(f_N(x_1), f_N(x_2)) + \rho(f_N(x_2), f(x_2))$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon;$$

thus f is uniformly continuous on A.

Problem 5. Complete the following.

- 1. Suppose that $f_k, f, g: [0, \infty) \to \mathbb{R}$ are functions such that
 - (a) $\forall R > 0, f_k$ and g are Riemann integrable on [0, R];
 - (b) $|f_k(x)| \leq g(x)$ for all $k \in \mathbb{N}$ and $x \in [0, \infty)$;
 - (c) $\forall R > 0, \{f_k\}_{k=1}^{\infty}$ converges to f uniformly on [0, R];
 - (d) $\int_0^\infty g(x)dx \equiv \lim_{R \to \infty} \int_0^R g(x)dx < \infty.$

Show that $\lim_{k \to \infty} \int_0^\infty f_k(x) dx = \int_0^\infty f(x) dx$; that is, $\lim_{k \to \infty} \lim_{R \to \infty} \int_0^R f_k(x) dx = \lim_{R \to \infty} \lim_{k \to \infty} \int_0^R f_k(x) dx.$

- 2. Let $f_k(x)$ be given by $f_k(x) = \begin{cases} 1 & \text{if } k-1 \leq x < k \\ 0 & \text{otherwise.} \end{cases}$ Find the (pointwise) limit f of the sequence $\{f_k\}_{k=1}^{\infty}$, and check whether $\lim_{k \to \infty} \int_0^\infty f_k(x) dx = \int_0^\infty f(x) dx$ or not. Briefly explain why one can or cannot apply 1.
- 3. Let $f_k: [0,\infty) \to \mathbb{R}$ be given by $f_k(x) = \frac{x}{1+kx^4}$. Find $\lim_{k \to \infty} \int_0^\infty f_k(x) dx$.
- *Proof.* 1. First we note that since $|f_k(x)| \leq g(x)$ for all $x \in \mathbb{R}$, passing to the limit as $k \to \infty$ shows that $|f(x)| \leq g(x)$ for all $x \in \mathbb{R}$.

Let $\varepsilon > 0$ be given. Since $\lim_{R \to \infty} \int_0^R g(x) \, dx = \int_0^\infty g(x) \, dx$ exists, there exists M > 0 such that $\int_R^\infty g(x) \, dx = \left| \int_0^R g(x) \, dx - \int_0^\infty g(x) \, dx \right| < \frac{\varepsilon}{3} \qquad \forall R \ge M \, .$

Since $\{f_k\}_{k=1}^{\infty}$ converges uniformly on [0, M], $\lim_{k \to \infty} \int_0^M f_k(x) dx = \int_0^M f(x) dx$; thus there exists $N \ge 0$ such that

$$\left|\int_{0}^{M} f_{k}(x) dx - \int_{0}^{M} f(x) dx\right| < \frac{\varepsilon}{3} \quad \text{whenever} \quad k \ge N$$

Therefore, if $k \ge N$, we have

$$\left| \int_{0}^{\infty} f_{k}(x) dx - \int_{0}^{\infty} f(x) dx \right|$$

$$\leq \left| \int_{0}^{M} f_{k}(x) dx - \int_{0}^{M} f(x) dx \right| + \int_{M}^{\infty} |f(x)| dx + \int_{M}^{\infty} |f_{k}(x)| dx$$

$$< \frac{\varepsilon}{3} + 2 \int_{M}^{\infty} g(x) dx < \frac{\varepsilon}{3} + \frac{2\varepsilon}{3} = \varepsilon.$$

thus
$$\lim_{k \to \infty} \int_0^\infty f_k(x) \, dx = \int_0^\infty f(x) \, dx$$
. This implies that
$$\lim_{k \to \infty} \lim_{R \to \infty} \int_0^R f_k(x) \, dx = \lim_{k \to \infty} \int_0^\infty f_k(x) \, dx = \int_0^\infty f(x) \, dx = \lim_{R \to \infty} \int_0^R f(x) \, dx$$
$$= \lim_{R \to \infty} \lim_{k \to \infty} \int_0^R f_k(x) \, dx.$$

2. If $x \in [0, \infty)$, we have $x \leq N$ for some $N \in \mathbb{N}$ (by the Archimedean property); thus for $k \geq N$ we have $f_k(x) = 0$. In other words, $\{f_k\}_{k=1}^{\infty}$ converges pointwise to the zero function. Let f be the zero function. Then

$$\int_{0}^{\infty} f_{k}(x) \, dx = \int_{k-1}^{k} 1 \, dx = 1$$

so that $\lim_{k\to\infty} \int_0^\infty f_k(x) dx = 1 \neq 0 = \int_0^\infty f(x) dx$. This is because we cannot find an integrable g satisfying that $|f_k(x)| \leq g(x)$ for all $x \in [0, \infty)$. In fact, if $|f_k(x)| \leq g(x)$ for all $x \in [0, \infty)$, then $g(x) \geq 1$ for all $x \in [0, \infty)$.

3. Let $g(x) = \frac{x}{1+x^4}$. Then $|f_k(x)| \leq g(x)$ for all $x \in [0,\infty)$ and $k \in \mathbb{N}$. Since $g(x) \leq x$ for $x \in [0,1]$ and $g(x) \leq \frac{1}{x^3}$ for $x \geq 1$, we find that

$$\int_0^\infty g(x) \, dx \leqslant \int_0^1 x \, dx + \int_1^\infty \frac{1}{x^3} \, dx = \frac{1}{2} + \frac{1}{2} = 1 < \infty$$

Moreover,

$$f'_k(x) = \frac{1 + kx^4 - 4kx^4}{(1 + kx^4)^2} = \frac{1 - 3kx^4}{(1 + kx^4)^2}$$

which implies that for each R > 0,

$$\sup_{x \in [0,R]} \left| f_k(x) \right| \le \left| f_k(0) \right| + \left| f_k(R) \right| + \left| \frac{(3k)^{-\frac{1}{4}}}{1+k \cdot \frac{1}{3k}} \right| = \frac{R}{1+kR^4} + \frac{3}{4} \left(\frac{1}{3k} \right)^{\frac{1}{4}}.$$

Therefore, the Sandwich Lemma implies that $\lim_{k\to\infty} \sup_{x\in[0,R]} |f_k(x)| = 0$ which shows that $\{f_k\}_{k=1}^{\infty}$ converges uniformly to the zero function on [0, R] for every R > 0. By 1,

$$\lim_{k \to \infty} \int_0^\infty f_k(x) \, dx = 0 \,.$$