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Jan. 01. 2022

Problem 1. Verify the chain rule for
u(x,y,2) =xe’, v(x,y,z) =yzsinx

and
flu,v) =u* +vsinu

with h(z,y, z) = f(u(z,y, 2),v(z,y, 2)).
Problem 2. Let (7,0, ) be the spherical coordinate of R? so that
x =rcosfsinp,y =rsinfsinp, z =rcosy.
1. Find the Jacobian matrices of the map (z,y, z) — (r,0,¢) and the map (1,6, ) — (z,y, 2).

2. Suppose that f(z,y,2) is a differential function in R3. Express |V f|? in terms of the spherical

coordinate.
Problem 3. Let U < R" be open, and f: U — R™ with f = (f1, -, fm)-

1. Suppose that f is differentiable on U and the line segment joining = and y lies in U. Then

there exist points ¢y, - - - , ¢, on that segment such that
fiy) = fi(@) = (Dfi)(e)(y—z) VYi=1,---,m.

2. Suppose in addition that U is convex (the convexity of sets is defined in Problem ??). Show
that for each z,y € U and vector v € R™, there exists ¢ on the line segment joining x and y
such that

v [f@) = f)] = v (D)) —y).
In particular, show that if sup |(Df)(z)|z@nrm) < M, then
xzeU

|f(2) = fF@)lem < M|z —ylgn Vz,yeU.

Proof. Let v : [0,1] — R™ be given by v(t) = (1 — t)x + ty. Then by the chain rule, for each
i=1,---,m, (fioy) : [0,1] — R is differentiable on (0,1); thus the mean value theorem (for

functions of one real variable) implies that there exists ¢; € (0, 1) such that

filty) = fil@) = (fio)(1) = (fioy)(0) = (fio ) (t:) = (Dfi)(c) (v () ,

where ¢; = 7y(t;). Part 1 is concluded since v'(¢;) =y — x.
For v € R™, let g(t) = v - f(ty + (1 — t)z). Then g : [0,1] — R is differentiable; thus the mean

value theorem (for functions of one real variable) implies that there exists 0 < ¢y < 1 such that

v [fy) = f(@)] = g(1) = g(0) = g'(to) =v- (Df)(toy + (1 — to)z)(z — ).



Letting ¢ = toy + (1 — to)z, we conclude that v - [f(z) — f(y)] = v (Df)(c)(z —y).
Finally, let v = f(y) — f(x). By the discussion above there exists ¢ € Ty such that

1) = f@)[em = v [f(y) = f(2)] = v (Df)(e)(@ — ).

The Cauchy-Schwarz inequality further implies that

1£(y) = f(@)fm < |f(y)

f(y)

f@)[em [(DF)(e)(z = y)|rm
f(@) e [(Df)(e) ] 2@n momy |2 = e -

< |

<|

Therefore, if sup |(Df)(z)]z®@nrm) < M, we conclude that
xeU

1 f(y) = f(@)|rm < M|z —y[rn  Vz,yeU. o
Problem 4. Let U < R™ be open and connected, and f : U — R be a function such that %(x) =0
j
for all x € U. Show that f is constant in U.

Proof. First, we show that if B(a,r) is a ball in U, then f is constant on U. In fact, by the fact that
balls are convex set, Problem B implies that

[f(W) = f@)] < sup [(DHE)s@ -l -yl Yz,ye Blar).

z€B(a,r)

Since %(z) = 0 for all x € B(a,r), we find that ||(Df)(2)|s@rry = 0 for all z € B(a,r); thus
J

f(y) = f(x) for all z,y € B(a,r).
of

Suppose that f = ¢ in B(a,r). Let E = f~'({c}). Note that the fact 67<x> =0forallz e U
J

implies that Df is continuous on U; thus f is continuously differentiable on U. In particular, f is
continuous; thus f~!({c}) is closed relative to U. Suppose that f~!({c}) = F n U for some closed
set Fin R". Next we show that U\F = & so that f = con U.

Suppose the contrary that U\F # . Let Fy = U n Fland By =UnF. Then U = E, U Ey and

EinEycE\nF=UnF'nF=¢.

Therefore, Fy n Ey # & for otherwise U is disconnected by Proposition 3.65 in the lecture note. This
implies that there exists x € E; N Ey; thus there exists {x;}?, € U\F such that v, — z as k — 0.
Since x € U, there exists € > 0 such that B(z,e) < U; thus the convergence of {z;};>; implies that
there exists N > 0 such that x; € B(x,¢) for all £ > N. By the discussion above, f is constant on
B(z,€); thus f(zg) = f(x) = c for all k > N, a contradiction to that z; ¢ F. D

Problem 5. Let U < R" be open, and for each 1 <i,j < n, a;; : U — R be differentiable functions.
Define A = [a;j] and J = det(A). Show that

T u(Adi)l)  vi<k<n,

T T

where for a square matrix M = [m;;], tr(M) denotes the trace of M, Adj(M) denotes the adjoint



. oM . o . i
matrix of M, and Er denotes the matrix whose (i, j)-th entry is given by gy
Tk Tk
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and rewrite this identity in the form which is asked to prove. You can also show the differentiation

formula by applying the chain rule to the composite function F o g of maps g : U — R and

F:R” — R defined by g(z) = (a11(2), a12(2), -+ , ann(x)) and F(arr, -, apn) = det ([a;;]). Check
oF

first what is

Qi
: oF . Lo .
Proof. Let A = [a;;] and Adj(A) = [¢;;]. Then — 3. = G since the cofactor expansion implies that
ij
det(A) = aic1; + Qiaco; + -+ + QinCpy for each 1 <7 < n.
Therefore, for J = det(A), we have
0J . 8(F0g) . - oF (7aij . " (’}CLZ'j

1,7=1

aA) . n 6aij

and the result is concluded from the fact that tr (Adj(A)% Ji A
k k

ij=1
Problem 6. Let U < R™ be open, and ¢ : U — R™ be a function of class €2. Suppose that
(DY)(z) € GL(n) for all x € R", and define J = det([Dv¢]) and A = [Dy]™', where [Dv] is the
Jacobian matrix of ¢. Write [A] = [a;;].

1. Show that for each 1 <4, j,k <n, a;; : R® — R is differentiable, and

%:_2 82¢r

(9xka:lis

2. Show the Piola identity
S
Z or (
=1

Proof. Note that since A = [D)]™!, we have

=0 Vi<j<nandzelU.
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where §;, is the Kronecker delta.



1. The product rule implies that
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Note that since (D) € GL(n), by the property of the adjoint matrix we obtain that

JA = det([Dy])[Dy]™

which implies that the (4, j)-entry of Adj([Dv]) is Ja;;. Therefore, using the result in Problem

B shows that
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and the conclusion follows from Clairaut’s Theorem. =
Problem 7. Let f(z,y,2) = (22 + 1) cos(yz), and a = (O,g,l), u = (1,0,0), v = (0,1,0) and
= (2,0, 1).
1. Compute (Df)(a)(u).
2. Compute (D?f)(a)(v)(u).
3. Compute (D3 f)(a)(w)(v)(u).
Solution. Let x = x1, y = x5 and z = x3. Using the formula
- orf 2 K
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if f is k-times differentiable, we find that
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Problem 8. 1. If f: ACR" —» R™ and g : B < R™ — R’ are twice differentiable and f(A) < B,

then for xg € A, u,v € R", show that

D*(g o f)(wo)(u, v)
= (D*9)(f(0)) ((Df) (o) (u), D f(z0)(v)) + (Dg)(f (o)) ((D*f) (o) (u,v)) -

2. If p: R" - R™ is a linear map plus some constant; that is, p(x) = Lz + ¢ for some L €

ZBR" R™), and f: A< R™ — R* is k-times differentiable, prove that

D*(f o p) (o) (u®, -, u®) = (D*f)(p(20)) ((Dp)(20) (uV), -, (Dp) (o) (u™).

Problem 9. Let f(x,y) be a real-valued function on R?. Suppose that f is of class € (that is, all

2 (92
first partial derivatives are continuous on R?) and of exists and is continuous. Show that /
oxdy 0yox
. o%f o%f
d = .
exists an Gdy  dyoz

Hint: Mimic the proof of Clairaut’s Theorem.

Proof. Let (a,b) € R?. For real numbers h, k # 0, define Q : R* - R and ¢ : R> —» R by

L fathb+ k) = fla+hb)— Fa,b+ k) + Fa,b)

Qh.k) =

and
Then Q(h,k) = ﬁ[w(a,b +k)— w(a,b)}. By the mean value theorem (for functions of one real

variable),

1 0y _Lpof of
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2
for some function ¢, = 0(h, k) and 0y = 05(h, k) satisfying 6,,605 € (0,1). Since ;x&y is continuous,
we find that
i QUk) = tim 2L (oot o) = 2 ()
(h.k)=(0,0) (h)=(0,0) 020y ? ! 0xdy '



On the other hand, since the limit  lim  Q(h, k) exists,

(h,k)—(0,0)
L ab)= lim QU k) = lim lim Q(h, k)
oxdy (h,k)—(0,0) k—0 h—0
fla+h,b+k)— f(a,b+ k) f(a+ h,b)— f(a,b)
_Eﬂk[£ﬁ< h - h ”
B of af _
E%kb (b+k) - 5j@y

fzla,b+ k) — fu(a,b)

2
thus the limit lim exists and equals d af (a,b). By the definition of partial

k—0 k 0xdy
o o*f . o*f o> f
derivatives, m(a’b) exists and 0y8:z:(a’ b) = 6$8y(a’ b). D

Problem 10. Let f: R® — R™ be differentiable, and D f is a constant map in Z(R", R™); that is,
(Df)(z)(u) = (Df)(y)(u) for all x,y € R® and u € R™. Show that f is a linear term plus a constant
and that the linear part of f is the constant value of D f.

Proof. Suppose that (Df)(z) = L € B(R™,R™), where L is a “constant” bounded linear map
independent of z. Let g(z) = f(x) — Lz. Then (Dg)(x) = (Df)(x) — L = 0 for all z € R™; thus

Problem 4 implies that g is a constant function. Therefore,
f(z) — Lz =C
for some constant C' which shows that f(z) = Lx + C; that is, f is a linear term plus a constant. o

Problem 11 (True or False). Determine whether the following statements are true or false. If it

is true, prove it. Otherwise, give a counter-example.

1. Let U < R™ be open. Then f : U — R is differentiable at a € U if and only if each directional
derivative (D, f)(a) exists and

(D)@ =Y @ = (F@. - L)

83:1 (33?n
where u = (uq, - -+ ,u,) is a unit vector.

2. Let f : R?2 — R be of class €'. Assume that all second order partial derivatives of f exist,

then f is second times differentiable in R2.

3. Let f be a function defined on R?, and A be an invertible matrix. Define y = Az for x € R".
Then f(y) is differentiable if and only if f(Ax) is differentiable as a function of x.

4. Let f : [a,b] — R? be continuous and be differentiable on (a,b). If f(a) = f(b), then there
exists some ¢ € (a,b) such that f'(c) = 0.



