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Problem 1. Verify the chain rule for

u(x, y, z) = xey, v(x, y, z) = yz sinx

and
f(u, v) = u2 + v sinu

with h(x, y, z) = f
(
u(x, y, z), v(x, y, z)

)
.

Problem 2. Let (r, θ, φ) be the spherical coordinate of R3 so that

x = r cos θ sinφ, y = r sin θ sinφ, z = r cosφ .

1. Find the Jacobian matrices of the map (x, y, z) ÞÑ (r, θ, φ) and the map (r, θ, φ) ÞÑ (x, y, z).

2. Suppose that f(x, y, z) is a differential function in R3. Express |∇f |2 in terms of the spherical
coordinate.

Problem 3. Let U Ď Rn be open, and f : U Ñ Rm with f = (f1, ¨ ¨ ¨ , fm).

1. Suppose that f is differentiable on U and the line segment joining x and y lies in U . Then
there exist points c1, ¨ ¨ ¨ , cm on that segment such that

fi(y) ´ fi(x) = (Dfi)(ci)(y ´ x) @ i = 1, ¨ ¨ ¨ ,m.

2. Suppose in addition that U is convex (the convexity of sets is defined in Problem ??). Show
that for each x, y P U and vector v P Rm, there exists c on the line segment joining x and y

such that
v ¨

[
f(x) ´ f(y)

]
= v ¨ (Df)(c)(x ´ y) .

In particular, show that if sup
xPU

}(Df)(x)}B(Rn,Rm) ď M , then

}f(x) ´ f(y)}Rm ď M}x ´ y}Rn @x, y P U .

Proof. Let γ : [0, 1] Ñ Rn be given by γ(t) = (1 ´ t)x + ty. Then by the chain rule, for each
i = 1, ¨ ¨ ¨ ,m, (fi ˝ γ) : [0, 1] Ñ R is differentiable on (0, 1); thus the mean value theorem (for
functions of one real variable) implies that there exists ti P (0, 1) such that

fi(y) ´ fi(x) = (fi ˝ γ)(1) ´ (fi ˝ γ)(0) = (fi ˝ γ)1(ti) = (Dfi)(ci)
(
γ 1(ti)

)
,

where ci = γ(ti). Part 1 is concluded since γ 1(ti) = y ´ x.
For v P Rn, let g(t) = v ¨ f(ty + (1 ´ t)x). Then g : [0, 1] Ñ R is differentiable; thus the mean

value theorem (for functions of one real variable) implies that there exists 0 ă t0 ă 1 such that

v ¨
[
f(y) ´ f(x)

]
= g(1) ´ g(0) = g 1(t0) = v ¨ (Df)(t0y + (1 ´ t0)x)(x ´ y) .



Letting c = t0y + (1 ´ t0)x, we conclude that v ¨
[
f(x) ´ f(y)

]
= v ¨ (Df)(c)(x ´ y).

Finally, let v = f(y) ´ f(x). By the discussion above there exists c P xy such that

}f(y) ´ f(x)}2Rm = v ¨
[
f(y) ´ f(x)

]
= v ¨ (Df)(c)(x ´ y) .

The Cauchy-Schwarz inequality further implies that

}f(y) ´ f(x)}2Rm ď }f(y) ´ f(x)}Rm}(Df)(c)(x ´ y)}Rm

ď }f(y) ´ f(x)}Rm}(Df)(c)}B(Rn,Rm)}x ´ y}Rn .

Therefore, if sup
xPU

}(Df)(x)}B(Rn,Rm) ď M , we conclude that

}f(y) ´ f(x)}Rm ď M}x ´ y}Rn @x, y P U . ˝

Problem 4. Let U Ď Rn be open and connected, and f : U Ñ R be a function such that Bf

Bxj
(x) = 0

for all x P U . Show that f is constant in U .

Proof. First, we show that if B(a, r) is a ball in U , then f is constant on U . In fact, by the fact that
balls are convex set, Problem 3 implies that

ˇ

ˇf(y) ´ f(x)
ˇ

ˇ ď sup
zPB(a,r)

}(Df)(z)}B(Rn,R)}x ´ y}Rn @x, y P B(a, r) .

Since Bf

Bxj
(x) = 0 for all x P B(a, r), we find that }(Df)(z)}B(Rn,R) = 0 for all z P B(a, r); thus

f(y) = f(x) for all x, y P B(a, r).
Suppose that f = c in B(a, r). Let E = f´1(tcu). Note that the fact Bf

Bxj
(x) = 0 for all x P U

implies that Df is continuous on U ; thus f is continuously differentiable on U . In particular, f is
continuous; thus f´1(tcu) is closed relative to U . Suppose that f´1(tcu) = F X U for some closed
set F in Rn. Next we show that UzF = H so that f = c on U .

Suppose the contrary that UzF ‰ H. Let E1 = U XF A and E2 = U XF . Then U = E1 YE2 and

E1 X ĎE2 Ď E1 X sF = U X F A X F = H .

Therefore, ĎE1 XE2 ‰ H for otherwise U is disconnected by Proposition 3.65 in the lecture note. This
implies that there exists x P ĎE1 X E2; thus there exists txku8

k=1 Ď UzF such that xk Ñ x as k Ñ 8.
Since x P U , there exists ϵ ą 0 such that B(x, ϵ) Ď U ; thus the convergence of txku8

k=1 implies that
there exists N ą 0 such that xk P B(x, ϵ) for all k ě N . By the discussion above, f is constant on
B(x, ϵ); thus f(xk) = f(x) = c for all k ě N , a contradiction to that xk R F . ˝

Problem 5. Let U Ď Rn be open, and for each 1 ď i, j ď n, aij : U Ñ R be differentiable functions.
Define A = [aij] and J = det(A). Show that

BJ

Bxk
= tr

(
Adj(A) BA

Bxk

)
@ 1 ď k ď n ,

where for a square matrix M = [mij], tr(M) denotes the trace of M , Adj(M) denotes the adjoint



matrix of M , and BM

Bxk
denotes the matrix whose (i, j)-th entry is given by Bmij

Bxk
.

Hint: Show that

BJ

Bxk
=

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ba11
Bxk

a12 ¨ ¨ ¨ a1n

Ba21
Bxk

a22 ¨ ¨ ¨ a2n
... ...

Ban1
Bxk

an2 ¨ ¨ ¨ ann

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

+

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11
Ba12
Bxk

a13 ¨ ¨ ¨ a1n

a21
Ba22
Bxk

a23 ¨ ¨ ¨ a2n
... ...
an1

Ban2
Bxk

an3 ¨ ¨ ¨ ann

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

+ ¨ ¨ ¨ +

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 ¨ ¨ ¨ a(n´1)1
Ba1n
Bxk

a21 ¨ ¨ ¨ a(n´1)2
Ba2n
Bxk... ...

an1 ¨ ¨ ¨ a(n´1)n
Ban1
Bxk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

and rewrite this identity in the form which is asked to prove. You can also show the differentiation
formula by applying the chain rule to the composite function F ˝ g of maps g : U Ñ Rn2 and
F : Rn2

Ñ R defined by g(x) =
(
a11(x), a12(x), ¨ ¨ ¨ , ann(x)

)
and F (a11, ¨ ¨ ¨ , ann) = det

(
[aij]

)
. Check

first what BF

Baij
is.

Proof. Let A = [aij] and Adj(A) = [cij]. Then BF

Baij
= cji since the cofactor expansion implies that

det(A) = ai1c1i + ai2c2i + ¨ ¨ ¨ + aincni for each 1 ď i ď n.

Therefore, for J = det(A), we have

BJ

Bxk
(x) =

B (F ˝ g)

Bxk
(x) =

n
ÿ

i,j=1

BF

Baij
(g(x))

Baij
Bxk

(x) =
n

ÿ

i,j=1

cji(x)
Baij
Bxk

(x)

and the result is concluded from the fact that tr
(

Adj(A) BA

Bxk

)
=

n
ř

i,j=1

cji
Baij
Bxk

. ˝

Problem 6. Let U Ď Rn be open, and ψ : U Ñ Rn be a function of class C 2. Suppose that
(Dψ)(x) P GL(n) for all x P Rn, and define J = det([Dψ]) and A = [Dψ]´1, where [Dψ] is the
Jacobian matrix of ψ. Write [A] = [aij].

1. Show that for each 1 ď i, j, k ď n, aij : Rn Ñ R is differentiable, and

Baij
Bxk

= ´

n
ÿ

r,s=1

air
B 2ψr

BxkBxs
asj .

2. Show the Piola identity
n

ÿ

i=1

B

Bxi
(Jaij)(x) = 0 @ 1 ď j ď n and x P U .

Proof. Note that since A = [Dψ]´1, we have
n

ÿ

r=1

air
Bψr

Bxs
=

n
ÿ

r=1

Bψi

Bxr
ars = δis ,

where δis is the Kronecker delta.



1. The product rule implies that
n

ÿ

r=1

(
Bair
Bxk

Bψr

Bxs
+ air

B 2ψr

BxkBxs

)
= 0 ;

thus n
ÿ

r=1

Bair
Bxk

Bψr

Bxs
= ´

n
ÿ

r=1

air
B 2ψr

BxkBxs
.

Therefore,
n

ÿ

s=1

asj

n
ÿ

r=1

Bair
Bxk

Bψr

Bxs
= ´

n
ÿ

s=1

n
ÿ

r=1

air
B 2ψr

BxkBxs
asj = ´

n
ÿ

r,s=1

air
B 2ψr

BxkBxs
asj ,

and Part 1 follows from the fact that
n
ř

s=1

Bψr

Bxs
asj = δrj and

n
ř

r=1

δrj
Bair
Bxk

=
Baij
Bxk

.

2. Note that since (Dψ) P GL(n), by the property of the adjoint matrix we obtain that

JA = det([Dψ])[Dψ]´1 = Adj([Dψ])

which implies that the (i, j)-entry of Adj([Dψ]) is Jaij. Therefore, using the result in Problem
5 shows that

BJ

Bxi
= tr

(
Adj([Dψ])B [Dψ]

Bxi

)
=

n
ÿ

r,s=1

Jars
B

Bxi

Bψs

Bxr
=

n
ÿ

r,s=1

Jars
B 2ψs

BxiBxr
;

thus the product rule implies that
n

ÿ

i=1

B

Bxi
(Jaij) =

n
ÿ

i=1

BJ

Bxi
aij +

n
ÿ

i=1

J
Baij
Bxi

=
n

ÿ

i,r,s=1

Jars
B 2ψs

BxiBxr
aij ´

n
ÿ

i,r,s=1

Jair
B 2ψr

BxiBxs
asj

=
n

ÿ

i,r,s=1

Jars
B 2ψs

BxiBxr
aij ´

n
ÿ

i,r,s=1

Jars
B 2ψs

BxrBxi
aij

=
n

ÿ

i,r,s=1

Jars

(
B 2ψs

BxiBxr
´

B 2ψs

BxrBxi

)
aij

and the conclusion follows from Clairaut’s Theorem. ˝

Problem 7. Let f(x, y, z) = (x2 + 1) cos(yz), and a = (0,
π

2
, 1), u = (1, 0, 0), v = (0, 1, 0) and

w = (2, 0, 1).

1. Compute (Df)(a)(u).

2. Compute (D2f)(a)(v)(u).

3. Compute (D3f)(a)(w)(v)(u).

Solution. Let x = x1, y = x2 and z = x3. Using the formula

(Dkf)(a)(u(1), ¨ ¨ ¨ , u(k)) =
n

ÿ

j1,¨¨¨ ,jk=1

B kf

BxjkBxjk´1
¨ ¨ ¨ Bxj1

(a)u
(1)
j1
u
(2)
j2

¨ ¨ ¨u
(k)
jk

if f is k-times differentiable, we find that



1. (Df)(a)(u) =
3

ř

i=1

Bf

Bxi
(a)ui =

Bf

Bx1
(a)u1 = 0.

2. (D2f)(a)(v)(u) = (D2f)(a)(u, v) =
3

ř

i,j=1

B 2f

BxjBxi
(a)uivj =

B 2f

Bx2Bx1
(a)u1v2 = 0.

3. (D3f)(a)(w)(v)(u) = (D3f)(a)(u, v, w) =
3

ř

i,j,k=1

B 3f

BxkBxjBxi
(a)uivjwk

=
3

ÿ

k=1

B 3f

BxkBx2Bx1
(a)u1v2wk =

B 3f

Bx1Bx2Bx1
(a)w1 +

B 3f

Bx3Bx2Bx1
(a)w3 = ´4. ˝

Problem 8. 1. If f : A Ď Rn Ñ Rm and g : B Ď Rm Ñ Rℓ are twice differentiable and f(A) Ď B,
then for x0 P A, u, v P Rn, show that

D2(g ˝ f)(x0)(u, v)

= (D2g)(f(x0))
(
(Df)(x0)(u), Df(x0)(v)

)
+ (Dg)(f(x0))

(
(D2f)(x0)(u, v)

)
.

2. If p : Rn Ñ Rm is a linear map plus some constant; that is, p(x) = Lx + c for some L P

B(Rn,Rm), and f : A Ď Rm Ñ Rs is k-times differentiable, prove that

Dk(f ˝ p)(x0)(u
(1), ¨ ¨ ¨ , u(k)) = (Dkf)

(
p(x0)

)(
(Dp)(x0)(u

(1)), ¨ ¨ ¨ , (Dp)(x0)(u
(k)
)
.

Problem 9. Let f(x, y) be a real-valued function on R2. Suppose that f is of class C 1 (that is, all

first partial derivatives are continuous on R2) and B 2f

BxBy
exists and is continuous. Show that B 2f

ByBx

exists and B 2f

BxBy
=

B 2f

ByBx
.

Hint: Mimic the proof of Clairaut’s Theorem.

Proof. Let (a, b) P R2. For real numbers h, k ‰ 0, define Q : R2 Ñ R and φ : R2 Ñ R by

Q(h, k) =
1

hk

[
f(a+ h, b+ k) ´ f(a+ h, b) ´ f(a, b+ k) + f(a, b)

]
and

ψ(x, y) = f(x+ h, y) ´ f(x, y) .

Then Q(h, k) =
1

hk

[
ψ(a, b + k) ´ ψ(a, b)

]
. By the mean value theorem (for functions of one real

variable),

Q(h, k) =
1

hk

Bψ

By
(a, b+ θ1k)k =

1

h

[Bf

By
(a+ h, b+ θ1k) ´

Bf

By
(a, b+ θ1k)

]
=

1

h

B 2f

BxBy
(a+ θ2h, b+ θ1k)h =

B 2f

BxBy
(a+ θ2h, b+ θ1k)

for some function θ1 = θ(h, k) and θ2 = θ2(h, k) satisfying θ1, θ2 P (0, 1). Since B 2f

BxBy
is continuous,

we find that
lim

(h,k)Ñ(0,0)
Q(h, k) = lim

(h,k)Ñ(0,0)

B 2f

BxBy
(a+ θ2h, b+ θ1k) =

B 2f

BxBy
(a, b) .



On the other hand, since the limit lim
(h,k)Ñ(0,0)

Q(h, k) exists,

B 2f

BxBy
(a, b) = lim

(h,k)Ñ(0,0)
Q(h, k) = lim

kÑ0
lim
hÑ0

Q(h, k)

= lim
kÑ0

1

k

[
lim
hÑ0

(f(a+ h, b+ k) ´ f(a, b+ k)

h
´
f(a+ h, b) ´ f(a, b)

h

)]
= lim

kÑ0

1

k

[
Bf

Bx
(b+ k) ´

Bf

Bx
(b)

]
;

thus the limit lim
kÑ0

fx(a, b+ k) ´ fx(a, b)

k
exists and equals B 2f

BxBy
(a, b). By the definition of partial

derivatives, B 2f

ByBx
(a, b) exists and B 2f

ByBx
(a, b) =

B 2f

BxBy
(a, b). ˝

Problem 10. Let f : Rn Ñ Rm be differentiable, and Df is a constant map in B(Rn,Rm); that is,
(Df)(x)(u) = (Df)(y)(u) for all x, y P Rn and u P Rn. Show that f is a linear term plus a constant
and that the linear part of f is the constant value of Df .

Proof. Suppose that (Df)(x) = L P B(Rn,Rm), where L is a “constant” bounded linear map
independent of x. Let g(x) = f(x) ´ Lx. Then (Dg)(x) = (Df)(x) ´ L = 0 for all x P Rn; thus
Problem 4 implies that g is a constant function. Therefore,

f(x) ´ Lx = C

for some constant C which shows that f(x) = Lx+ C; that is, f is a linear term plus a constant. ˝

Problem 11 (True or False). Determine whether the following statements are true or false. If it
is true, prove it. Otherwise, give a counter-example.

1. Let U Ď Rn be open. Then f : U Ñ R is differentiable at a P U if and only if each directional
derivative (Duf)(a) exists and

(Duf)(a) =
n

ÿ

j=1

Bf

Bxj
(a)uj =

(
Bf

Bx1
(a), ¨ ¨ ¨ ,

Bf

Bxn
(a)

)
¨ u

where u = (u1, ¨ ¨ ¨ , un) is a unit vector.

2. Let f : R2 Ñ R be of class C 1. Assume that all second order partial derivatives of f exist,
then f is second times differentiable in R2.

3. Let f be a function defined on R2, and A be an invertible matrix. Define y = Ax for x P Rn.
Then f(y) is differentiable if and only if f(Ax) is differentiable as a function of x.

4. Let f : [a, b] Ñ R2 be continuous and be differentiable on (a, b). If f(a) = f(b), then there
exists some c P (a, b) such that f 1(c) = 0.


