Exercise Problem Sets 13

Problem 1. Let $\left\{T_{k}\right\}_{k=1}^{\infty} \subseteq \mathscr{B}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ be a sequence of bounded linear maps from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Prove that the following three statements are equivalent:

1. there exists a function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that $\left\{T_{k} \boldsymbol{x}\right\}_{k=1}^{\infty}$ converges to $T \boldsymbol{x}$ for all $\boldsymbol{x} \in \mathbb{R}^{n}$;
2. $\lim _{k, \ell \rightarrow \infty}\left\|T_{k}-T_{\ell}\right\|_{\mathscr{B}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)}=0$;
3. there exists a function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that for every compact $K \subseteq \mathbb{R}^{n}$ and $\varepsilon>0$ there exists $N>0$ such that

$$
\left\|T_{k} \boldsymbol{x}-T \boldsymbol{x}\right\|_{\mathbb{R}^{m}}<\varepsilon \quad \text { whenever } \quad \boldsymbol{x} \in K \quad \text { and } \quad k \geqslant N .
$$

Proof. " $1 \Rightarrow 3$ " Let K be a compact set in \mathbb{R}^{n}, and $\varepsilon>0$ be given. Then there exists $R>0$ such that $K \subseteq B[0, R]$. By assumption, for each $1 \leqslant i \leqslant n$, there exist $N_{i}>0$ such that

$$
\left\|T_{k} \mathbf{e}_{i}-T \mathbf{e}_{i}\right\|_{\mathbb{R}^{m}}<\frac{\varepsilon}{R n} \quad \text { whenever } \quad k \geqslant N_{i} .
$$

For $\boldsymbol{x} \in \mathbb{R}^{n}$, write $\boldsymbol{x}=x^{(1)} \mathbf{e}_{1}+x^{(2)} \mathbf{e}_{2}+\cdots+x^{(n)} \mathbf{e}_{n}$. Then if $\boldsymbol{x} \in K,\left|x^{(i)}\right| \leqslant R$ for all $1 \leqslant i \leqslant n$. Therefore, if $\boldsymbol{x} \in K$ and $k \geqslant N \equiv \max \left\{N_{1}, \cdots, N_{n}\right\}$,

$$
\begin{aligned}
\left\|T_{k} \boldsymbol{x}-T \boldsymbol{x}\right\|_{\mathbb{R}^{m}} & =\left\|T_{k}\left(\sum_{i=1}^{n} x^{(i)} \mathbf{e}_{i}\right)-T\left(\sum_{i=1}^{n} x^{(i)} \mathbf{e}_{i}\right)\right\|_{\mathbb{R}^{m}}=\left\|\sum_{i=1}^{n} x^{(i)}\left(T_{k} \mathbf{e}_{i}-T \mathbf{e}_{i}\right)\right\|_{\mathbb{R}^{m}} \\
& \leqslant \sum_{i=1}^{n}\left|x^{(i)}\right|\left\|T_{k} \mathbf{e}_{i}-T \mathbf{e}_{i}\right\|_{\mathbb{R}^{m}}<\sum_{i=1}^{n} R \frac{\varepsilon}{R n}=\varepsilon .
\end{aligned}
$$

" $3 \Rightarrow 2$ " Let $K=B[0,1]$ (which is compact), and $\varepsilon>0$ be given. By assumption there exists $N>0$ such that

$$
\left\|T_{k} \boldsymbol{x}-T \boldsymbol{x}\right\|_{\mathbb{R}^{m}}<\frac{\varepsilon}{3} \quad \text { whenever } \quad \boldsymbol{x} \in B[0,1] \text { and } k \geqslant N .
$$

If $k, \ell \geqslant N$ and $\boldsymbol{x} \in B[0,1]$,

$$
\left\|T_{k} \boldsymbol{x}-T_{\ell} x\right\|_{\mathbb{R}^{m}} \leqslant\left\|T_{k} \boldsymbol{x}-T \boldsymbol{x}\right\|_{\mathbb{R}^{m}}+\left\|T_{\ell} \boldsymbol{x}-T \boldsymbol{x}\right\|_{\mathbb{R}^{m}}<\frac{2 \varepsilon}{3}
$$

which shows that

$$
\left\|T_{k}-T_{\ell}\right\|_{\mathscr{B}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)}=\sup _{x \in B[0,1]}\left\|T_{k} \boldsymbol{x}-T_{\ell} x\right\|_{\mathbb{R}^{m}} \leqslant \frac{2 \varepsilon}{3}<\varepsilon \quad \forall k, \ell \geqslant N
$$

Therefore, $\lim _{k, \ell \rightarrow \infty}\left\|T_{k}-T_{\ell}\right\|_{\mathscr{B}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)}=0$.
" $2 \Rightarrow 1$ " This part is essentially identical to the proof of Proposition 5.8 in the lecture note (with $X=\mathbb{R}^{n}$ and $\left.Y=\mathbb{R}^{m}\right)$.

Problem 2. Recall that $\mathcal{M}_{m \times n}$ is the collection of all $m \times n$ real matrices. For a given $A \in \mathcal{M}_{m \times n}$, define a function $f: \mathcal{M}_{n \times m} \rightarrow \mathbb{R}$ by

$$
f(M)=\operatorname{tr}(A M),
$$

where tr is the trace operator which maps a square matrix to the sum of its diagonal entries. Show that $f \in \mathscr{B}\left(\mathcal{M}_{n \times m}, \mathbb{R}\right)$.
Hint: You may need the conclusion in Example 4.29 in the lecture note.
Proof. Let $A=\left[a_{i j}\right]_{1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n}$ and $M=\left[m_{j k}\right]_{1 \leqslant j \leqslant n, 1 \leqslant k \leqslant m}$. Then

$$
\operatorname{tr}(A M)=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} m_{j i} .
$$

First we show that $f \in \mathscr{L}\left(\mathcal{M}_{n \times m}, \mathbb{R}\right)$. Let $M=\left[m_{j k}\right]_{1 \leqslant j \leqslant n, 1 \leqslant k \leqslant m}$ and $N=\left[n_{j k}\right]_{1 \leqslant j \leqslant n, 1 \leqslant k \leqslant m}$ be matrices in $\mathcal{M}_{n \times m}$ and $c \in \mathbb{R}$. Then

$$
\begin{aligned}
f(c M+N) & =\operatorname{tr}(A(c M+N))=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}\left(c m_{j i}+n_{j i}\right)=c \sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} m_{j i}+\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} n_{j i} \\
& =c \operatorname{tr}(A M)+\operatorname{tr}(A N)=c f(M)+f(N) .
\end{aligned}
$$

Let $\|\cdot\|: \mathcal{M}_{n \times m} \rightarrow \mathbb{R}$ be defined by

$$
\left\|\left[m_{j k}\right]_{1 \leqslant j \leqslant n, 1 \leqslant k \leqslant m}\right\|=\sum_{j=1}^{n} \sum_{k=1}^{m}\left|m_{j k}\right| .
$$

Then $\|\cdot\|$ is a norm on $\mathcal{M}_{n \times m}$, and

$$
\sup _{\|M\|=1}|f(M)|=\sup _{\sum_{j=1}^{n} \sum_{k=1}^{m}\left|m_{j k}\right|=1}\left|\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} m_{j i}\right| \leqslant \sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|<\infty ;
$$

thus $f:\left(\mathcal{M}_{n \times m},\|\cdot\|\right) \rightarrow(\mathbb{R},|\cdot|)$ is bounded. Let $\|\cdot\| \|$ be another norm on $\mathcal{M}_{n \times m}$. Since $\mathcal{M}_{n \times m}$ is finite dimensional vector spaces over \mathbb{R}, there exists c and C such that

$$
c\|M\| \leqslant\|M\| \leqslant C\|M\| \quad \forall M \in \mathcal{M}_{n \times m}
$$

Therefore, $\left\{M \in \mathcal{M}_{n \times m} \mid\|M\| \leqslant 1\right\} \subseteq\left\{M \in \mathcal{M}_{n \times m} \left\lvert\,\|M\| \leqslant \frac{1}{c}\right.\right\}$

$$
\sup _{\|M\|=1}|f(M)| \leqslant \sup _{\|M\| \leqslant 1 / c}|f(M)|=\sup _{\|c M\| \leqslant 1} \frac{1}{c}|f(c M)| \leqslant \frac{1}{c} \sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|<\infty ;
$$

thus $f:\left(\mathcal{M}_{n \times m},\| \| \cdot \|\right) \rightarrow \mathbb{R}$ is bounded.
Problem 3. Let $\mathscr{P}([0,1))$ be the collection of all polynomials defined on $[0,1]$, and $\|\cdot\|_{\infty}$ be the max-norm defined by $\|p\|_{\infty}=\max _{x \in[0,1]}|p(x)|$.

1. Show that the differential operator $\frac{d}{d x}: \mathscr{P}([0,1]) \rightarrow \mathscr{P}([0,1])$ is linear.
2. Show that $\frac{d}{d x}:\left(\mathscr{P}([0,1]),\|\cdot\|_{\infty}\right) \rightarrow\left(\mathscr{P}([0,1]),\|\cdot\|_{\infty}\right)$ is unbounded; that is, show that

$$
\sup _{\|p\|_{\infty}=1}\left\|p^{\prime}\right\|_{\infty}=\infty
$$

Proof. 1. Let $p, q \in \mathscr{P}([0,1])$ and $c \in \mathbb{R}$. Then by the rule of differentiation,

$$
\frac{d}{d x}(c p+q)(x)=c p^{\prime}(x)+q^{\prime}(x)=c \frac{d}{d x} p(x)+\frac{d}{d x} q(x)
$$

thus $\frac{d}{d x}: \mathscr{P}([0,1]) \rightarrow \mathscr{P}([0,1])$ is linear.
2. Consider $p_{n}(x)=x^{n}$. Then $\left\|p_{n}\right\|_{\infty}=\max _{x \in[0,1]} x^{n}=1$ for all $n \in \mathbb{N}$; however,

$$
\left\|p_{n}^{\prime}\right\|_{\infty}=\max _{x \in[0,1]} n x^{n-1}=n \quad n \in \mathbb{N}
$$

thus $\sup _{\|p\|_{\infty}=1}\left\|p^{\prime}\right\|_{\infty}=\infty$.
Problem 4. Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be normed spaces, and $T \in \mathscr{B}(X, Y)$. Show that for all $\boldsymbol{x} \in X$ and $r>0$,

$$
\sup _{x^{\prime} \in B(x, r)}\left\|T \boldsymbol{x}^{\prime}\right\|_{Y} \geqslant r\|T\|_{\mathscr{B}(X, Y)}
$$

Hint: Prove and make use of the inequality max $\left\{\|T(\boldsymbol{x}+\boldsymbol{\xi})\|_{Y},\|T(\boldsymbol{x}-\boldsymbol{\xi})\|_{Y}\right\} \geqslant\|T \boldsymbol{\xi}\|_{Y}$ for all $\boldsymbol{\xi} \in Y$. Proof. Let $\boldsymbol{x} \in X$ and $r>0$ be given. Then for all $\boldsymbol{\xi} \in B(0, r)$,

$$
\begin{aligned}
\max & \left\{\|T(\boldsymbol{x}+\boldsymbol{\xi})\|_{Y},\|T(\boldsymbol{x}-\boldsymbol{\xi})\|_{Y}\right\} \\
& \geqslant \frac{1}{2}\left[\|T(\boldsymbol{x}+\boldsymbol{\xi})\|_{Y}+\|T(\boldsymbol{x}-\boldsymbol{\xi})\|_{Y}\right] \geqslant \frac{1}{2}\|T(\boldsymbol{x}+\boldsymbol{\xi})-T(\boldsymbol{x}-\boldsymbol{\xi})\|_{Y}=\|T \boldsymbol{\xi}\|_{Y} .
\end{aligned}
$$

Therefore,

$$
\sup _{\boldsymbol{\xi} \in B(\mathbf{0}, r)} \max \left\{\|T(\boldsymbol{x}+\boldsymbol{\xi})\|_{Y},\|T(\boldsymbol{x}-\boldsymbol{\xi})\|_{Y}\right\} \geqslant \sup _{\boldsymbol{\xi} \in B(\mathbf{0}, r)}\|T \boldsymbol{\xi}\|_{Y}=r\|T\|_{\mathscr{B}(X, Y)}
$$

and the desired inequality follows from the fact that

$$
\sup _{\boldsymbol{x}^{\prime} \in B(\boldsymbol{x}, r)}\left\|T \boldsymbol{x}^{\prime}\right\|_{Y}=\sup _{\boldsymbol{\xi} \in B(\mathbf{0}, r)} \max \left\{\|T(\boldsymbol{x}+\boldsymbol{\xi})\|_{Y},\|T(\boldsymbol{x}-\boldsymbol{\xi})\|_{Y}\right\} .
$$

Problem 5. Let $\left(X,\|\cdot\|_{X}\right)$ be a Banach space, $\left(Y,\|\cdot\|_{Y}\right)$ be a normed space, and $\mathscr{F} \subseteq \mathscr{B}(X, Y)$ be a family of bounded linear maps from X to Y. Show that if $\sup _{T \in \mathscr{F}}\|T \boldsymbol{x}\|_{Y}<\infty$ for all $x \in X$, then

$$
\sup _{T \in \mathscr{F}}\|T\|_{\mathscr{B}(X, Y)}<\infty
$$

Hint: Suppose the contrary that there exists $\left\{T_{n}\right\}_{n=1}^{\infty} \subseteq \mathscr{F}$ such that $\left\|T_{n}\right\|_{\mathscr{B}(X, Y)} \geqslant 4^{n}$. Using Problem to choose a sequence $\left\{\boldsymbol{x}_{n}\right\}_{n=0}^{\infty}$, where $\boldsymbol{x}_{0}=\mathbf{0}$, such that

$$
\boldsymbol{x}_{n} \in B\left(\boldsymbol{x}_{n-1}, 3^{-n}\right) \quad \text { and } \quad\left\|T_{n} \boldsymbol{x}_{n}\right\|_{Y} \geqslant \frac{2}{3} \cdot 3^{-n}\left\|T_{n}\right\|_{\mathscr{B}(X, Y)}
$$

Show that $\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{\infty}$ converges to some point $\boldsymbol{x} \in X$ but $\left\{T_{n} \boldsymbol{x}\right\}_{n=1}^{\infty}$ is not bounded in Y.
Remark: The conclusion above is called the Uniform Boundedness Principle (or the BanachSteinhaus Theorem). This is one of the fundamental results in functional analysis.

Proof. Suppose the contrary that $\sup _{T \in \mathscr{F}}\|T\|_{\mathscr{B}(X, Y)}=\infty$. Then there exists $\left\{T_{n}\right\}_{n=1}^{\infty} \subseteq \mathscr{F}$ such that

$$
\left\|T_{n}\right\|_{\mathscr{B}(X, Y)} \geqslant 4^{n} \quad \forall n \in \mathbb{N} .
$$

Let $\boldsymbol{x}_{0}=\mathbf{0}$. Define $r_{n}=3^{-n}$ and $\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{\infty} \subseteq X$ so that

$$
\boldsymbol{x}_{n} \in B\left(\boldsymbol{x}_{n-1}, r_{n}\right) \quad \text { and } \quad\left\|T_{n} \boldsymbol{x}_{n}\right\|_{Y} \geqslant \frac{2}{3} r_{n}\left\|T_{n}\right\|_{\mathscr{B}(X, Y)} .
$$

We note that such $\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{\infty}$ exists because of Problem 4. For $m>n$,

$$
\begin{aligned}
\left\|\boldsymbol{x}_{n}-\boldsymbol{x}_{m}\right\|_{X} & \leqslant\left\|\boldsymbol{x}_{n}-\boldsymbol{x}_{n+1}\right\|_{X}+\left\|\boldsymbol{x}_{n+1}-\boldsymbol{x}_{n+1}\right\|_{X}+\cdots+\left\|\boldsymbol{x}_{m-1}-\boldsymbol{x}_{m}\right\|_{X} \\
& \leqslant 3^{-(n+1)}+3^{-(n+2)}+\cdots+3^{-m} \leqslant 3^{-(n+1)}\left(1+\frac{1}{3}+\cdots\right) \leqslant \frac{1}{2} \cdot 3^{-n} ;
\end{aligned}
$$

thus $\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence. Since $\left(X,\|\cdot\|_{X}\right)$ is complete, $\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{\infty}$ converges to some point $\boldsymbol{x} \in X$, and $\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|_{X} \leqslant \frac{1}{2} \cdot 3^{-n}$. Therefore,

$$
\begin{aligned}
\left\|T_{n} \boldsymbol{x}\right\|_{Y} & \geqslant\left\|T_{n} \boldsymbol{x}_{n}\right\|_{Y}-\left\|T_{n}\left(\boldsymbol{x}-\boldsymbol{x}_{n}\right)\right\|_{Y} \geqslant \frac{2}{3} r_{n}\left\|T_{n}\right\|_{\mathscr{B}(X, Y)}-\left\|T_{n}\right\|_{\mathscr{B}(X, Y)}\left\|\boldsymbol{x}-\boldsymbol{x}_{n}\right\|_{X} \\
& \geqslant\left(\frac{2}{3}-\frac{1}{2}\right)\left\|T_{n}\right\|_{\mathscr{B}(X, Y)} 3^{-n}=\frac{1}{6}\left\|T_{n}\right\|_{\mathscr{B}(X, Y)} 3^{-n} \geqslant \frac{1}{6} \cdot\left(\frac{4}{3}\right)^{n}
\end{aligned}
$$

so that $\sup _{n \in \mathbb{N}}\left\|T_{n} \boldsymbol{x}\right\|_{Y}=\infty$, a contradiction.

