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Problem 1. Complete the following.

1. Find a function f : R2 Ñ R such that

lim
xÑ0

lim
yÑ0

f(x, y) and lim
yÑ0

lim
xÑ0

f(x, y)

exist but are not equal.

2. Find a function f : R2 Ñ R such that the two limits above exist and are equal but f is not
continuous.

3. Find a function f : R2 Ñ R that is continuous on every line through the origin but is not
continuous.

Problem 2. Complete the following.

1. Show that the projection map f :
R2 Ñ R

(x, y) ÞÑ x
is continuous.

2. Show that if U Ď R is open, then A =
␣

(x, y) P R2
ˇ

ˇx P U
(

is open.

3. Give an example of a continuous function f : R Ñ R and an open set U Ď R such that f(U)
is not open.

Problem 3. Show that f : A Ñ Rm, where A Ď Rn, is continuous if and only if for every B Ď A,

f(cl(B) X A) Ď cl(f(B)) .

Proof. “ñ” Let B Ď A and y P f(cl(B) X A). Then there exists x P cl(B) X A such that y = f(x).
By the property of sB, there exists a sequence txnu8

n=1 Ď B such that lim
nÑ8

xn = x. Since B Ď A,
txnu8

n=1 Ď A; thus the continuity of f (at x) implies that

lim
nÑ8

f(xn) = f(x) .

On the other hand, tf(xn)u
8
n=1 is a sequence in f(B), so the limit f(x) must belong to cl(f(B)).

Therefore, y = f(x) P cl(f(B)) which shows the inclusion f((cl(B) X A) Ď cl(f(B)).

“ð” Suppose the contrary that there exists a sequence txnu8
n=1 Ď A with limit x P AXA 1 such that

lim
nÑ8

f(xn) ‰ f(x). Then there exists ε ą 0 such that for all N ą 0 there exists n ě N such
that }f(xn) ´ f(x)} ě ε. Let n1 P N be such that

›

›f(xn1 ´ f(x)
›

› ě ε. Let n2 ą n1 such that
›

›f(xn2) ´ f(x)
›

› ě ε. Continuing this process, we obtain an increasing sequence tnju
8
j=1 such

that
›

›f(xnj
) ´ f(x)

›

› ě ε @ j P N . (‹)



Let B =
␣

xnj

(

. Then x P sB since lim
nÑ8

xn = x
(
so that lim

jÑ8
xnj

= x
)
. On the other hand, (‹)

implies that f(x) R cl(f(B)) since B(f(x), ε) X f(B) = H. Therefore,

f(cl(B) X A) Ę cl(f(B)) ,

a contradiction. ˝

Problem 4. Let T : Rn Ñ Rm satisfy T (x+ y) = T (x) + T (y) for all x, y P Rn.

1. Show that T (rx) = rT (x) for all r P Q and x P Rn.

2. Suppose that T is continuous on Rn. Show that T is linear; that is, T (cx+ y) = cT (x) + T (y)

for all c P R, x, y P Rn.

3. Suppose that T is continuous at some point x0 in Rn. Show that T is continuous on Rn.

4. Suppose that T is bounded on some open subset of Rn. Show that T is continuous on Rn.

5. Suppose that T is bounded from above (or below) on some open subset of Rn. Show that T is
continuous on Rn.

6. Construct a T : R Ñ R which is discontinuous at every point of R, but T (x+ y) = T (x)+T (y)

for all x, y P R.

Proof. 1. By induction, T (kx) = kT (x) for all k P N. Moreover, T (0) = T (0 + 0) = T (0) + T (0)

which implies that T (0) = 0; thus T (0x) = 0T (x) and if k P N,

´kT (x) = ´kT (x)+T (0) = ´kT (x)+T (kx+(´kx)) = ´kT (x)+T (kx)+T (´kx) = T (´kx) .

Therefore, T (kx) = kT (x) for all k P Z and x P Rn. Let r =
q

p
for some p, q P Z. Then for

x P Rn,
pT (rx) = T (prx) = T (qx) = qT (x)

which implies that T (rx) = rT (x) for all r P Q and x P Rn.

2. Let x, y P Rn and c P R. Then there exists tcku8
k=1 Ď Q such that lim

kÑ8
ck = c. This further

implies that ckx Ñ cx as k Ñ 8 since

lim
kÑ8

}cnx ´ cx} = lim
kÑ8

}(ck ´ c)x} = }x} lim
kÑ8

|ck ´ c| = 0

Therefore, by the continuity of T ,

T (cx+ y) = T (cx) + T (y) = lim
kÑ8

T (ckx) + T (y) = lim
kÑ8

ckT (x) + T (y) = cT (x) + T (y) .

3. Let a P Rn and ε ą 0 be given. By the continuity of T at x0, there exists δ ą 0 such that

}T (x ´ x0)} = }T (x) ´ T (x0)} ă ε whenever }x ´ x0} ă δ .

The statement above implies that if }x} ă δ, then }T (x)} ă ε. Therefore,

}T (x) ´ T (a)} = }T (x ´ a)} ă ε whenever }x ´ a} ă δ

which shows that T is continuous at a.



4. Suppose that T is bounded on an open set U so that T (U) Ď B(0,M). Let x0 P U . Then there
exists r ą 0 such that B(x0, r) Ď U . Therefore, if x P B(0, r), then x+ x0 P B(x0, r) so that

}T (x)} ď }T (x+ x0)} + }T (x0)} ď M + }T (x0)} ” R ;

thus we establish that there exists r and R such that

}T (x)} ď R whenever }x} ă r .

Let ε ą 0 be given. Choose c P Q so that 0 ă c ă
ε

R
. For such a fixed c P Q, choose 0 ă δ ă cr.

If }x} ă δ, then
›

›

x

c

›

› ă
δ

c
ă r; thus if }x} ă δ, we have

›

›T (
x

c

)›
› ď R so that

}T (x)} =
›

›T
(
c
x

c

)›
› =

›

›cT
(x
c

)›
› = c}T

(x
c

)
} ď cR ă ε .

Therefore, T is continuous at 0. By 3, T is continuous on Rn.

5. Suppose that Tx ď M (so that in this case m = 1) for all x P U , where U is an open set in Rn.
Let x0 P U . Then there exists r ą 0 such that B(x0, r) Ď U ; thus if x P B(0, r),

Tx = T (x+ x0) ´ T (x0) ď M ´ T (x0) ” R .

Therefore, we establish that there exist r and R such that

T (x) ď R whenever x P B(0, r) .

For x P B(0, r), we must have ´x P B(0, r); thus

´T (x) = T (´x) ď R ;

thus ´R ď T (x) whenever x P B(0, r). Therefore, |T (x)| ď R whenever }x} ă r. By 4, T is
continuous on Rn. ˝

Problem 5. Let (M,d) be a metric space, A Ď M , and f : A Ñ R. For a P A1, define

lim inf
xÑa

f(x) = lim
rÑ0+

inf
␣

f(x)
ˇ

ˇx P B(a, r) X Aztau
(

,

lim sup
xÑa

f(x) = lim
rÑ0+

sup
␣

f(x)
ˇ

ˇx P B(a, r) X Aztau
(

.

Complete the following.

1. Show that both lim inf
xÑa

f(x) and lim sup
xÑa

f(x) exist (which may be ˘8), and

lim inf
xÑa

f(x) ď lim sup
xÑa

f(x) .

Furthermore, there exist sequences txnu8
n=1, tynu8

n=1 Ď Aztau such that txnu8
n=1 and tynu8

n=1

both converge to a, and

lim
nÑ8

f(xn) = lim inf
xÑa

f(x) and lim
nÑ8

f(yn) = lim sup
xÑa

f(x) .



2. Let txnu8
n=1 Ď Aztau be a convergent sequence with limit a. Show that

lim inf
xÑa

f(x) ď lim inf
nÑ8

f(xn) ď lim sup
nÑ8

f(yn) ď lim sup
xÑa

f(x) .

3. Show that lim
xÑa

f(x) = ℓ if and only if

lim inf
xÑa

f(x) = lim sup
xÑa

f(x) = ℓ .

4. Show that lim inf
xÑa

f(x) = ℓ P R if and only if the following two conditions hold:

(a) for all ε ą 0, there exists δ ą 0 such that ℓ ´ ε ă f(x) for all x P B(a, δ) X Aztau;

(b) for all ε ą 0 and δ ą 0, there exists x P B(a, δ) X Aztau such that f(x) ă ℓ+ ε.

Formulate a similar criterion for limsup and for the case that ℓ = ˘8.

5. Compute the liminf and limsup of the following functions at any point of R.

(a) f(x) =

$

&

%

0 if x P QA ,
1

p
if x =

q

p
with (p, q) = 1, q ą 0, p ‰ 0 .

(b) f(x) =

"

x if x P Q ,

´x if x P QA .

Proof. For r ą 0, define m,M : A1 Ñ R˚ by

m(r) = inf
␣

f(x)
ˇ

ˇx P B(a, r) X Aztau
(

and M(r) = sup
␣

f(x)
ˇ

ˇx P B(a, r) X Aztau
(

.

We remark that it is possible that m(r) = ´8 or M(r) = 8. Note that m is decreasing and M is
increasing in (0,8).

1. By the monotonicity of m and M , lim
rÑ0+

m(r) and lim
rÑ0+

M(r) “exist” (which may be ˘8).
Moreover, m(r) ď M(r) for all r ą 0; thus lim

rÑ0+
m(r) ď lim

rÑ0+
M(r) so we conclude that

lim inf
xÑa

f(x) = lim
rÑ0+

m(r) ď lim
rÑ0+

M(r) = lim sup
xÑa

f(x) .

Since lim inf
xÑa

f(x) = ´ lim sup
xÑa

(´f)(x), it suffices to consider the case of the limit superior.

(a) If lim sup
xÑa

f(x) = 8, then for each n P N there exists 0 ă δn ă
1

n
such that

M(r) ě n whenever 0 ă r ă δn .

By the definition of the supremum, for each n P N there exists xn P B
(
a,

δn
2

)
X Aztau

such that f(xn) ě n ´ 1.



(b) If lim sup
xÑa

f(x) = L, then for each n P N there exists 0 ă δn ă
1

n
such that

ˇ

ˇM(r) ´ L
ˇ

ˇ ă
1

n
whenever 0 ă r ă δn .

By the definition of the supremum, for each n P N there exists xn P B
(
a,

δn
2

)
X Aztau

such that
L ´

1

n
ă f(xn) ă L+

1

n
.

Since δn Ñ 0 as n Ñ 8, we find that txnu8
n=1 Ď Aztau converges to a and lim

nÑ8
f(xn) =

lim sup
xÑa

f(x).

2. It suffices to show the case of the limit inferior. Let txnu8
n=1 Ď Aztau and xn Ñ a as n Ñ 8.

For every k P N, there exists Nk ą 0 such that 0 ă d(xn, a) ă
1

k
whenever n ě Nk. W.L.O.G.,

we can assume that Nk ě k and Nk+1 ą Nk for all k P N. By the definition of infimum,

m
(1
k

)
ď f(xn) whenever n ě Nk

which further implies that
m
(1
k

)
ď inf

něNk

f(xn) .

Note that lim
rÑ0+

m(r) = lim
kÑ8

m
(1
k

)
and lim

kÑ8
inf

něNk

f(xk) = lim
kÑ8

inf
něk

f(xk), we conclude that

lim inf
xÑa

f(x) = lim
rÑ0+

m(r) = lim
kÑ8

m
(1
k

)
ď lim

kÑ8
inf

něNk

f(xn) = lim
kÑ8

inf
něk

f(xn) = lim inf
nÑ8

f(xn) .

3. (ñ) Let ε ą 0 be given. There exists δ ą 0 such that

|f(x) ´ ℓ| ă ε whenever x P B(a, δ) X Aztau .

Therefore,
ℓ ´ ε ă f(x) ă ℓ+ ε whenever x P B(a, δ) X Aztau

which implies that
ℓ ´ ε ď m(δ) ď M(δ) ď ℓ+ ε .

By the monotonicity of m and M , the inequality above implies that

ℓ ´ ε ď m(δ) ď m(r) ď M(r) ď M(δ) ď ℓ+ ε @ 0 ă r ă δ .

Passing to the limit as r Ñ 0+, we find that

ℓ ´ ε ď lim inf
xÑa

f(x) ď lim sup
xÑa

f(x) ď ℓ+ ε .

Since ε ą 0 is chosen arbitrary, we conclude that lim inf
xÑa

f(x) = lim sup
xÑa

f(x) = ℓ.



(ð) Let txnu8
n=1 Ď Aztau be a sequence with limit a. Then 2 and the assumption that

lim inf
xÑa

f(x) = lim sup
xÑa

f(x) = ℓ imply that lim inf
nÑ8

f(xn) = lim sup
nÑ8

f(xn) = ℓ. Therefore,
lim
nÑ8

f(xn) = ℓ.

4. (ñ) This direction is proved by contradiction.

(a) Suppose the contrary that there exists ε ą 0 such that for each n P N, there exists
xn P B

(
a,

1

n

)
X Aztau such that f(xn) ď ℓ ´ ε. Then txnu8

n=1Aztau and lim
nÑ8

xn = a;
however,

lim inf
nÑ8

f(xn) ď ℓ ´ ε ă ℓ = lim inf
xÑa

f(x) ,

a contradiction to 2.
(b) Suppose the contrary that there exist ε ą 0 and δ ą 0 such that

f(x) ě ℓ+ ε @x P B(a, δ) X Aztau .

Then m(δ) ě ℓ+ ε; thus the monotonicity of m implies that

ℓ+ ε ď m(δ) ď m(r) whenever 0 ă r ă δ .

Passing to the limit as r Ñ 0+, we conclude that

ℓ+ ε ď lim
rÑ0+

m(r) = lim inf
xÑa

f(x) ,

a contradiction.

(ð) Let txnu8
n=1 Ď Aztau be a sequence with limit a, and ε ą 0 be given. Then (a) provides

δ ą 0 such that f(x) ą ℓ ´ ε whenever x P B(a, δ) X Aztau. For such δ ą 0, there exists
N ą 0 such that 0 ă d(xn, a) ă δ for all n ě N . Therefore, if n ě N , f(xn) ą ℓ´ ε which
implies that lim inf

nÑ8
f(xn) ě ℓ ´ ε. Since ε ą 0 is chosen arbitrary, we conclude that

lim inf
nÑ8

f(xn) ě ℓ for every convergent sequence txnu8
n=1 Ď Aztau with limit a.

On the other hand, using (b) we find that for each n P N, there exists xn P B
(
a,

1

n

)
XAztau

such that f(xn) ă ℓ+
1

n
. Then lim inf

nÑ8
f(xn) ď ℓ, and (i) further implies that lim inf

nÑ8
f(xn) =

ℓ; thus we establish that there exists a convergent sequence txnu8
n=1 Ď Aztau with limit a

such that lim inf
nÑ8

f(xn) = ℓ.
By 1 and 2, we conclude that ℓ = lim inf

xÑa
f(x).

5. (a) lim inf
xÑa

f(x) = lim sup
xÑa

f(x) = 0 for all a P R.

(b) lim inf
xÑa

f(x) = ´|a|, lim sup
xÑa

f(x) = |a|. In particular, lim
xÑ0

f(x) = 0. ˝

Problem 6. Let (M,d) be a metric space, and A Ď M . A function f : A Ñ R is called

lower semi-continuous
upper semi-continuous at a P A if either a P AzA1 or

lim inf
xÑa

f(x) ě f(a) ,

lim sup
xÑa

f(x) ď f(a) ,
and is called

lower/upper semi-continuous on A if f is lower/uppser semi-continuous at a for all a P A.



1. Show that f : A Ñ R is lower semi-continuous on A if and only if f´1((´8, r]) is closed relative
to A. Also show that f : A Ñ R is upper semi-continuous on A if and only if f´1([r,8)) is
closed relative to A.

2. Show that f is lower semi-continuous on A if and only if for all convergent sequences txnu8
n=1 Ď

A and tsnu8
n=1 Ď R satisfying f(xn) ď sn for all n P N, we have

f
(

lim
nÑ8

xn
)

ď lim
nÑ8

sn .

3. Let tfαuαPI be a family of lower semi-continuous functions on A. Prove that f(x) = sup
αPI

fα(x)

is lower semi-continuous on A.

4. Let A be a perfect set (that is, A contains no isolated points) and f : A Ñ R be given. Define

f˚(x) = lim sup
yÑx

f(y) and f˚(x) = lim inf
yÑx

f(y) .

Show that f˚ is upper semi-continuous and f˚ is lower semi-continuous, and f˚(x) ď f(x) ď

f˚(x) for all x P A. Moreover, if g is a lower semi-continuous function on A such that g(x) ď

f(x) for all x P A, then g ď f˚.

Proof. We first note that by 1, 2 and 4 of Problem 5,

f : A Ñ R is lower semi-continuous at a

ô for all ε ą 0, there exists δ ą 0 such that f(a) ´ ε ă f(x) for all x P B(a, δ) X A

ô for all convergent sequence txnu8
n=1 Ď A with limit a, f(a) ď lim inf

nÑ8
f(xn) .

(˛)

We note that the first statement implies the second one because of 4(a) in Problem 5, the second
statement implies the third one because of xn P B(a, δ) X A when n " 1, and the third statement
implies the first one because of 1 in Problem 5.

1. (ñ) It suffices to prove the case for limit inferior since lim sup
xÑa

f(x) = ´ lim inf
xÑa

(´f)(x). We

note that E is closed relative to A if and only if E XA is a closed set in the metric space
(A, d). Therefore, a subset of E of A is closed relative to A if and only if

every sequence txnu8
n=1 Ď E that converges to a point in A must also has limit in E.

Let r P R and txnu8
n=1 be a sequence in E ” f´1((´8, r]) such that txnu8

n=1 converges to
a point a P A. Then f(a) ď lim inf

nÑ8
f(xn) ď r which implies that a P f´1((´8, r]).

(ð) Let a P A and ε ą 0 be given. Define r = f(a)´ ε. Then V = f´1((r,8)) is open relative
to A (since f´1((´8, r]) is closed relative to A). Since a P V , there exists δ ą 0 such that
B(a, δ) X A Ď V . This implies that

f(a) ´ ε ă f(x) @x P B(a, δ) X A .

Therefore, the equivalence (˛) shows that f is lower semi-continuous at a.



2. (ñ) Let txnu8
n=1 be a convergent sequence in A with limit a, tsnu8

n=1 be a real sequence with

limit s, and f(xn) ď sn for all n P N. Suppose that f(a) ą s. Let ε = f(a) ´ s

2
. Since f

is lower semi-continuous at a, lim inf
xÑa

f(x) ě f(a); thus there exists δ ą 0 such that

f(a) ´ ε ă f(x) @x P B(a, δ) X A .

On the other hand, there exists N ą 0 such that xn P B(a, δ)XA and sn ă s+ε whenever
n ě N . Therefore, if n ě N ,

sn ă s+ ε = f(a) ´ ε ă f(xn) ,

a contradiction.

(ð) Let a P A, and txnu8
n=1 Ď A be a sequence with limit a. Let txnj

u8
j=1 be a subsequence

of txnu8
n=1 such that lim

jÑ8
f(xnj

)
= lim inf

nÑ8
f(xn). Define sj = f

(
xnj

)
. Then clearly

f
(
xnj

)
ď sj for all j P N; thus by assumption

f(a) ď lim
jÑ8

sj = lim inf
nÑ8

f(xn) .

3. Let a P A X A1 and txnu8
n=1 Ď Aztau be a sequence with limit a. Then fα(xn) ď f(xn) for all

n P N and α P I. Since fα is lower semi-continuous for each α P I, for α P I we have

fα(a) ď lim inf
xÑa

fα(x) ď lim inf
xÑa

f(x) .

The inequality above implies that

f(a) = sup
αPI

fα(a) ď lim inf
xÑa

f(x) ;

thus f is lower semi-continuous at a. ˝

Problem 7. Complete the following.

1. Show that if f : Rn Ñ Rm is continuous, and B Ď Rn is bounded, then f(B) is bounded.

2. If f : R Ñ R is continuous and K Ď R is compact, is f´1(K) necessarily compact?

3. If f : R Ñ R is continuous and C Ď R is connected, is f´1(C) necessarily connected?

Solution. 1. Since B is bounded, sB is closed and bounded; thus the Heine-Borel Theorem implies
that sB is compact. Since f : Rn Ñ Rm is continuous, f( sB) is also compact; thus bounded.
The boundedness of f(B) then follows from the fact that f(B) Ď f( sB).

2. No. For example, consider f : R Ñ R given by f(x) = sinx and K = [´1, 1]. Then K is
compact but f´1(K) is the whole real line so that f´1(K) is not compact.

3. No. For example, consider f : R Ñ R given by f(x) = x2 and C = [1, 4]. Then C is connected
since it is an interval but f´1(C) = [´2,´1] Y [1, 2] which is clearly disconnected. ˝



Problem 8. Consider a compact set K Ď Rn and let f : K Ñ Rm be continuous and one-to-one.
Show that the inverse function f´1 : f(K) Ñ K is continuous. How about if K is not compact but
connected?

Proof. Let F be a closed subset of K. Then 1 of Problem 1 in Exercise 9 implies that F is compact.
Therefore, f(F ) is compact since f is continuous. Since f(F ) = (f´1)´1(F ), we conclude that the
pre-image of F under f´1 is compact; hence (f´1)´1(F ) is closed in f(K) for all closed sets F Ď K.
Therefore, Theorem 4.14 in the lecture note shows that f´1 : f(K) Ñ K is continuous.

However, f´1 : f(K) Ñ K is not necessarily continuous if K is connected. For example, consider
f : [0, 2π) Ñ R2 given by f(t) = (cos t, sin t). Then f is one-to-one but f´1 : f([0, 2π)) Ñ [0, 2π) is
not continuous at f(0) = (1, 0) since the sequences txnu8

n=1, tynu8
n=1 given by

xn =
(

cos 1

n
, sin 1

n

)
and yn =

(
cos

(
2π ´

1

n

)
, sin

(
2π ´

1

n

))
both converges to (1, 0) but f´1(xn) =

1

n
and f´1(yn) = 2π ´

1

n
so that

lim
nÑ8

f´1(xn) = 0 ‰ 2π = lim
nÑ8

f´1(yn) . ˝

Problem 9. Let (M,d) be a metric space, K Ď M be compact, and f : K Ñ R be lower semi-
continuous (see Problem 6 for the definition). Show that f attains its minimum on K.

Proof. Claim: there exists a sequence txnu8
n=1 such that lim

nÑ8
f(xn) = inf

xPK
f(x).

Proof of claim: If inf
xPK

f(x) P R, for each n P N there exists xn P K such that

inf
xPK

f(x) ď f(xn) ď inf
xPK

f(x) +
1

n
.

If inf
xPK

f(x) = ´8, for each n P N there exists xn P K such that f(xn) ă ´n. In either case,
lim
nÑ8

f(xn) = inf
xPK

f(x). ˝

W.L.O.G. we can assume that f(xn) ą inf
xPK

f(x) for all n P N (for otherwise we find that f attains
its minimum at some xn). Let n1 = 1, and for given nk choose nk+1 ą nk such that f(xnk

) ą f(xnk+1
).

In this way we obtain a subsequence txnk
u8
k=1 of txnu8

n=1 satisfying that

lim
kÑ8

f(xnk
) = inf

xPK
f(x) and f(xnk

) ě f(xnk+1
) @ k P N .

Since txnk
u8
k=1 Ď K, by the compactness of K there exists a convergent subsequence

␣

xnkℓ
u8
ℓ=1 of

txnk
u8
k=1. Suppose that lim

ℓÑ8
xnkℓ

= a. Then by the fact that xnk
‰ xnℓ

for all k ‰ ℓ, we have

#
␣

ℓ P N
ˇ

ˇxnkℓ
= a

(

ď 1 .

Therefore, up to deleting one term in the sequence we can assume that
␣

xnkℓ

(8

ℓ=1
Ď Kztau. In such

a case the lower semi-continuity of f implies that

lim inf
ℓÑ8

f
(
xnkℓ

)
ě lim inf

xÑa
f(x) ě f(a) .



Since lim
nÑ8

f(xn) = inf
xPK

f(x), the inequality above implies that

inf
xPK

f(x) = lim inf
ℓÑ8

f
(
xnkℓ

)
ě lim inf

xÑa
f(x) ě f(a) ě inf

xPK
f(x) ;

thus f(a) = inf
xPK

f(x). ˝

Problem 10. Let (M,d) be a metric space. Show that a subset A Ď M is connected if and only if
every continuous function defined on A whose range is a subset of t0, 1u is constant.

Proof. “ñ” Assume that A is connected and f : A Ñ t0, 1u is a continuous function, and δ = 1/2.
Suppose the contrary that f´1(t0u) ‰ H and f´1(t1u) ‰ H. Then A = f´1((´δ, δ)) and
B = f´1((1 ´ δ, 1 + δ)) are non-empty set. Moreover, the continuity of f implies that A and
B are open relative to A; thus there exist open sets U and V such that

f´1((´δ, δ)) = U X A and f´1((1 ´ δ, 1 + δ)) = V X A .

Then

(1) A X U X V = f´1((´δ, δ)) X f´1((1 ´ δ, 1 + δ)) = H ,

(2) A X U ‰ H and A X V ‰ H ,

(3) A Ď U Y V since the range of f is a subset of t0, 1u ;

thus A is disconnect, a contradiction.

“ð” Suppose the contrary that A is disconnected so that there exist open sets U and V such that

(1) A X U X V = H , (2) A X U ‰ H , (3) A X V ‰ H , (4) A Ď U Y V .

Let f : A Ñ R be defined by

f(x) =

"

0 if x P A X U ,
1 if x P A X V .

We first prove that f is continuous on A. Let a P A. Then a P AXU or a P AXV . Suppose that
a P A X U . In particular a P U ; thus the openness of U provides r ą 0 such that B(a, r) Ď U .
Note that if x P B(a, r) X A, then x P A Ď U ; thus

ˇ

ˇf(x) ´ f(a)
ˇ

ˇ = 0 @x P B(a, r) X A

which shows the continuity of f at a. Similar argument can be applied to show that f is
continuous at a P A X V . ˝

Problem 11. Let D Ď Rn be an open connected set, where n ą 1. If a, b and c are any three points
in D, show that there is a path in G which connects a and b without passing through c. In particular,
this shows that D is path connected and D is not homeomorphic to any subset of R.

In Exercise Problem 12 through 15, we focus on another kind of connected sets, so-called path
connected sets. First we introduce path connectedness in the following



Definition 0.1. Let (M,d) be a metric space. A subset A Ď M is said to be path connected if for
every x, y P A, there exists a continuous map φ : [0, 1] Ñ A such that φ(0) = x and φ(1) = y.

y

x

A

Figure 1: Path connected sets

Problem 12. Recall that a set A in a vector space V is called convex if for all x, y P A, the line
segment joining x and y, denoted by xy, lies in A. Show that a convex set in a normed space is path
connected.

Proof. Let C be a convex set in a normed space (V , } ¨ }), and x,y P C. Define φ : [0, 1] Ñ V by
φ(t) = (1 ´ t)x + ty. Then φ([0, 1]) = Ďxy; thus the convexity of C implies that φ : [0, 1] Ñ C. ˝

Problem 13. A set S in a vector space V is called star-shaped if there exists p P S such that for
any q P S, the line segment joining p and q lies in S. Show that a star-shaped set in a normed space
is path connected.

Proof. Suppose that there exists p P S such that for any q P S, the line segment joining p and q lies
in S. In other words, such p P S satisfies that

(1 ´ λ)q + λp Ď S @λ P [0, 1] and q P S .

Let x, y in S. Define

φ(t) =

$

&

%

(1 ´ 2t)x+ 2tp if 0 ď t ď
1

2
,

(2 ´ 2t)p+ (2t ´ 1)y if 1

2
ă t ď 1 .

Then φ is continuous on [0, 1]
(
since lim

tÑ0.5+
φ(t) = lim

tÑ0.5´
φ(t) = p so that φ is continuous at 0.5

)
.

Moreover, φ([0, 0.5]) = xp and φ([0.5, 1]) = py so that φ : [0, 1] Ñ A is continuous with φ(0) = x

and φ(1) = y. Therefore, A is path connected. ˝

Problem 14. Let A =
!(
x, sin 1

x

) ˇ
ˇ

ˇ
x P (0, 1]

)

Y(t0uˆ[´1, 1]). Show that A is connected in (R2, }¨}2),
but A is not path connected.

Proof. Assume the contrary that A is path connected such that there is a continuous function φ :

[0, 1] Ñ A such that φ(0) = (x0, y0) P

!(
x, sin 1

x

)
ˇ

ˇx P (0, 1)
)

and φ(1) = (0, 0) P t0u ˆ [´1, 1].

Let t0 = inf
␣

t P [0, 1]
ˇ

ˇφ(t) P t0u ˆ [´1, 1]
(

. In other words, at t = t0 the path touches 0 ˆ [´1, 1]

for the “first time”. By the continuity of φ, φ(t0) P t0u ˆ [´1, 1]. Since φ(0) R t0u ˆ [´1, 1],
φ([0, t0)) Ď

!(
x, sin 1

x

) ˇ
ˇ

ˇ
x P (0, 1)

)

.



Suppose that φ(t0) = (0, ȳ) for some ȳ P [´1, 1], and φ(t) =
(
x(t), sin 1

x(t)

)
for 0 ď t ă t0. By

the continuity of φ, there exists δ ą 0 such that if |t ´ t0| ă δ, |φ(t) ´ φ(t0)| ă 1. In particular,

x(t)2 +
(

sin 1

x(t)
´ ȳ

)2

ă 1 @ t P (t0 ´ δ, t) .

On the other hand, since φ is continuous, x(t) is continuous on [0, t0); thus by the fact that [0, t0) is
connected, x([0, t0)) is connected. Therefore, x([0, t0)) = (0, x̄] for some x̄ ą 0. Since lim

tÑt0
x(t) = 0,

there exists ttnu8
n=1 P [0, t0) such that tn Ñ t0 as n Ñ 8 and

ˇ

ˇ sin 1

x(tn)
´ ȳ

ˇ

ˇ ě 1. For n " 1,
tn P (t0 ´ δ, t0) but

x(tn)
2 +

(
sin 1

x(tn)
´ ȳ

)2

ě 1 ,

a contradiction.
On the other hand, A is the closure of the connected set B =

!(
x, sin 1

x

) ˇ
ˇ

ˇ
x P (0, 1)

) (
the

connectedness of B follows from the fact that the function ψ(x) =
(
x, sin 1

x

)
is continuous on the

connected set (0, 1)
)
. Therefore, by Problem 12 in Exercise 9, A = sB is connected. ˝

Problem 15. Let (M,d) be a metric space, and A Ď M . Show that if A is path connected, then A

is connected.
Hint: Apply Theorem 3.68 in the lecture note and prove by contradiction.

Proof. Assume the contrary that there are non-empty sets A1, A2 such that A = A1 Y A2 but
A1 X ĎA2 = A2 X ĎA1 = H. Let x P A1 and y P A2. By the path connectedness of A, there exists
a continuous map φ : [0, 1] Ñ A such that φ(0) = x and φ(1) = y. Define I1 = φ´1(A1) and
I2 = φ´1(A2). Then clearly 0 P I1 and 1 P I2, and I1 X I2 = H. Moreover,

[0, 1] = φ´1(A) = φ´1(A1 Y A2) = φ´1(A1) Y φ´1(A2) = I1 Y I2 .

Claim: I1 X sI2 = I2 X sI1 = H.
Suppose the contrary that t P I1 X sI2. Then t P φ(A1) which shows that φ(t) P A1. On the other

hand, t P sI2; thus there exists ttnu8
n=1 Ď I2 such that tn Ñ t as n Ñ 8. By the continuity of φ,

φ(t) = lim
nÑ8

φ(tn) P ĎA2 ;

thus we find that φ(t) P A1 X ĎA2, a contradiction. Therefore, I1 X sI2 = H. Similarly, I2 X sI1 = H;
thus we establish the existence of non-empty sets I1 and I2 such that

[0, 1] = I1 Y I2 , I1, I2 ‰ H , I1 X sI2 = I2 X sI1 = H

which shows that [0, 1] is disconnected, a contradiction. ˝

Alternative proof. Assume the contrary that there are two open sets V1 and V2 such that

1. A X V1 X V2 = H; 2. A X V1 ‰ H; 3. A X V2 ‰ H; 4. A Ď V1 Y V2 .



Since A is path connected, for x P AXV1 and y P AXV2, there exists a continuous map φ : [0, 1] Ñ A

such that φ(0) = x and φ(1) = y. By Theorem 4.14 in the lecture note, there exist U1 and U2 open
in (R, | ¨ |) such that φ´1(V1) = U1 X [0, 1] and φ´1(V2) = U2 X [0, 1]. Therefore,

[0, 1] = φ´1(A) Ď φ´1(V1) Y φ´1(V2) Ď U1 Y U2 .

Since 0 P U1, 1 P U2, and [0, 1] X U1 X U2 = φ´1(A X V1 X V2) = H, we conclude that [0, 1] is
disconnected, a contradiction to Theorem 3.68 in the lecture note. ˝

Problem 16. Let (M,d), (N, ρ) be metric spaces, A be a subset of M , and f : A Ñ N be a
continuous map. Show that if C Ď A is path connected, so is f(C).

Proof. Let y1, y2 P f(C). Then D x1, x2 P C such that f(x1) = y1 and f(x2) = y2. Since C is path
connected, D r : [0, 1] Ñ C such that r is continuous on [0, 1] and r(0) = x1 and r(1) = x2. Let
φ : [0, 1] Ñ f(C) be defined by φ = f ˝ r. By Corollary 4.24 in the lecture note φ is continuous on
[0, 1], and φ(0) = y1 and φ(1) = y2. ˝


