Exercise Problem Sets 10

本週習題請同學除了以下三題之外,也持續看一下習題九還沒講解的習題。

Problem 1 (**True or False**). Determine whether the following statements are true or false. If it is true, prove it. Otherwise, give a counter-example.

- 1. Every open set in a metric space is a countable union of closed sets.
- 2. Let $A \subseteq \mathbb{R}$ be bounded from above, then $\sup A \in A'$.
- 3. An infinite union of distinct closed sets cannot be closed.
- 4. An interior point of a subset A of a metric space (M, d) is an accumulation point of that set.
- 5. Let (M, d) be a metric space, and $A \subseteq M$. Then (A')' = A'.
- 6. There exists a metric space in which some unbounded Cauchy sequence exists.
- 7. Every metric defined in \mathbb{R}^n is induced from some "norm" in \mathbb{R}^n .
- 8. There exists a non-zero dimensional normed vector space in which some compact non-zero dimensional linear subspace exists.
- 9. There exists a set $A \subseteq (0, 1]$ which is compact in (0, 1] (in the sense of subspace topology), but A is not compact in \mathbb{R} .
- 10. Let $A \subseteq \mathbb{R}^n$ be a non-empty set. Then a subset B of A is compact in A if and only if B is closed and bounded in A.
- Solution. 1. True. We note that the statement above is equivalent to that "every closed set in a metric space is a countable intersection of open sets". To see that this equivalent statement is true, we let F be a closed set. For each $n \in \mathbb{N}$, define

$$U_n = \bigcup_{x \in F} B\left(x, \frac{1}{n}\right).$$

Then $F \subseteq U_n$ (since each point $x \in F$ belongs to the ball $B(x, \frac{1}{n})$). Moreover, U_n is open since it is the union of open sets.

Claim:
$$F = \bigcap_{n=1}^{\infty} U_n$$
.

Proof of claim: Since $F \subseteq U_n$ for all $n \in \mathbb{N}$, $F \subseteq \bigcap_{n=1}^{\infty} U_n$; thus it suffices to shows that $F \supseteq \bigcap_{n=1}^{\infty} U_n$ or equivalently, $F^{\complement} \subseteq \bigcup_{n=1}^{\infty} U_n^{\complement}$. To see the inclusion, we let $x \in F^{\complement}$ and use the closedness of F to find an $n_0 \in \mathbb{N}$ such that $B(x, \frac{1}{n_0}) \subseteq F^{\complement}$. This implies that $d(x, y) \ge \frac{1}{n_0}$ for all $y \in F$; thus $x \notin U_{n_0}$. Therefore, $x \in U_{n_0}^{\complement}$ so that $x \in \bigcup_{n=1}^{\infty} U_n^{\complement}$.

- 2. False. Let A be a collection of single point $\{a\}$. Then A is bounded from above and $\sup A = a$ but $A' = \emptyset$.
- 3. False. Consider the union of the family of closed sets $\{[3n-1, 3n+1] \mid n \in \mathbb{N}\}$. We note that for $n \neq m$ the two sets $[3n-1, 3n+1] \cap [3m-1, 3m+1] = \emptyset$ so that this family is a collection of distinct set and $\bigcup_{n=1}^{\infty} [3n-1, 3n+1]$ is closed.
- 4. False. Every point x in a discrete metric is the only point in the set B(x, 1) so that $x \notin B(x, 1)'$.
- 5. False. A counter-example can be found in 5 of Problem 9 in Exercise 8.
- 6. False. By Proposition 2.58 in the lecture note, every Cauchy sequence is bounded.
- 7. **False**. The discrete metric d_0 on \mathbb{R}^n cannot be induced by a norm since every set in (\mathbb{R}^n, d_0) is bounded but \mathbb{R}^n is unbounded in $(\mathbb{R}^n, \|\cdot\|)$ for any norms $\|\cdot\|$ on \mathbb{R}^n .
- 8. False. Note that any non-zero dimensional linear subspace of a normed space is unbounded; thus any non-zero dimensional linear subspace cannot be compact since a compact set must be bounded.
- 9. False. By Theorem 3.77 in the lecture note, A is compact in (0, 1] if and only if A is compact in \mathbb{R} .
- 10. False. By Theorem 3.42 in the lecture note, it is true that B is compact in A then B is closed and bounded in A; however, the reverse statement if not true. For example, if A = B = (0, 1), then B is closed and bounded in A but B is not compact in \mathbb{R} .

Problem 2. Let (M, d) be a metric space, and $A \subseteq M$ be a subset. Determine which of the following statements are true.

- 1. int $A = A \setminus \partial A$.
- 2. $\operatorname{cl}(A) = M \setminus \operatorname{int}(M \setminus A)$.
- 3. $\operatorname{int}(\operatorname{cl}(A)) = \operatorname{int}(A)$.
- 4. $\operatorname{cl}(\operatorname{int}(A)) = A$.
- 5. $\partial(\operatorname{cl}(A)) = \partial A$.
- 6. If A is open, then $\partial A \subseteq M \setminus A$.
- 7. If A is open, then $A = cl(A) \setminus \partial A$. How about if A is not open?

Solution. 1. True. First we note that $A \subseteq A$ and $A \cap \partial A = \emptyset$. Therefore,

 $\mathring{A} \subseteq A \backslash \partial A \,.$

On the other hand, if $x \in A \setminus \partial A$, by the fact that $\partial A = \overline{A} \cap \overline{A^{\complement}}$, we find that x is not a limit point of A^{\complement} ; thus there exists r > 0 such that $B(x, r) \subseteq (A^{\complement})^{\complement} = A$. This Remark 3.3 in the lecture note implies that $x \in \mathring{A}$ so that $A \setminus \partial A \subseteq \mathring{A}$.

2. True. Note that $x \notin \mathring{B}$ if and only if there exists $\{x_n\}_{n=1}^{\infty} \subseteq B^{\complement}$ such that $\lim_{n \to \infty} x_n = x$. Therefore,

$$x \in \overline{A} \Leftrightarrow \left(\exists \{x_n\}_{n=1}^{\infty} \subseteq A\right) \left(\lim_{n \to \infty} x_n = x\right) \Leftrightarrow \left(\exists \{x_n\}_{n=1}^{\infty} \subseteq (M \setminus A)^{\complement}\right) \left(\lim_{n \to \infty} x_n = x\right)$$
$$\Leftrightarrow x \notin \operatorname{int}(M \setminus A) \Leftrightarrow x \in M \setminus \operatorname{int}(M \setminus A).$$

- 3. False. Let $A = [0,1] \cap \mathbb{Q}$ in $(\mathbb{R}, |\cdot|)$. Then cl(A) = [0,1] and $int(A) = \emptyset$ so that $int(cl(A)) = (0,1) \neq int(A)$.
- 4. False. Let $A = [0,1] \cap \mathbb{Q}$ in $(\mathbb{R}, |\cdot|)$. Then $\operatorname{int}(A) = \emptyset$ so that $\operatorname{cl}(\operatorname{int}(A)) = \emptyset \neq A$.
- 5. False. Let $A = [0,1] \cap \mathbb{Q}$ in $(\mathbb{R}, |\cdot|)$. Then $\overline{A} = [0,1]$ so that $\partial \overline{A} = \{0,1\} \neq \partial A$.
- 6. **True**. If A is open, then every point $x \in A$ is an interior point so that $x \notin \partial A$ (if $x \in \partial A$, then there exists $\{x_n\}_{n=1}^{\infty} \subseteq A^{\complement}$ such that $\lim_{n \to \infty} x_n = x$ so that $x \notin \mathring{A}$).
- 7. **True**. By Proposition 3.13 in the lecture note, $\partial A = \overline{A} \setminus \mathring{A}$; thus the fact that $\mathring{A} \subseteq \overline{A}$ shows that $\overline{A} = \mathring{A} \cup \partial A$. Since $\partial A \cap \mathring{A} = \emptyset$, we find that $A = \overline{A} \setminus \partial A$.

If A is not open, the statement is false. For example, consider A = [0, 1] in $(\mathbb{R}, |\cdot|)$. Then A is not open and $\overline{A} = [0, 1]$ and $\partial A = \{0, 1\}$ so that $\overline{A} \setminus \partial A = (0, 1) \neq A$.

Problem 3. Use whatever methods you know to find the following limits:

- 1. $\lim_{x \to 0^+} (1 + \sin 2x)^{\frac{1}{x}};$ 2. $\lim_{x \to -\infty} (\sqrt{1 + x + x^2} - \sqrt{1 - x + x^2});$ 3. $\lim_{x \to 1} (2 - x)^{\sec \frac{\pi x}{2}};$ 4. $\lim_{x \to \infty} x (\frac{\pi}{2} - \sin^{-1} \frac{x}{\sqrt{x^2 + 1}});$
- 5. $\lim_{x \to \infty} x \left(e^{-1} \left(\frac{x}{x+1} \right)^x \right);$ 6. $\lim_{x \to \infty} \left(\frac{a^x 1}{x(a-1)} \right)^{\frac{1}{x}}$, where a > 0 and $a \neq 1$.