Exercise Problem Sets 3

Oct. 01. 2021

The first problem in this exercise set is a continuation of Problem 1 in Exercise 2.

Problem 1. Complete the following.

1. Verify the Wallis's formula: if n is a non-negative integer, then

$$\int_0^{\frac{\pi}{2}} \sin^{2n+1} x \, dx = \int_0^{\frac{\pi}{2}} \cos^{2n+1} x \, dx = \frac{(2^n n!)^2}{(2n+1)!}$$

and

$$\int_0^{\frac{\pi}{2}} \sin^{2n} x \, dx = \int_0^{\frac{\pi}{2}} \cos^{2n} x \, dx = \frac{(2n)!}{(2^n n!)^2} \cdot \frac{\pi}{2}$$

- 2. Let $I_n = \int_0^{\frac{\pi}{2}} \sin^n x \, dx$. Show that $\lim_{n \to \infty} \frac{I_{2n+1}}{I_{2n}} = 1$.
- 3. Let $s_n = \frac{n!}{n^{n+0.5}e^{-n}}$. Show that $\{s_n\}_{n=1}^{\infty}$ is a decreasing sequence; that is, $s_n \ge s_{n+1}$ for all $n \in \mathbb{N}$.
- 4. Suppose that you know that \mathbb{R} satisfies **MSP**. Then $\lim_{n \to \infty} s_n$ exists due to **MSP**. Find the limit of $\{s_n\}_{n=1}^{\infty}$.

Hint:

- 2. Show that $I_{2n+2} \leq I_{2n+1} \leq I_{2n}$ for all $n \in \mathbb{N}$ and then apply the Sandwich lemma.
- 3. Consider the function $f(x) = \left(1 + \frac{1}{x}\right)^{x+0.5}$.
- *Proof.* 4. Since $\{s_n\}_{n=1}^{\infty}$ is a decreasing sequence and is bounded from below. By the monotone sequence property, $\lim_{n \to \infty} s_n = s$ exists. Note that

$$\frac{I_{2n+1}}{I_{2n}} = \frac{2}{\pi} \frac{(2^n n!)^4}{(2n)!(2n+1)!} = \frac{2^{4n+1}}{\pi} \frac{s_n^4}{s_{2n}s_{2n+1}} \frac{(n^{n+0.5}e^{-n})^4}{(2n)^{2n+0.5}e^{-2n}(2n+1)^{2n+1.5}e^{-(2n+1)}} \\
= \frac{e}{2\pi} \frac{s_n^4}{s_{2n}s_{2n+1}} \frac{(2n)^{2n+1.5}}{(2n+1)^{2n+1.5}} = \frac{e}{2\pi} \frac{s_n^4}{s_{2n}s_{2n+1}} \left(1 + \frac{1}{2n}\right)^{-2n-1.5}.$$

Therefore, 2 implies that

$$1 = \lim_{n \to \infty} \frac{I_{2n+1}}{I_{2n}} = \lim_{n \to \infty} \frac{e}{2\pi} \frac{s_n^4}{s_{2n} s_{2n+1}} \frac{(2n)^{2n+1.5}}{(2n+1)^{2n+1.5}} = \frac{e}{2\pi} s^2 \lim_{n \to \infty} \left(1 + \frac{1}{2n}\right)^{-2n-1.5} = \frac{s^2}{2\pi};$$

thus $s = \sqrt{2\pi}$ (since $s_n \ge 0$).

Problem 2. Let $(\mathbb{F}, +, \cdot, \leq)$ an ordered field satisfying the monotone sequence property, and $y \in \mathbb{F}$ satisfying y > 1. Complete the following.

- 1. Define $y^{1/n}$ properly. (Hint: see how we define \sqrt{y} in the last example in class).
- 2. Show that $y^n 1 > n(y 1)$ for all $n \in \mathbb{N} \setminus \{1\}$; thus $y 1 > n(y^{1/n} 1)$.
- 3. Show that if t > 1 and n > (y 1)/(t 1), then $y^{1/n} < t$.
- 4. Show that $\lim_{n \to \infty} y^{1/n} = 1$ as $n \to \infty$.

Proof. 1. For each $k \in \mathbb{N}$, let N_k be the largest integer satisfying that $\left(\frac{N_k}{n^k}\right)^n \leq y$ but $\left(\frac{N_k+1}{n^k}\right)^n > y$. Define $x_k = \frac{N_k}{n^k}$. Then

(a) By binomial expansion, for each $k \in \mathbb{N}$ we have

$$x_k^n \leq y < 1 + C_1^n y + C_2^n y^2 + \dots + C_n^n y^n = (1+y)^n;$$

thus Problem ?? implies that $x_k < 1 + y$. Therefore, $\{x_k\}_{k=1}^{\infty}$ is bounded from above.

(b) For each $k \in \mathbb{N}$, $\left(\frac{nN_k}{n^{k+1}}\right)^n = \left(\frac{N_k}{n^k}\right)^n \leq y$; thus $N_{k+1} \geq nN_k$. Therefore, for each $k \in \mathbb{N}$,

$$x_k = \frac{N_k}{n^k} = \frac{nN_k}{n^{k+1}} \le \frac{N_{k+1}}{n^{k+1}} = x_{k+1}$$

which shows that $\{x_k\}_{k=1}^{\infty}$ is increasing.

Therefore, **MSP** implies that $\{x_k\}_{k=1}^{\infty}$ converges. Assume that $x_k \to x$ as $k \to \infty$ for some $x \in \mathbb{F}$. Then the fact that $x_k^n \leq y$ for all $k \in \mathbb{N}$ implies that $x^n \leq y$. On the other hand,

$$\left(x_k + \frac{1}{n^k}\right)^n \ge y \qquad \forall k \in \mathbb{N};$$

thus AP (a consequence of MSP) implies that

$$x^{n} = \left(\lim_{k \to \infty} x_{k} + \lim_{k \to \infty} \frac{1}{n^{k}}\right)^{n} = \lim_{k \to \infty} \left(x_{k} + \frac{1}{n^{k}}\right)^{n} \ge y.$$

Therefore, $x^n = y$. Problem 2 then shows that there is only one x > 0 satisfying $x^n = y$. This x will be denoted by $y^{\frac{1}{n}}$.

2. For y > 1, let z = y - 1. Then z > 0 so that for n > 1, the binomial expansion shows that

$$y^{n} - 1 = (1 + z)^{n} - 1 = 1 + C_{1}^{n}z + C_{2}^{n}z^{2} + \dots + C_{n}^{n}z^{n} - 1 = C_{1}^{n}z + C_{2}^{n}z^{2} + \dots + C_{n}^{n}z^{n}$$

> $nz = n(y - 1)$.

Therefore, replacing y by $y^{\frac{1}{n}}$ in the inequality above, we conclude that

$$y-1 > n(y^{\frac{1}{n}}-1) \qquad \forall n \in \mathbb{N} \setminus \{1\}$$

3. Suppose that $y^{\frac{1}{n}} \ge t > 1$. Then 2 implies that for $n \in \mathbb{N} \setminus \{1\}$,

$$y - 1 > n(y^{\frac{1}{n}} - 1) \ge n(t - 1)$$
.

Therefore, $n \leq \frac{y-1}{t-1}$, a contradiction.

4. Let $k \in \mathbb{N}$ and $t = 1 + \frac{1}{k}$ in 3. Then for n > k(y-1),

$$1 \leqslant y^{\frac{1}{n}} < 1 + \frac{1}{k}.$$

Since $n \to \infty$ as $k \to \infty$, by the Sandwich Lemma we conclude that $\lim_{n \to \infty} y^{\frac{1}{n}} = 1$.

Problem 3. Let $(\mathbb{F}, +, \cdot, \leq)$ be an ordered field satisfying the least upper bound property, and $S \subseteq \mathbb{F}$ be bounded below and non-empty. Show that

$$\inf S = \sup \left\{ x \in \mathbb{F} \, \big| \, x \text{ is a lower bound for } S \right\}$$

and

$$\sup S = \inf \left\{ x \in \mathbb{F} \, \big| \, x \text{ is an upper bound for } S \right\}.$$

Proof. Define $A = \{x \in \mathbb{F} \mid x \text{ is a lower bound for } S\}$. Since S is non-empty, every element in S is an upper bound for A; thus A is bounded from above. By the least upper bound property, $b = \sup A \in \mathbb{F}$ exists. Note that by the definition of A,

if
$$x \in A$$
, then $x \leq s$ for all $s \in S$. (\star)

Let $\varepsilon > 0$ be given. Then $b - \varepsilon$ is not an upper bound for A; thus there exists $x \in A$ such that $b - \varepsilon < x$. Then (\star) implies that $b - \varepsilon < s$ for all $s \in S$. Since $\varepsilon > 0$ is given arbitrarily, $b \leq s$ for all $s \in S$; thus b is a lower bound for S.

Suppose that b is not the greatest lower bound for S. There exists m > b such that $m \leq s$ for all $s \in S$. Therefore, $m \in A$; thus $m \leq b$, a contradiction.

Problem 4. Let A, B be two sets, and $f : A \times B \to \mathbb{F}$ be a function, where $(\mathbb{F}, +, \cdot, \leq)$ is an ordered field satisfying the least upper bound property. Show that

$$\sup_{(x,y)\in A\times B} f(x,y) = \sup_{y\in B} \left(\sup_{x\in A} f(x,y)\right) = \sup_{x\in A} \left(\sup_{y\in B} f(x,y)\right).$$

Proof. Note that

$$f(x,y) \leq \sup_{(x,y)\in A\times B} f(x,y) \qquad \forall (x,y)\in A\times B;$$

thus

$$\sup_{x \in A} f(x, y) \leq \sup_{(x, y) \in A \times B} f(x, y) \qquad \forall y \in B.$$

The inequality above further shows that

$$\sup_{y \in B} \left(\sup_{x \in A} f(x, y) \right) \le \sup_{(x, y) \in A \times B} f(x, y) . \tag{(\star)}$$

Now we show the reverse inequality.

1. Suppose that $\sup_{(x,y)\in A\times B} f(x,y) = M < \infty$. Then for each $k \in \mathbb{N}$, there exists $(x_k, y_k) \in A \times B$ such that

$$f(x_k, y_k) > M - \frac{1}{k} \,.$$

Therefore,

$$M - \frac{1}{k} < f(x_k, y_k) \le \sup_{x \in A} f(x, y_k)$$

which further implies that

$$M - \frac{1}{k} < f(x_k, y_k) \le \sup_{y \in B} \left(\sup_{x \in A} f(x, y) \right)$$

Since the inequality above holds for all $k \in \mathbb{N}$, we find that $\sup_{y \in B} \left(\sup_{x \in A} f(x, y) \right) \ge M$.

2. Suppose that $\sup_{(x,y)\in A\times B} f(x,y) = \infty$. Then for each $k \in \mathbb{N}$, there exists $(x_k, y_k) \in A \times B$ such that

$$f(x_k, y_k) > k$$

Therefore,

$$k < f(x_k, y_k) \leq \sup_{x \in A} f(x, y_k)$$

which further implies that

$$k < f(x_k, y_k) \leq \sup_{y \in B} \left(\sup_{x \in A} f(x, y) \right)$$

Since the inequality above holds for all $k \in \mathbb{N}$, we find that $\sup_{y \in B} \left(\sup_{x \in A} f(x, y) \right) = \infty$.

With the help of (\star) , we conclude that $\sup_{(x,y)\in A\times B} f(x,y) = \sup_{y\in B} (\sup_{x\in A} f(x,y)).$

Problem 5. Let $(\mathbb{F}, +, \cdot, \leq)$ be an ordered field satisfying the least upper bound property, and $\boldsymbol{x} = (x_1, x_2, \cdots, x_n) \in \mathbb{F}^n$. Define

$$\|\boldsymbol{x}\|_1 = \sum_{k=1}^n |x_k|$$
 and $\|\boldsymbol{x}\|_{\infty} = \max\{|x_1|, |x_2|, \cdots, |x_n|\}$

Show that

1.
$$\|\boldsymbol{x}\|_1 = \sup \Big\{ \sum_{k=1}^n x_k y_k \, \Big| \, \|\boldsymbol{y}\|_{\infty} = 1 \Big\}.$$
 2. $\|\boldsymbol{y}\|_{\infty} = \sup \Big\{ \sum_{k=1}^n x_k y_k \, \Big| \, \|\boldsymbol{x}\|_1 = 1 \Big\}.$

Proof. Let $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{F}^n$ be given. Then

$$\sum_{k=1}^{n} x_k y_k \leqslant \sum_{k=1}^{n} |x_k| |y_k| \leqslant \sum_{k=1}^{n} |x_k| \| \boldsymbol{y} \|_{\infty} = \| \boldsymbol{y} \|_{\infty} \sum_{k=1}^{n} |x_k| = \| \boldsymbol{y} \|_{\infty} \| \boldsymbol{x} \|_1.$$

Therefore,

$$\sup\left\{\sum_{k=1}^n x_k y_k \left| \|\boldsymbol{y}\|_{\infty} = 1\right\} \leqslant \|\boldsymbol{x}\|_1 \quad \text{and} \quad \sup\left\{\sum_{k=1}^n x_k y_k \left| \|\boldsymbol{x}\|_1 = 1\right\} \leqslant \|\boldsymbol{y}\|_{\infty}.\right.$$

Next we show that the two inequalities are in fact equalities by showing that the right-hand side of the inequalities belongs to the sets (this is because if $b \in A$ is an upper bound for A, then b is the least upper bound for A).

1. $\sup \left\{ \sum_{k=1}^{n} x_k y_k \mid \| \boldsymbol{y} \|_{\infty} = 1 \right\} = \| \boldsymbol{x} \|_1$: W.L.O.G. we can assume that $\boldsymbol{x} \neq \boldsymbol{0}$. For a given $\boldsymbol{x} \in \mathbb{F}^n$, define $y_k \in \mathbb{F}$ by

$$y_k = \begin{cases} \frac{\overline{x_k}}{|x_k|} & \text{if } x_k \neq 0, \\ 0 & \text{if } x_k = 0, \end{cases}$$

where $\overline{x_k}$ denotes the complex conjugate of x_k . Then $\boldsymbol{y} = (y_1, y_2, \dots, y_n)$ satisfies $\|\boldsymbol{y}\|_{\infty} = 1$ (since at least one component of \boldsymbol{x} is non-zero), and

$$\sum_{k=1}^{n} x_k y_k = \sum_{k=1}^{n} |x_k| = \| \boldsymbol{x} \|_1$$

2. $\sup\left\{\sum_{k=1}^{n} x_k y_k \middle| \|\boldsymbol{x}\|_1 = 1\right\} = \|\boldsymbol{y}\|_{\infty}$: W.L.O.G. we can assume that $\boldsymbol{y} \neq \boldsymbol{0}$. Suppose that $\|\boldsymbol{y}\|_{\infty} = |y_m| \neq 0$ for some $1 \leq m \leq n$; that is, the maximum of the absolute value of components occurs at the *m*-th component. Define $x_j \in \mathbb{F}$ by

$$x_j = \begin{cases} \frac{\overline{y_m}}{|y_m|} & \text{if } j = m ,\\ 0 & \text{if } j \neq m , \end{cases}$$

where $\overline{y_m}$ is the complex conjugate of y_m . Then $\boldsymbol{x} = (x_1, x_2, \dots, x_n)$ satisfies $\|\boldsymbol{x}\|_1 = 1$ (since only one component of \boldsymbol{x} is non-zero), and

$$\sum_{k=1}^n x_k y_k = \frac{\overline{y_m}}{|y_m|} y_m = |y_m| = \|\boldsymbol{y}\|_{\infty} \,.$$