Exercise Problem Sets 8

Problem 1. Compute the Fourier series of the function $f:(-\pi, \pi) \rightarrow \mathbb{R}$ defined by

$$
f(x)=\left\{\begin{array}{cl}
0 & -\pi<x<0 \\
\pi-x & 0 \leqslant x<\pi
\end{array}\right.
$$

and show that

$$
1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots=\sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}}=\frac{\pi^{2}}{8} .
$$

Also use the Fourier series of the function $y=x^{2}$ (which we talked about in class)

$$
s\left(x^{2}, x\right)=\frac{\pi^{2}}{3}+4 \sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{2}} \cos k x
$$

to conclude (\star).
Solution. We compute the Fourier coefficients as follows. For $k \in \mathbb{N}$,

$$
s_{k}=\frac{1}{\pi} \int_{0}^{\pi}(\pi-x) \sin (k x) d x=\frac{1}{\pi}\left[\left.\frac{-(\pi-x) \cos (k x)}{k}\right|_{x=0} ^{x=\pi}-\frac{1}{k} \int_{0}^{\pi} \cos (k x) d x\right]=\frac{1}{k}
$$

and

$$
\begin{aligned}
c_{k} & =\frac{1}{\pi} \int_{0}^{\pi}(\pi-x) \cos (k x) d x=\frac{1}{\pi}\left[\left.\frac{(\pi-x) \sin (k x)}{k}\right|_{x=0} ^{x=\pi}+\frac{1}{k} \int_{0}^{\pi} \sin (k x) d x\right] \\
& =\left.\frac{-\cos (k x)}{k^{2} \pi}\right|_{x=0} ^{x=\pi}=\frac{1-(-1)^{k}}{k^{2} \pi},
\end{aligned}
$$

while

$$
c_{0}=\frac{1}{\pi} \int_{0}^{\pi}(\pi-x) d x=\frac{\pi}{2} .
$$

Therefore, by the fact that $\lim _{x \rightarrow 0^{-}} f(x)=0$ and $\lim _{x \rightarrow 0^{+}} f(x)=\pi$,

$$
\frac{\pi}{4}+\sum_{k=1}^{\infty}\left(\frac{1-(-1)^{k}}{k^{2} \pi} \cos (k x)+\frac{1}{k} \sin (k x)\right)=\left\{\begin{array}{cl}
0 & \text { if }-\pi \leqslant x<0 \\
\pi-x & \text { if } 0<x \leqslant \pi \\
\frac{\pi}{2} & \text { if } x=0
\end{array}\right.
$$

We note that the case $x=0$ implies that

$$
\frac{\pi}{2}=\frac{\pi}{4}+\sum_{k=1}^{\infty} \frac{1-(-1)^{k}}{k^{2} \pi}
$$

which shows the identity

$$
1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots=\sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}}=\frac{\pi^{2}}{8} .
$$

We also note that the identity above can be obtained by

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}}+\sum_{k=1}^{\infty} \frac{1}{(2 k)^{2}}=\sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}}+\frac{1}{4} \sum_{k=1}^{\infty} \frac{1}{k^{2}}
$$

so that

$$
\sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}}=\frac{3}{4} \sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{3}{4} \frac{\pi^{2}}{6}=\frac{\pi^{2}}{8} .
$$

Problem 2. In class we prove that the theorem
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be $2 L$-periodic piecewise Hölder continuous with exponent $\alpha \in(0,1]$. Then

$$
\lim _{n \rightarrow \infty} s_{n}\left(f, x_{0}\right)=\frac{f\left(x_{0}^{+}\right)+f\left(x_{0}^{-}\right)}{2} \quad \forall x_{0} \in \mathbb{R} .
$$

Moreover, if x_{0} is a jump discontinuity of f and

$$
f\left(x_{0}^{+}\right)-f\left(x_{0}^{-}\right)=a \neq 0,
$$

then there exists a constant $c=\frac{1}{\pi} \int_{0}^{\pi} \frac{\sin x}{x} d x-\frac{1}{2} \approx 0.089490$ such that

$$
\lim _{n \rightarrow \infty} s_{n}\left(f, x_{0} \pm \frac{L}{n}\right)=f\left(x_{0}^{ \pm}\right) \pm c a
$$

holds for $L=\pi$. Use this fact to prove that the theorem holds for general $L>0$.
Proof. Suppose that the theorem holds for the case $L=\pi$. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be $2 L$-periodic piecewise Hölder continuous with exponent $\alpha \in(0,1]$. Define $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x)=f\left(\frac{L x}{\pi}\right)$ (or equivalently, $\left.f(x)=g\left(\frac{\pi x}{L}\right)\right)$. Then g is 2π-periodic piecewise Hölder continuous exponent $\alpha \in(0,1]$, and

$$
s_{n}(g, x)=s_{n}\left(f, \frac{L x}{\pi}\right) \quad \text { and } \quad s_{n}(f, x)=s_{n}\left(g, \frac{\pi x}{L}\right) .
$$

Let $y_{0}=\frac{\pi x_{0}}{L}$. By the fact that $\lim _{x \rightarrow x_{0}^{ \pm}} h(c x)=\lim _{y \rightarrow\left(c x_{0}\right)^{ \pm}} h(x)$ if $c>0$,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} s_{n}\left(f, x_{0}\right) & =\lim _{n \rightarrow \infty} s_{n}\left(g, y_{0}\right)=\frac{1}{2}\left[\lim _{y \rightarrow y_{0}^{+}} g(y)+\lim _{y \rightarrow y_{0}^{-}} g(y)\right] \\
& =\frac{1}{2}\left[\lim _{x \rightarrow x_{0}^{+}} g\left(\frac{\pi x}{L}\right)+\lim _{x \rightarrow x_{0}^{-}} g\left(\frac{\pi x}{L}\right)\right]=\frac{1}{2}\left[\lim _{x \rightarrow x_{0}^{+}} f(x)+\lim _{x \rightarrow x_{0}^{-}} f(x)\right]=\frac{f\left(x_{0}^{+}\right)+f\left(x_{0}^{-}\right)}{2} .
\end{aligned}
$$

Moreover, if x_{0} is a jump discontinuity of f, then y_{0} is a jump discontinuity of g so that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} s_{n}\left(f, x_{0}+\frac{L}{n}\right) & =\lim _{n \rightarrow \infty} s_{n}\left(g, \frac{\pi}{L}\left(x_{0}+\frac{L}{n}\right)\right)=\lim _{n \rightarrow \infty} s_{n}\left(g, y_{0}+\frac{\pi}{n}\right) \\
& =\lim _{y \rightarrow y_{0}^{+}} g(y)+c\left[\lim _{y \rightarrow y_{0}^{+}} g(y)-\lim _{y \rightarrow y_{0}^{-}} g(y)\right] \\
& =\lim _{x \rightarrow x_{0}^{+}} g\left(\frac{\pi x}{L}\right)+c\left[\lim _{x \rightarrow x_{0}^{+}} g\left(\frac{\pi x}{L}\right)-\lim _{x \rightarrow x_{0}^{-}} g\left(\frac{\pi x}{L}\right)\right]=f\left(x_{0}^{+}\right)+c a .
\end{aligned}
$$

Similarly, $\lim _{n \rightarrow \infty} s_{n}\left(f, x_{0}+\frac{L}{n}\right)=f\left(x_{0}^{-}\right)-c a$.

Problem 3. For a given function $f:[0, L] \rightarrow \mathbb{R}$, the even extension of f is a function $\bar{f}:[-L, L] \rightarrow \mathbb{R}$ such that

$$
\bar{f}(x)=f(-x) \quad \forall x \in[-L, 0) .
$$

1. Let $f:[0, L] \rightarrow \mathbb{R}$ be an integrable function. The cosine series of f is the Fourier series of the even extension of f. Find the cosine series of f.
2. Suppose in addition $f:[0, L] \rightarrow \mathbb{R}$ is piecewise Hölder continuous with exponent $\alpha \in(0,1]$. Show that the cosine series of f at $x_{0} \in(0, L)$ converges to $\frac{f\left(x_{0}^{+}\right)+f\left(x_{0}^{-}\right)}{2}$.

Proof. 1. Let \bar{f} be the even extension of f, and $\left\{c_{k}\right\}_{k=0}^{\infty},\left\{s_{k}\right\}_{k=1}^{\infty}$ be the Fourier coefficients of \bar{f}. Then by the fact that \bar{f} is even, $s_{k}=0$ for all $k \in \mathbb{N}$. Moreover,

$$
\begin{aligned}
c_{k} & =\frac{1}{L} \int_{-L}^{L} \bar{f}(x) \cos \frac{k \pi x}{L} d x=\frac{1}{L} \int_{0}^{L} f(x) \cos \frac{k \pi x}{L} d x+\frac{1}{L} \int_{-L}^{0} f(-x) \cos \frac{k \pi x}{L} d x \\
& =\frac{1}{L} \int_{0}^{L} f(x) \cos \frac{k \pi x}{L} d x+\frac{1}{L} \int_{L}^{0} f(x) \cos \frac{k \pi(-x)}{L} d(-x) \\
& =\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{k \pi x}{L} d x .
\end{aligned}
$$

Therefore, the cosine series of f is

$$
s(\bar{f}, x)=\frac{1}{L} \int_{0}^{L} f(x) d x+\frac{2}{L} \sum_{k=1}^{\infty}\left(\int_{0}^{L} f(y) \cos \frac{k \pi y}{L} d y\right) \cos \frac{k \pi x}{L} .
$$

2. If f is piecewise Hölder continuous with exponent $\alpha \in(0,1]$, then the odd extension \bar{f} of f is also piecewise Hölder continuous with exponent $\alpha \in(0,1]$; thus

$$
s\left(\bar{f}, x_{0}\right)=\frac{\bar{f}\left(x_{0}^{+}\right)+\bar{f}\left(x_{0}^{-}\right)}{2}=\frac{f\left(x_{0}^{+}\right)+f\left(x_{0}^{-}\right)}{2}
$$

which shows that the cosine series of f at $x_{0} \in(0, L)$ converges to $\frac{f\left(x_{0}^{+}\right)+f\left(x_{0}^{-}\right)}{2}$.
Problem 4. For a given function $f:[0, L] \rightarrow \mathbb{R}$, the odd extension of f is a function $\bar{f}:[-L, L] \rightarrow \mathbb{R}$ such that

$$
\bar{f}(x)=-f(-x) \quad \forall x \in[-L, 0)
$$

1. Let $f:[0, L] \rightarrow \mathbb{R}$ be an integrable function. The sine series of f is the Fourier series of the odd extension of f. Find the cosine series of f.
2. Suppose in addition $f:[0, L] \rightarrow \mathbb{R}$ is piecewise Hölder continuous with exponent $\alpha \in(0,1]$. Show that the sine series of f at $x_{0} \in(0, L)$ converges to $\frac{f\left(x_{0}^{+}\right)+f\left(x_{0}^{-}\right)}{2}$.

Proof. 1. Let \bar{f} be the odd extension of f, and $\left\{c_{k}\right\}_{k=0}^{\infty},\left\{s_{k}\right\}_{k=1}^{\infty}$ be the Fourier coefficients of \bar{f}. Then by the fact that \bar{f} is odd, $c_{k}=0$ for all $k \in \mathbb{N} \cup\{0\}$. Moreover,

$$
\begin{aligned}
s_{k} & =\frac{1}{L} \int_{-L}^{L} \bar{f}(x) \sin \frac{k \pi x}{L} d x=\frac{1}{L} \int_{0}^{L} f(x) \sin \frac{k \pi x}{L} d x-\frac{1}{L} \int_{-L}^{0} f(-x) \sin \frac{k \pi x}{L} d x \\
& =\frac{1}{L} \int_{0}^{L} f(x) \sin \frac{k \pi x}{L} d x-\frac{1}{L} \int_{L}^{0} f(x) \sin \frac{k \pi(-x)}{L} d(-x) \\
& =\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{k \pi x}{L} d x .
\end{aligned}
$$

Therefore, the sine series of f is

$$
s(\bar{f}, x)=\frac{2}{L} \sum_{k=1}^{\infty}\left(\int_{0}^{L} f(y) \sin \frac{k \pi y}{L} d y\right) \sin \frac{k \pi x}{L} .
$$

2. If f is piecewise Hölder continuous with exponent $\alpha \in(0,1]$, then the odd extension \bar{f} of f is also piecewise Hölder continuous with exponent $\alpha \in(0,1]$; thus

$$
s\left(\bar{f}, x_{0}\right)=\frac{\bar{f}\left(x_{0}^{+}\right)+\bar{f}\left(x_{0}^{-}\right)}{2}=\frac{f\left(x_{0}^{+}\right)+f\left(x_{0}^{-}\right)}{2}
$$

which shows that the sine series of f at $x_{0} \in(0, L)$ converges to $\frac{f\left(x_{0}^{+}\right)+f\left(x_{0}^{-}\right)}{2}$.
Problem 5. Find the cosine series and the sine series of the function $f:[0, \pi] \rightarrow \mathbb{R}$ given by $f(x)=\frac{1}{2 \pi}(x-\pi)$.

Solution. 1. For $k \neq 0$,

$$
\begin{aligned}
\frac{2}{\pi} \int_{0}^{\pi} \frac{1}{2 \pi}(x-\pi) \cos k x d x & =\frac{1}{\pi^{2}} \int_{0}^{\pi} x \cos k x d x=\frac{1}{\pi^{2}}\left[\left.\frac{x \sin k x}{k}\right|_{x=0} ^{x=\pi}-\frac{1}{k} \int_{0}^{\pi} \sin k x d x\right] \\
& =\left.\frac{1}{k^{2} \pi^{2}} \cos k x\right|_{x=0} ^{x=\pi}=\frac{(-1)^{k}-1}{k^{2} \pi^{2}}
\end{aligned}
$$

while

$$
\frac{2}{\pi} \int_{0}^{\pi} \frac{1}{2 \pi}(x-\pi) d x=\left.\frac{1}{2 \pi^{2}}(x-\pi)^{2}\right|_{x=0} ^{x=\pi}=-\frac{1}{2} .
$$

Therefore, the cosine series of f is

$$
-\frac{1}{4}-\frac{2}{\pi^{2}} \sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}} \cos (2 k-1) x
$$

2. For $k \neq 0$,

$$
\begin{aligned}
& \frac{2}{\pi} \int_{0}^{\pi} \frac{1}{2 \pi}(x-\pi) \sin k x d x=\frac{1}{\pi^{2}} \int_{0}^{\pi}(x-\pi) \sin k x d x \\
& \quad=\frac{1}{\pi^{2}}\left[\left.\frac{-(x-\pi) \cos k x}{k}\right|_{x=0} ^{x=\pi}+\frac{1}{k} \int_{0}^{\pi} \cos k x d x\right]=\frac{-1}{k \pi} .
\end{aligned}
$$

Therefore, the sine series of f is

$$
-\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{\sin k x}{k}
$$

