Exercise Problem Sets 8

Apr. 24. 2021

Problem 1. Compute the Fourier series of the function $f: (-\pi, \pi) \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 0 & -\pi < x < 0 \\ \pi - x & 0 \le x < \pi \,, \end{cases}$$

and show that

$$1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} = \frac{\pi^2}{8}.$$
 (*)

Also use the Fourier series of the function $y = x^2$ (which we talked about in class)

$$s(x^{2}, x) = \frac{\pi^{2}}{3} + 4\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{2}} \cos kx$$

to conclude (\star) .

Solution. We compute the Fourier coefficients as follows. For $k \in \mathbb{N}$,

$$s_k = \frac{1}{\pi} \int_0^{\pi} (\pi - x) \sin(kx) \, dx = \frac{1}{\pi} \left[\frac{-(\pi - x) \cos(kx)}{k} \Big|_{x=0}^{x=\pi} - \frac{1}{k} \int_0^{\pi} \cos(kx) \, dx \right] = \frac{1}{k}$$

and

$$c_k = \frac{1}{\pi} \int_0^{\pi} (\pi - x) \cos(kx) \, dx = \frac{1}{\pi} \left[\frac{(\pi - x) \sin(kx)}{k} \Big|_{x=0}^{x=\pi} + \frac{1}{k} \int_0^{\pi} \sin(kx) \, dx \right]$$
$$= \frac{-\cos(kx)}{k^2 \pi} \Big|_{x=0}^{x=\pi} = \frac{1 - (-1)^k}{k^2 \pi} \,,$$

while

$$c_0 = \frac{1}{\pi} \int_0^{\pi} (\pi - x) \, dx = \frac{\pi}{2} \, .$$

Therefore, by the fact that $\lim_{x\to 0^-} f(x) = 0$ and $\lim_{x\to 0^+} f(x) = \pi$,

$$\frac{\pi}{4} + \sum_{k=1}^{\infty} \left(\frac{1 - (-1)^k}{k^2 \pi} \cos(kx) + \frac{1}{k} \sin(kx) \right) = \begin{cases} 0 & \text{if } -\pi \le x < 0, \\ \pi - x & \text{if } 0 < x \le \pi, \\ \frac{\pi}{2} & \text{if } x = 0. \end{cases}$$

We note that the case x = 0 implies that

$$\frac{\pi}{2} = \frac{\pi}{4} + \sum_{k=1}^{\infty} \frac{1 - (-1)^k}{k^2 \pi}$$

which shows the identity

$$1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} = \frac{\pi^2}{8}.$$

We also note that the identity above can be obtained by

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} + \sum_{k=1}^{\infty} \frac{1}{(2k)^2} = \sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} + \frac{1}{4} \sum_{k=1}^{\infty} \frac{1}{k^2}$$

so that

r

$$\sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} = \frac{3}{4} \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{3}{4} \frac{\pi^2}{6} = \frac{\pi^2}{8}.$$

Problem 2. In class we prove that the theorem

Let $f : \mathbb{R} \to \mathbb{R}$ be 2*L*-periodic piecewise Hölder continuous with exponent $\alpha \in (0, 1]$. Then

$$\lim_{n \to \infty} s_n(f, x_0) = \frac{f(x_0^+) + f(x_0^-)}{2} \qquad \forall \, x_0 \in \mathbb{R} \,.$$

Moreover, if x_0 is a jump discontinuity of f and

$$f(x_0^+) - f(x_0^-) = a \neq 0$$

then there exists a constant $c = \frac{1}{\pi} \int_0^{\pi} \frac{\sin x}{x} dx - \frac{1}{2} \approx 0.089490$ such that $\lim_{n \to \infty} s_n \left(f, x_0 \pm \frac{L}{n} \right) = f(x_0^{\pm}) \pm ca \,.$

holds for $L = \pi$. Use this fact to prove that the theorem holds for general L > 0.

Proof. Suppose that the theorem holds for the case $L = \pi$. Let $f : \mathbb{R} \to \mathbb{R}$ be 2*L*-periodic piecewise Hölder continuous with exponent $\alpha \in (0, 1]$. Define $g : \mathbb{R} \to \mathbb{R}$ by $g(x) = f\left(\frac{Lx}{\pi}\right)$ (or equivalently, $f(x) = g\left(\frac{\pi x}{L}\right)$). Then g is 2π -periodic piecewise Hölder continuous exponent $\alpha \in (0, 1]$, and

$$s_n(g,x) = s_n(f,\frac{Lx}{\pi})$$
 and $s_n(f,x) = s_n(g,\frac{\pi x}{L})$.

Let $y_0 = \frac{\pi x_0}{L}$. By the fact that $\lim_{x \to x_0^{\pm}} h(cx) = \lim_{y \to (cx_0)^{\pm}} h(x)$ if c > 0,

$$\lim_{y \to \infty} s_n(f, x_0) = \lim_{n \to \infty} s_n(g, y_0) = \frac{1}{2} \Big[\lim_{y \to y_0^+} g(y) + \lim_{y \to y_0^-} g(y) \Big]$$
$$= \frac{1}{2} \Big[\lim_{x \to x_0^+} g\left(\frac{\pi x}{L}\right) + \lim_{x \to x_0^-} g\left(\frac{\pi x}{L}\right) \Big] = \frac{1}{2} \Big[\lim_{x \to x_0^+} f(x) + \lim_{x \to x_0^-} f(x) \Big] = \frac{f(x_0^+) + f(x_0^-)}{2} \,.$$

Moreover, if x_0 is a jump discontinuity of f, then y_0 is a jump discontinuity of g so that

$$\lim_{n \to \infty} s_n \left(f, x_0 + \frac{L}{n} \right) = \lim_{n \to \infty} s_n \left(g, \frac{\pi}{L} \left(x_0 + \frac{L}{n} \right) \right) = \lim_{n \to \infty} s_n \left(g, y_0 + \frac{\pi}{n} \right)$$
$$= \lim_{y \to y_0^+} g(y) + c \left[\lim_{y \to y_0^+} g(y) - \lim_{y \to y_0^-} g(y) \right]$$
$$= \lim_{x \to x_0^+} g\left(\frac{\pi x}{L} \right) + c \left[\lim_{x \to x_0^+} g\left(\frac{\pi x}{L} \right) - \lim_{x \to x_0^-} g\left(\frac{\pi x}{L} \right) \right] = f(x_0^+) + ca \,.$$

Similarly, $\lim_{n \to \infty} s_n \left(f, x_0 + \frac{L}{n} \right) = f(x_0^-) - ca.$

Problem 3. For a given function $f : [0, L] \to \mathbb{R}$, the even extension of f is a function $\overline{f} : [-L, L] \to \mathbb{R}$ such that

$$\overline{f}(x) = f(-x) \qquad \forall x \in [-L, 0).$$

- 1. Let $f:[0,L] \to \mathbb{R}$ be an integrable function. The cosine series of f is the Fourier series of the even extension of f. Find the cosine series of f.
- 2. Suppose in addition $f : [0, L] \to \mathbb{R}$ is piecewise Hölder continuous with exponent $\alpha \in (0, 1]$. Show that the cosine series of f at $x_0 \in (0, L)$ converges to $\frac{f(x_0^+) + f(x_0^-)}{2}$.
- *Proof.* 1. Let \overline{f} be the even extension of f, and $\{c_k\}_{k=0}^{\infty}$, $\{s_k\}_{k=1}^{\infty}$ be the Fourier coefficients of \overline{f} . Then by the fact that \overline{f} is even, $s_k = 0$ for all $k \in \mathbb{N}$. Moreover,

$$c_{k} = \frac{1}{L} \int_{-L}^{L} \bar{f}(x) \cos \frac{k\pi x}{L} dx = \frac{1}{L} \int_{0}^{L} f(x) \cos \frac{k\pi x}{L} dx + \frac{1}{L} \int_{-L}^{0} f(-x) \cos \frac{k\pi x}{L} dx$$
$$= \frac{1}{L} \int_{0}^{L} f(x) \cos \frac{k\pi x}{L} dx + \frac{1}{L} \int_{L}^{0} f(x) \cos \frac{k\pi (-x)}{L} d(-x)$$
$$= \frac{2}{L} \int_{0}^{L} f(x) \cos \frac{k\pi x}{L} dx.$$

Therefore, the cosine series of f is

$$s(\bar{f}, x) = \frac{1}{L} \int_0^L f(x) \, dx + \frac{2}{L} \sum_{k=1}^\infty \left(\int_0^L f(y) \cos \frac{k\pi y}{L} \, dy \right) \cos \frac{k\pi x}{L} \, .$$

2. If f is piecewise Hölder continuous with exponent $\alpha \in (0, 1]$, then the odd extension f of f is also piecewise Hölder continuous with exponent $\alpha \in (0, 1]$; thus

$$s(\bar{f}, x_0) = \frac{\bar{f}(x_0^+) + \bar{f}(x_0^-)}{2} = \frac{f(x_0^+) + f(x_0^-)}{2}$$

which shows that the cosine series of f at $x_0 \in (0, L)$ converges to $\frac{f(x_0^+) + f(x_0^-)}{2}$.

Problem 4. For a given function $f : [0, L] \to \mathbb{R}$, the odd extension of f is a function $\overline{f} : [-L, L] \to \mathbb{R}$ such that

$$\overline{f}(x) = -f(-x) \qquad \forall x \in [-L, 0)$$

- 1. Let $f : [0, L] \to \mathbb{R}$ be an integrable function. The sine series of f is the Fourier series of the odd extension of f. Find the cosine series of f.
- 2. Suppose in addition $f : [0, L] \to \mathbb{R}$ is piecewise Hölder continuous with exponent $\alpha \in (0, 1]$. Show that the sine series of f at $x_0 \in (0, L)$ converges to $\frac{f(x_0^+) + f(x_0^-)}{2}$.

Proof. 1. Let \overline{f} be the odd extension of f, and $\{c_k\}_{k=0}^{\infty}$, $\{s_k\}_{k=1}^{\infty}$ be the Fourier coefficients of \overline{f} . Then by the fact that \overline{f} is odd, $c_k = 0$ for all $k \in \mathbb{N} \cup \{0\}$. Moreover,

$$s_{k} = \frac{1}{L} \int_{-L}^{L} \bar{f}(x) \sin \frac{k\pi x}{L} dx = \frac{1}{L} \int_{0}^{L} f(x) \sin \frac{k\pi x}{L} dx - \frac{1}{L} \int_{-L}^{0} f(-x) \sin \frac{k\pi x}{L} dx$$
$$= \frac{1}{L} \int_{0}^{L} f(x) \sin \frac{k\pi x}{L} dx - \frac{1}{L} \int_{L}^{0} f(x) \sin \frac{k\pi (-x)}{L} d(-x)$$
$$= \frac{2}{L} \int_{0}^{L} f(x) \sin \frac{k\pi x}{L} dx.$$

Therefore, the sine series of f is

$$s(\bar{f},x) = \frac{2}{L} \sum_{k=1}^{\infty} \left(\int_0^L f(y) \sin \frac{k\pi y}{L} \, dy \right) \sin \frac{k\pi x}{L} \, .$$

2. If f is piecewise Hölder continuous with exponent $\alpha \in (0, 1]$, then the odd extension \overline{f} of f is also piecewise Hölder continuous with exponent $\alpha \in (0, 1]$; thus

$$s(\bar{f}, x_0) = \frac{\bar{f}(x_0^+) + \bar{f}(x_0^-)}{2} = \frac{f(x_0^+) + f(x_0^-)}{2}$$

which shows that the sine series of f at $x_0 \in (0, L)$ converges to $\frac{f(x_0^+) + f(x_0^-)}{2}$.

Problem 5. Find the cosine series and the sine series of the function $f : [0, \pi] \to \mathbb{R}$ given by $f(x) = \frac{1}{2\pi}(x - \pi)$.

Solution. 1. For $k \neq 0$,

$$\frac{2}{\pi} \int_0^\pi \frac{1}{2\pi} (x - \pi) \cos kx \, dx = \frac{1}{\pi^2} \int_0^\pi x \cos kx \, dx = \frac{1}{\pi^2} \left[\frac{x \sin kx}{k} \Big|_{x=0}^{x=\pi} - \frac{1}{k} \int_0^\pi \sin kx \, dx \right]$$
$$= \frac{1}{k^2 \pi^2} \cos kx \Big|_{x=0}^{x=\pi} = \frac{(-1)^k - 1}{k^2 \pi^2}$$

while

$$\frac{2}{\pi} \int_0^\pi \frac{1}{2\pi} (x-\pi) \, dx = \frac{1}{2\pi^2} (x-\pi)^2 \Big|_{x=0}^{x=\pi} = -\frac{1}{2} \, .$$

Therefore, the cosine series of f is

$$-\frac{1}{4} - \frac{2}{\pi^2} \sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} \cos(2k-1)x.$$

2. For $k \neq 0$,

$$\frac{2}{\pi} \int_0^\pi \frac{1}{2\pi} (x-\pi) \sin kx \, dx = \frac{1}{\pi^2} \int_0^\pi (x-\pi) \sin kx \, dx$$
$$= \frac{1}{\pi^2} \left[\frac{-(x-\pi) \cos kx}{k} \Big|_{x=0}^{x=\pi} + \frac{1}{k} \int_0^\pi \cos kx \, dx \right] = \frac{-1}{k\pi}$$

Therefore, the sine series of f is

$$-\frac{1}{\pi}\sum_{k=1}^{\infty}\frac{\sin kx}{k}.$$