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Problem 1. Define B to be the set of all even functions in the space C ([´1, 1];R); that is, f P B

if and only if f is continuous on [´1, 1] and f(x) = f(´x) for all x P [´1, 1]. Prove that B is
closed but not dense in C ([´1, 1];R). Hence show that even polynomials are dense in B, but not in
C ([´1, 1];R).

Proof. Let tfku8
k=1 be a sequence in B and tfku8

k=1 converges uniformly to f on [´1, 1]. Then f is
continuous. Moreover, for each x P [´1, 1],

f(x) = lim
kÑ8

fk(x) = lim
kÑ8

fk(´x) = f(´x) ;

thus f is even. Therefore, f P B which shows that B is closed. However, B is not dense in B since
there exists no f P B satisfying that

max
xP[´1,1]

ˇ

ˇf(x) ´ x
ˇ

ˇ ă
1

2

since

max
xP[´1,1]

ˇ

ˇf(x) ´ x
ˇ

ˇ ě maxt
ˇ

ˇf(1) ´ 1
ˇ

ˇ,
ˇ

ˇf(´1) + 1
ˇ

ˇ

(

= maxt
ˇ

ˇf(1) ´ 1
ˇ

ˇ,
ˇ

ˇf(1) + 1
ˇ

ˇ

(

ě 1 .

Let A denote the collection of even polynomials, and f be an even continuous function. Then
the Weierstrass Theorem implies that there exists a sequence of polynomial tpnu8

n=1 such that

lim
nÑ8

max
xP[0,1]

ˇ

ˇf(
?
x) ´ pn(x)

ˇ

ˇ = 0 .

For each n P N, define qn : [´1, 1] Ñ R by qn(x) = pn(x
2). Then tqnu8

n=1 Ď A and

lim
nÑ8

max
xP[´1,1]

ˇ

ˇf(x) ´ qn(x)
ˇ

ˇ = lim
nÑ8

max
xP[0,1]

ˇ

ˇf(x) ´ pn(x
2)
ˇ

ˇ = lim
nÑ8

max
xP[0,1]

ˇ

ˇf(
?
x) ´ pn(x)

ˇ

ˇ = 0

which shows that tqnu8
n=1 converges uniformly to f on [´1, 1]; thus A is dense in B. On the other

hand, since A Ď B, we must have sA Ď sB Ĺ C ([´1, 1];R) which implies that A is not dense in
C ([´1, 1];R). ˝

Problem 2. Let f : [0, 1] Ñ R be a continuous function.

1. Suppose that
ż 1

0

f(x)xndx = 0 @n P N Y t0u .

Show that f = 0 on [0, 1].

2. Suppose that for some m P N,
ż 1

0

f(x)xndx = 0 @n P t0, 1, ¨ ¨ ¨ ,mu .

Show that f(x) = 0 has at least (m+ 1) distinct real roots around which f(x) change signs.



Proof. 1.By the Weierstrass Theorem, for each k P N there exists a polynomial pk such that }f ´

pk}8 ă
1

k
. Since

ż 1

0
f(x)xn dx = 0 for all n P N Y t0u, we find that

ż 1

0

f(x)pk(x) dx = 0 @ k P N .

Note that f(f ´ pk) converges to the zero function uniformly on [0, 1] since

}f(f ´ pk)}8 ď }f}8}f ´ pk}8 ď
1

k
}f}8 Ñ 0 as k Ñ 8 ;

thus by the fact that
ż 1

0

f(x)2 dx =

ż 1

0

f(x)
[
f(x) ´ pk(x)

]
dx ,

we find that
ż 1

0
f(x)2 dx = 0. Therefore, by the continuity of f , we conclude that f = 0 on

[0, 1].

2. Let

D =
!

k P N
ˇ

ˇ

ˇ
if f P C ([0, 1];R) and f changes signs only around 0 ă α1 ă ¨ ¨ ¨ ă αk ă 1,

then y = f(x)
k
ź

j=1

(x ´ αj) does not change sign
)

.

Suppose that f P C ([0, 1];R) changes sign only around 0 ă α1 ă 1. Then y = f(x)(x ´ α1)

does not change sign so that 1 P D. Assume that k P D. If f changes signs only around
0 ă α1 ă α2 ă ¨ ¨ ¨ ă αk+1 ă 1, then the function y = f(x)(x´αk+1) changes signs only around

0 ă α1 ă ¨ ¨ ¨ ă αk ă 1; thus y = f(x)(x´αk+1)
k
ś

j=1

(x´αj) = f(x)
k+1
ś

j=1

(x´αj) does not change

sign which shows that k + 1 P D. By induction, we conclude that D = N.

Now suppose the contrary that f(x) = 0 has at most m distinct real roots 0 ă α1 ă ¨ ¨ ¨ ă

αk ă 1, where 0 ď k ď m, around which f(x) changes signs. Then y = f(x)
k
ś

j=1

(x ´ αj) does

not change sign. W.L.O.G., we assume that f(x)
k
ś

j=1

(x´αj) ě 0 for all x P [0, 1]. Then by the

fact that
ż 1

0

f(x)xndx = 0 @n P t0, 1, ¨ ¨ ¨ ,mu .

and k ď m, we find that
ż 1

0

f(x)
k
ź

j=1

(x ´ αj) dx = 0 ;

thus the sign-definite property and the continuity of the function y = f(x)
k
ś

j=1

(x ´ αj) im-

plies that f(x)
k
ś

j=1

(x ´ αj) = 0 for all x P [0, 1]. Therefore, f(x)
k
ś

j=1

(x ´ αj) = 0 for all

x P [0, 1]ztα1, α2, ¨ ¨ ¨ , αku or equivalently, f(x) = 0 for all x P [0, 1]ztα1, α2, ¨ ¨ ¨ , αku. The
continuity of f further implies that f = 0 on [0, 1], a contradiction to that f has at most m

distinct real roots around which f changes signs. ˝



Problem 3. Let f : [0, 1] Ñ R be continuous. Show that

lim
nÑ8

ż 1

0

f(x) sin(nx) dx = 0 .

Proof. We first show that lim
nÑ8

ż 1

0
xk sin(nx) dx = 0 for all k P N Y t0u. Let

D =
!

k P N Y t0u

ˇ

ˇ

ˇ
lim
nÑ8

ż 1

0
xk sin(nx) dx = 0

)

.

Then 0 P D and 1 P D since
ż 1

0

sin(nx) dx =
´ cos(nx)

n

ˇ

ˇ

ˇ

x=1

x=0
=

cos 0 ´ cosn
n

Ñ 0 as n Ñ 8

and
ż 1

0

x sin(nx) dx =
´x cos(nx)

n

ˇ

ˇ

ˇ

x=1

x=0
+

1

n

ż 1

0

cos(nx) dx = ´
cosn
n

+
sinn

n2
Ñ 0 as n Ñ 8 .

Suppose that t0, 1, ¨ ¨ ¨ , ku Ď D. Then
ż 1

0

xk+1 sin(nx) dx = ´
xk+1 cos(nx)

n

ˇ

ˇ

ˇ

x=1

x=0
+

k + 1

n

ż 1

0

xk cos(nx) dx

= ´
cosn
n

+
k + 1

n

[xk sin(nx)
n

ˇ

ˇ

ˇ

x=1

x=0
´

k

n

ż 1

0

xk´1 sin(nx) dx
]

= ´
cosn
n

+
(k + 1) sinn

n2
´

(k + 1)k

n2

ż 1

0

xk´1 sin(nx) dx Ñ 0 as n Ñ 8.

By induction, D = N Y t0u.
Having established that D = N Y t0u, we immediately conclude that

lim
nÑ8

ż 1

0

p(x) sin(nx) dx = 0 for all polynomial p .

Let ε ą 0 be given. By the Weierstrass Theorem, there exists a polynomial p such that }f ´p}8 ă
ε

2
.

By the fact that lim
nÑ8

ż 1

0
p(x) sin(nx) dx = 0, there exists N ą 0 such that

ˇ

ˇ

ˇ

ż 1

0

p(x) sin(nx) dx
ˇ

ˇ

ˇ
ă

ε

2
whenever n ě N .

Therefore, if n ě N ,
ˇ

ˇ

ˇ

ż 1

0

f(x) sin(nx) dx
ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

ż 1

0

[
f(x) ´ p(x)

]
sin(nx) dx

ˇ

ˇ

ˇ
+
ˇ

ˇ

ˇ

ż 1

0

p(x) sin(nx) dx
ˇ

ˇ

ˇ

ď

ż 1

0

}f ´ p}8 dx+
ε

2
ă ε

which establishes that lim
nÑ8

ż 1

0
f(x) sin(nx) dx = 0. ˝



Problem 4. Put p0 = 0 and define

pk+1(x) = pk(x) +
x2 ´ p2k(x)

2
@ k P N Y t0u .

Show that tpku8
k=1 converges uniformly to |x| on [´1, 1].

Hint: Use the identity

|x| ´ pk+1(x) =
[
|x| ´ pk(x)

][
1 ´

|x| + pk(x)

2

]
to prove that 0 ď pk(x) ď pk+1(x) ď |x| if |x| ď 1, and that

|x| ´ pk(x) ď |x|

(
1 ´

|x|

2

)k

ă
2

k + 1

if |x| ď 1.

Proof. Let D =
␣

k P N
ˇ

ˇ 0 ď pk(x) ď pk+1(x) ď |x| @ x P [´1, 1]
(

. By the fact that p1(x) =
x2

2
and

0 ď p1(x) ď |x| for all x P [´1, 1], we find that p2(x) = p1(x) +
|x|2 ´ p1(x)

2

2
ě p1(x). Therefore,

1 P D.
Assume that k P D. Then the identity

pk+1(x) = pk(x) +
x2 ´ p2k(x)

2
@ k P N Y t0u .

implies that pk+1(x) ě pk(x) ě 0 on [´1, 1]. Moreover, using the identity

|x| ´ pk+1(x) =
[
|x| ´ pk(x)

][
1 ´

|x| + pk(x)

2

]
, (‹)

we find that if x P [´1, 1],

|x| ´ pk+1(x) ě
[
|x| ´ pk(x)

][
1 ´

|x| + |x|

2

]
=

[
|x| ´ pk(x)

](
1 ´ |x|

)
ě 0 ;

thus pk+1(x) ď |x| on [´1, 1]. Therefore, k + 1 P D so that D = N by induction.

Using (‹) again, we find that

0 ď |x| ´ pk(x) =
[
|x| ´ pk´1(x)

][
1 ´

|x| + pk(x)

2

]
ď

[
|x| ´ pk´1(x)

](
1 ´

|x|

2

)
@ k P N ;

thus

0 ď |x| ´ pk(x) ď
[
|x| ´ pk´1(x)

](
1 ´

|x|

2

)
ď

[
|x| ´ pk´2(x)

](
1 ´

|x|

2

)
ď ¨ ¨ ¨ ď

[
|x| ´ p0(x)

](
1 ´

|x|

2

)k
= |x|

(
1 ´

|x|

2

)k
.

By the fact that |x|
(
1 ´

|x|

2

)k
ď

2

k + 1
for all x P [´1, 1], we conclude that

lim
kÑ8

max
xP[´1,1]

ˇ

ˇpk(x) ´ |x|
ˇ

ˇ = 0

which shows that tpku8
k=1 converges uniformly to y = |x| on [´1, 1]. ˝



Problem 5. Suppose that pn is a sequence of polynomials converging uniformly to f on [0, 1] and f

is not a polynomial. Prove that the degrees of pn are not bounded.
Hint: An Nth-degree polynomial p is uniquely determined by its values at N + 1 points x0, ¨ ¨ ¨ , xN

via Lagrange’s interpolation formula

p(x) =
N
ÿ

k=0

πk(x)
p(xk)

πk(xk)
,

where πk(x) = (x ´ x0)(x ´ x1) ¨ ¨ ¨ (x ´ xN)/(x ´ xk) =
ś

0ďjďN
j‰k

(x ´ xj).

Proof. Suppose the contrary that there exists a sequence of polynomial tpnu8
k=1 which converges

uniformly to f on [0, 1] and deg(pn) ď N for all n P N. W.L.O.G. we assume that

}pn ´ f}8 ă 1 @n P N .

Then
ˇ

ˇpn(x)
ˇ

ˇ ď }f}8 + 1 for all x P [0, 1] and n P N.
Since deg(pn) ď N , using the Lagrange interpolation formula with xk = k/N , we have

pn(x) =
N
ÿ

k=0

πk(x)
p(xk)

πk(xk)
=

N
ÿ

j=0

ajnx
j .

Let [N/2] denote the largest integer smaller than N/2. Note that

ˇ

ˇπk(xk)
ˇ

ˇ =
k

N
¨
k ´ 1

N
¨ ¨ ¨ ¨ ¨

1

N
¨
1

N
¨ ¨ ¨ ¨ ¨

N ´ k

N
ě

[N/2]!

NN

so that
ˇ

ˇ

ˇ

p(xk)

πk(xk)

ˇ

ˇ

ˇ
ď

(}f}8 + 1)NN

[N/2]!
.

Moreover, πk(x) =
N
ř

j=0

cjx
j with |cj| ď CN

[N/2]. Therefore,

|ajn| ď
(}f}8 + 1)NN

[N/2]!
CN

[N/2](N + 1) @ 0 ď j ď N and n P N .

In other words, the coefficients of each pn is bounded by a fixed constant. This allows us to pick a
subsequence tpnk

u8
k=1 of tpnu8

n=1 such that

lim
kÑ8

ajnk
= aj exists for all 0 ď j ď N .

This implies that tpnk
u8
k=1 converges uniformly to the polynomial p(x) =

N
ř

j=0

ajx
j since tpnk

u8
k=1 con-

verges pointwise to p and tpnu8
n=1 converges uniformly on [0, 1] so that tpnk

u8
k=1 converges uniformly

on [0, 1]. On the other hand, since tpnu8
n=1 converges uniformly to f on [0, 1], we conclude that f = p,

a contradiction. ˝



Problem 6. Consider the set of all functions on [0, 1] of the form

h(x) =
n
ÿ

j=1

aje
bjx ,

where aj, bj P R. Is this set dense in C ([0, 1];R)?

Proof. Let A =
!

řn
j=1 aje

bjx
ˇ

ˇ

ˇ
aj, bj P R

)

. Then

1. A is an algebra since if f(x) =
n
ř

j=1

aje
bjx and g(x) =

m
ř

k=1

cke
dkx, we have

( n
ÿ

j=1

aje
bjx

)
(

m
ÿ

k=1

cke
dkx

)
=

n
ÿ

j=1

m
ÿ

k=1

ajcke
(bj+dk)x =

N
ÿ

ℓ=1

Aℓe
Bℓx

for some Aℓ, Bℓ P R, and clearly, f + g P A and cf P A if c P R.

2. A separates points of [0, 1] since the function f(x) = ex P A which is strictly monotone so that
f(x1) ‰ f(x2) for all x1 ‰ x2.

3. A vanishes at no point of [0, 1] since the function f(x) = ex P A which is non-zero at every
point of [0, 1].

By the Stone Theorem, A is dense in C ([0, 1];R). ˝


