Exercise Problem Sets 6

Apr. 02. 2021

Problem 1. Define *B* to be the set of all even functions in the space $\mathscr{C}([-1,1];\mathbb{R})$; that is, $f \in B$ if and only if *f* is continuous on [-1,1] and f(x) = f(-x) for all $x \in [-1,1]$. Prove that *B* is closed but not dense in $\mathscr{C}([-1,1];\mathbb{R})$. Hence show that even polynomials are dense in *B*, but not in $\mathscr{C}([-1,1];\mathbb{R})$.

Proof. Let $\{f_k\}_{k=1}^{\infty}$ be a sequence in B and $\{f_k\}_{k=1}^{\infty}$ converges uniformly to f on [-1, 1]. Then f is continuous. Moreover, for each $x \in [-1, 1]$,

$$f(x) = \lim_{k \to \infty} f_k(x) = \lim_{k \to \infty} f_k(-x) = f(-x);$$

thus f is even. Therefore, $f \in B$ which shows that B is closed. However, B is not dense in B since there exists no $f \in B$ satisfying that

$$\max_{x \in [-1,1]} \left| f(x) - x \right| < \frac{1}{2}$$

since

$$\max_{x \in [-1,1]} |f(x) - x| \ge \max\{|f(1) - 1|, |f(-1) + 1|\} = \max\{|f(1) - 1|, |f(1) + 1|\} \ge 1$$

Let \mathcal{A} denote the collection of even polynomials, and f be an even continuous function. Then the Weierstrass Theorem implies that there exists a sequence of polynomial $\{p_n\}_{n=1}^{\infty}$ such that

$$\lim_{n \to \infty} \max_{x \in [0,1]} |f(\sqrt{x}) - p_n(x)| = 0.$$

For each $n \in \mathbb{N}$, define $q_n : [-1, 1] \to \mathbb{R}$ by $q_n(x) = p_n(x^2)$. Then $\{q_n\}_{n=1}^{\infty} \subseteq \mathcal{A}$ and

$$\lim_{n \to \infty} \max_{x \in [-1,1]} \left| f(x) - q_n(x) \right| = \lim_{n \to \infty} \max_{x \in [0,1]} \left| f(x) - p_n(x^2) \right| = \lim_{n \to \infty} \max_{x \in [0,1]} \left| f(\sqrt{x}) - p_n(x) \right| = 0$$

which shows that $\{q_n\}_{n=1}^{\infty}$ converges uniformly to f on [-1,1]; thus \mathcal{A} is dense in B. On the other hand, since $\mathcal{A} \subseteq B$, we must have $\overline{\mathcal{A}} \subseteq \overline{B} \subsetneq \mathscr{C}([-1,1];\mathbb{R})$ which implies that \mathcal{A} is not dense in $\mathscr{C}([-1,1];\mathbb{R})$.

Problem 2. Let $f : [0,1] \to \mathbb{R}$ be a continuous function.

1. Suppose that

$$\int_0^1 f(x)x^n dx = 0 \qquad \forall n \in \mathbb{N} \cup \{0\}.$$

Show that f = 0 on [0, 1].

2. Suppose that for some $m \in \mathbb{N}$,

$$\int_0^1 f(x)x^n dx = 0 \qquad \forall n \in \{0, 1, \cdots, m\}$$

Show that f(x) = 0 has at least (m + 1) distinct real roots around which f(x) change signs.

Proof. 1.By the Weierstrass Theorem, for each $k \in \mathbb{N}$ there exists a polynomial p_k such that $||f - p_k||_{\infty} < \frac{1}{k}$. Since $\int_0^1 f(x) x^n dx = 0$ for all $n \in \mathbb{N} \cup \{0\}$, we find that

$$\int_0^1 f(x)p_k(x)\,dx = 0 \qquad \forall \, k \in \mathbb{N}\,.$$

Note that $f(f - p_k)$ converges to the zero function uniformly on [0, 1] since

$$||f(f-p_k)||_{\infty} \le ||f||_{\infty} ||f-p_k||_{\infty} \le \frac{1}{k} ||f||_{\infty} \to 0 \text{ as } k \to \infty;$$

thus by the fact that

$$\int_0^1 f(x)^2 \, dx = \int_0^1 f(x) \big[f(x) - p_k(x) \big] \, dx$$

we find that $\int_0^1 f(x)^2 dx = 0$. Therefore, by the continuity of f, we conclude that f = 0 on [0, 1].

2. Let

$$D = \left\{ k \in \mathbb{N} \mid \text{if } f \in \mathscr{C}([0,1];\mathbb{R}) \text{ and } f \text{ changes signs only around } 0 < \alpha_1 < \dots < \alpha_k < 1, \\ \text{then } y = f(x) \prod_{j=1}^k (x - \alpha_j) \text{ does not change sign} \right\}.$$

Suppose that $f \in \mathscr{C}([0,1];\mathbb{R})$ changes sign only around $0 < \alpha_1 < 1$. Then $y = f(x)(x - \alpha_1)$ does not change sign so that $1 \in D$. Assume that $k \in D$. If f changes signs only around $0 < \alpha_1 < \alpha_2 < \cdots < \alpha_{k+1} < 1$, then the function $y = f(x)(x - \alpha_{k+1})$ changes signs only around $0 < \alpha_1 < \cdots < \alpha_k < 1$; thus $y = f(x)(x - \alpha_{k+1}) \prod_{j=1}^k (x - \alpha_j) = f(x) \prod_{j=1}^{k+1} (x - \alpha_j)$ does not change sign which shows that $k + 1 \in D$. By induction, we conclude that $D = \mathbb{N}$.

Now suppose the contrary that f(x) = 0 has at most m distinct real roots $0 < \alpha_1 < \cdots < \alpha_k < 1$, where $0 \le k \le m$, around which f(x) changes signs. Then $y = f(x) \prod_{j=1}^k (x - \alpha_j)$ does not change sign. W.L.O.G., we assume that $f(x) \prod_{j=1}^k (x - \alpha_j) \ge 0$ for all $x \in [0, 1]$. Then by the fact that

$$\int_0^1 f(x)x^n dx = 0 \qquad \forall n \in \{0, 1, \cdots, m\}$$

and $k \leq m$, we find that

$$\int_{0}^{1} f(x) \prod_{j=1}^{k} (x - \alpha_j) \, dx = 0 \, ;$$

thus the sign-definite property and the continuity of the function $y = f(x) \prod_{j=1}^{k} (x - \alpha_j)$ implies that $f(x) \prod_{j=1}^{k} (x - \alpha_j) = 0$ for all $x \in [0, 1]$. Therefore, $f(x) \prod_{j=1}^{k} (x - \alpha_j) = 0$ for all $x \in [0, 1] \setminus \{\alpha_1, \alpha_2, \cdots, \alpha_k\}$ or equivalently, f(x) = 0 for all $x \in [0, 1] \setminus \{\alpha_1, \alpha_2, \cdots, \alpha_k\}$. The continuity of f further implies that f = 0 on [0, 1], a contradiction to that f has at most m distinct real roots around which f changes signs. **Problem 3.** Let $f : [0,1] \to \mathbb{R}$ be continuous. Show that

$$\lim_{n \to \infty} \int_0^1 f(x) \sin(nx) \, dx = 0 \, .$$

Proof. We first show that $\lim_{n \to \infty} \int_0^1 x^k \sin(nx) \, dx = 0$ for all $k \in \mathbb{N} \cup \{0\}$. Let

$$D = \left\{ k \in \mathbb{N} \cup \{0\} \ \Big| \ \lim_{n \to \infty} \int_0^1 x^k \sin(nx) \, dx = 0 \right\}.$$

Then $0 \in D$ and $1 \in D$ since

$$\int_{0}^{1} \sin(nx) \, dx = \frac{-\cos(nx)}{n} \Big|_{x=0}^{x=1} = \frac{\cos 0 - \cos n}{n} \to 0 \quad \text{as} \quad n \to \infty$$

and

$$\int_0^1 x \sin(nx) \, dx = \frac{-x \cos(nx)}{n} \Big|_{x=0}^{x=1} + \frac{1}{n} \int_0^1 \cos(nx) \, dx = -\frac{\cos n}{n} + \frac{\sin n}{n^2} \to 0 \quad \text{as} \quad n \to \infty$$

Suppose that $\{0, 1, \dots, k\} \subseteq D$. Then

$$\int_{0}^{1} x^{k+1} \sin(nx) \, dx = -\frac{x^{k+1} \cos(nx)}{n} \Big|_{x=0}^{x=1} + \frac{k+1}{n} \int_{0}^{1} x^{k} \cos(nx) \, dx$$
$$= -\frac{\cos n}{n} + \frac{k+1}{n} \Big[\frac{x^{k} \sin(nx)}{n} \Big|_{x=0}^{x=1} - \frac{k}{n} \int_{0}^{1} x^{k-1} \sin(nx) \, dx \Big]$$
$$= -\frac{\cos n}{n} + \frac{(k+1) \sin n}{n^{2}} - \frac{(k+1)k}{n^{2}} \int_{0}^{1} x^{k-1} \sin(nx) \, dx \to 0 \text{ as } n \to \infty.$$

By induction, $D = \mathbb{N} \cup \{0\}$.

Having established that $D = \mathbb{N} \cup \{0\}$, we immediately conclude that

$$\lim_{n \to \infty} \int_0^1 p(x) \sin(nx) \, dx = 0 \quad \text{ for all polynomial } p \, .$$

Let $\varepsilon > 0$ be given. By the Weierstrass Theorem, there exists a polynomial p such that $||f - p||_{\infty} < \frac{\varepsilon}{2}$. By the fact that $\lim_{n \to \infty} \int_0^1 p(x) \sin(nx) \, dx = 0$, there exists N > 0 such that

$$\left|\int_{0}^{1} p(x)\sin(nx) dx\right| < \frac{\varepsilon}{2} \quad whenever \quad n \ge N.$$

Therefore, if $n \ge N$,

$$\left| \int_{0}^{1} f(x) \sin(nx) \, dx \right| \leq \left| \int_{0}^{1} \left[f(x) - p(x) \right] \sin(nx) \, dx \right| + \left| \int_{0}^{1} p(x) \sin(nx) \, dx \right|$$
$$\leq \int_{0}^{1} \|f - p\|_{\infty} \, dx + \frac{\varepsilon}{2} < \varepsilon$$

which establishes that $\lim_{n \to \infty} \int_0^1 f(x) \sin(nx) \, dx = 0.$

Problem 4. Put $p_0 = 0$ and define

$$p_{k+1}(x) = p_k(x) + \frac{x^2 - p_k^2(x)}{2} \qquad \forall k \in \mathbb{N} \cup \{0\}.$$

Show that $\{p_k\}_{k=1}^{\infty}$ converges uniformly to |x| on [-1, 1]. **Hint:** Use the identity

$$|x| - p_{k+1}(x) = \left[|x| - p_k(x)\right] \left[1 - \frac{|x| + p_k(x)}{2}\right]$$

to prove that $0 \leq p_k(x) \leq p_{k+1}(x) \leq |x|$ if $|x| \leq 1$, and that

$$|x| - p_k(x) \le |x| \left(1 - \frac{|x|}{2}\right)^k < \frac{2}{k+1}$$

if $|x| \leq 1$.

Proof. Let $D = \{k \in \mathbb{N} \mid 0 \leq p_k(x) \leq p_{k+1}(x) \leq |x| \; \forall x \in [-1,1]\}$. By the fact that $p_1(x) = \frac{x^2}{2}$ and $0 \leq p_1(x) \leq |x|$ for all $x \in [-1,1]$, we find that $p_2(x) = p_1(x) + \frac{|x|^2 - p_1(x)^2}{2} \geq p_1(x)$. Therefore, $1 \in D$.

Assume that $k \in D$. Then the identity

$$p_{k+1}(x) = p_k(x) + \frac{x^2 - p_k^2(x)}{2} \qquad \forall k \in \mathbb{N} \cup \{0\}.$$

implies that $p_{k+1}(x) \ge p_k(x) \ge 0$ on [-1, 1]. Moreover, using the identity

$$|x| - p_{k+1}(x) = \left[|x| - p_k(x)\right] \left[1 - \frac{|x| + p_k(x)}{2}\right],\tag{*}$$

we find that if $x \in [-1, 1]$,

$$|x| - p_{k+1}(x) \ge \left[|x| - p_k(x)\right] \left[1 - \frac{|x| + |x|}{2}\right] = \left[|x| - p_k(x)\right] \left(1 - |x|\right) \ge 0;$$

thus $p_{k+1}(x) \leq |x|$ on [-1, 1]. Therefore, $k+1 \in D$ so that $D = \mathbb{N}$ by induction.

Using (\star) again, we find that

$$0 \le |x| - p_k(x) = \left[|x| - p_{k-1}(x)\right] \left[1 - \frac{|x| + p_k(x)}{2}\right] \le \left[|x| - p_{k-1}(x)\right] \left(1 - \frac{|x|}{2}\right) \qquad \forall k \in \mathbb{N};$$

thus

$$0 \leq |x| - p_k(x) \leq \left[|x| - p_{k-1}(x) \right] \left(1 - \frac{|x|}{2} \right) \leq \left[|x| - p_{k-2}(x) \right] \left(1 - \frac{|x|}{2} \right)$$
$$\leq \cdots \leq \left[|x| - p_0(x) \right] \left(1 - \frac{|x|}{2} \right)^k = |x| \left(1 - \frac{|x|}{2} \right)^k.$$

By the fact that $|x|(1-\frac{|x|}{2})^k \leq \frac{2}{k+1}$ for all $x \in [-1,1]$, we conclude that

$$\lim_{k \to \infty} \max_{x \in [-1,1]} |p_k(x) - |x|| = 0$$

which shows that $\{p_k\}_{k=1}^{\infty}$ converges uniformly to y = |x| on [-1, 1].

Problem 5. Suppose that p_n is a sequence of polynomials converging uniformly to f on [0, 1] and f is not a polynomial. Prove that the degrees of p_n are not bounded.

Hint: An Nth-degree polynomial p is uniquely determined by its values at N + 1 points x_0, \dots, x_N via Lagrange's interpolation formula

$$p(x) = \sum_{k=0}^{N} \pi_k(x) \frac{p(x_k)}{\pi_k(x_k)},$$

where $\pi_k(x) = (x - x_0)(x - x_1) \cdots (x - x_N)/(x - x_k) = \prod_{\substack{0 \le j \le N \\ j \ne k}} (x - x_j).$

Proof. Suppose the contrary that there exists a sequence of polynomial $\{p_n\}_{k=1}^{\infty}$ which converges uniformly to f on [0, 1] and $\deg(p_n) \leq N$ for all $n \in \mathbb{N}$. W.L.O.G. we assume that

$$\|p_n - f\|_{\infty} < 1 \qquad \forall \, n \in \mathbb{N}$$

Then $|p_n(x)| \leq ||f||_{\infty} + 1$ for all $x \in [0, 1]$ and $n \in \mathbb{N}$.

Since $\deg(p_n) \leq N$, using the Lagrange interpolation formula with $x_k = k/N$, we have

$$p_n(x) = \sum_{k=0}^N \pi_k(x) \frac{p(x_k)}{\pi_k(x_k)} = \sum_{j=0}^N a_{jn} x^j.$$

Let [N/2] denote the largest integer smaller than N/2. Note that

$$\left|\pi_k(x_k)\right| = \frac{k}{N} \cdot \frac{k-1}{N} \cdot \dots \cdot \frac{1}{N} \cdot \frac{1}{N} \cdot \dots \cdot \frac{N-k}{N} \ge \frac{[N/2]!}{N^N}$$

so that

$$\left|\frac{p(x_k)}{\pi_k(x_k)}\right| \leqslant \frac{(\|f\|_{\infty}+1)N^N}{[N/2]!}$$

Moreover, $\pi_k(x) = \sum_{j=0}^N c_j x^j$ with $|c_j| \leq C_{[N/2]}^N$. Therefore,

$$|a_{jn}| \leqslant \frac{(\|f\|_{\infty} + 1)N^N}{[N/2]!} C^N_{[N/2]}(N+1) \qquad \forall \, 0 \leqslant j \leqslant N \text{ and } n \in \mathbb{N}.$$

In other words, the coefficients of each p_n is bounded by a fixed constant. This allows us to pick a subsequence $\{p_{n_k}\}_{k=1}^{\infty}$ of $\{p_n\}_{n=1}^{\infty}$ such that

$$\lim_{k \to \infty} a_{jn_k} = a_j \text{ exists for all } 0 \leqslant j \leqslant N \,.$$

This implies that $\{p_{n_k}\}_{k=1}^{\infty}$ converges uniformly to the polynomial $p(x) = \sum_{j=0}^{N} a_j x^j$ since $\{p_{n_k}\}_{k=1}^{\infty}$ converges pointwise to p and $\{p_n\}_{n=1}^{\infty}$ converges uniformly on [0, 1] so that $\{p_{n_k}\}_{k=1}^{\infty}$ converges uniformly on [0, 1]. On the other hand, since $\{p_n\}_{n=1}^{\infty}$ converges uniformly to f on [0, 1], we conclude that f = p, a contradiction.

Problem 6. Consider the set of all functions on [0, 1] of the form

$$h(x) = \sum_{j=1}^{n} a_j e^{b_j x} \,,$$

where $a_j, b_j \in \mathbb{R}$. Is this set dense in $\mathscr{C}([0, 1]; \mathbb{R})$?

Proof. Let $\mathcal{A} = \left\{ \sum_{j=1}^{n} a_j e^{b_j x} \, \middle| \, a_j, b_j \in \mathbb{R} \right\}$. Then

1. \mathcal{A} is an algebra since if $f(x) = \sum_{j=1}^{n} a_j e^{b_j x}$ and $g(x) = \sum_{k=1}^{m} c_k e^{d_k x}$, we have

$$\left(\sum_{j=1}^{n} a_j e^{b_j x}\right) \left(\sum_{k=1}^{m} c_k e^{d_k x}\right) = \sum_{j=1}^{n} \sum_{k=1}^{m} a_j c_k e^{(b_j + d_k)x} = \sum_{\ell=1}^{N} A_\ell e^{B_\ell x}$$

for some $A_{\ell}, B_{\ell} \in \mathbb{R}$, and clearly, $f + g \in \mathcal{A}$ and $cf \in \mathcal{A}$ if $c \in \mathbb{R}$.

- 2. \mathcal{A} separates points of [0, 1] since the function $f(x) = e^x \in \mathcal{A}$ which is strictly monotone so that $f(x_1) \neq f(x_2)$ for all $x_1 \neq x_2$.
- 3. \mathcal{A} vanishes at no point of [0,1] since the function $f(x) = e^x \in \mathcal{A}$ which is non-zero at every point of [0,1].

By the Stone Theorem, \mathcal{A} is dense in $\mathscr{C}([0,1];\mathbb{R})$.