
Exercise Problem Sets 3
Mar. 12. 2021

Problem 1. Define a set S Ď [0, 1] ˆ [0, 1] by

S =
!( p

m
,
k

m

)
P [0, 1] ˆ [0, 1]

ˇ

ˇ

ˇ
m, p, k P N , gcd(m, p) = 1 and 1 ď k ď m ´ 1

)

.

Show that
ż 1

0

( ż 1

0

1S(x, y) dy
)
dx =

ż 1

0

( ż 1

0

1S(x, y) dx
)
dy = 0

but 1S is not Riemann integrable on [0, 1] ˆ [0, 1].

Proof. Note that for each x P [0, 1], then 1S(x, y) ‰ 0 for only finitely many y P [0, 1]. Therefore, for
each x P [0, 1], 1S(x, ¨) is Riemann integrable on [0, 1] and

ż 1

0

1S(x, y) dy = 0 .

Similarly, for each y P [0, 1], then 1S(x, y) ‰ 0 for only finitely many x P [0, 1]; thus for each y P [0, 1],
1S(x, ¨) is Riemann integrable on [0, 1] and

ż 1

0

1S(x, y) dx = 0 .

Therefore,
ż 1

0

( ż 1

0

1S(x, y) dy
)
dx =

ż 1

0

( ż 1

0

1S(x, y) dx
)
dy = 0 .

However, for each partition P of [0, 1] ˆ [0, 1], we have ∆ X S ‰ H for all ∆ P P ; thus U(1S,P) = 1

for all partition P of [0, 1] ˆ [0, 1]. Therefore,
ż

AˆB

1S(x, y) dy = 1

which, by the Fubini Theorem, implies that 1S is not Riemann integrable on [0, 1] ˆ [0, 1]. ˝

Problem 2. Let f : [0, 1] ˆ [0, 1] Ñ R be given by

f(x, y) =

$

’

&

’

%

22n if (x, y) P [2´n, 2´n+1) ˆ [2´n, 2´n+1), n P N ,

´22n+1 if (x, y) P [2´n, 2´n+1) ˆ [2´n´1, 2´n), n P N ,

0 otherwise .

1. Show that
ż 1

0
f(x, y) dx = 0 for all y P

[
0,

1

2

)
.

2. Show that
ż 1

0
f(x, y) dy = 0 for all x P [0, 1).

3. Justify if the iterated (improper) integrals
ż 1

0

ż 1

0
f(x, y)dxdy and

ż 1

0

ż 1

0
f(x, y) dydx are iden-

tical.



Proof. 1. Since f(x, 0) = 0 for all x P [0, 1], we have
ż 1

0
f(x, 0) dx = 0. Suppose that y P

(
0,

1

2

)
.

Then y P [2´n, 2´n+1) for a unique natural number n ě 2. In this case,

f(x, y) =

$

’

&

’

%

22n if x P [2´n, 2´n+1) ,

´22n´1 if x P [2´n+1, 2´n+2) ,

0 otherwise ,

so that
ż 1

0

f(x, y) dx =

ż

[2´n,2´n+1)

22n dx+

ż

[2´n+1,2´n+2)

´22n´1 dx

= 22n(2´n+1 ´ 2´n) ´ 22n´1(2´n+2 ´ 2´n+1) = 0 .

2. Since f(0, y) for all y P [0, 1], we have
ż 1

0
f(0, y) dy = 0. Suppose tat x P (0, 1). Then

x P [2´n, 2´n+1) for a unique n P N. In this case,

f(x, y) =

$

’

&

’

%

22n if y P [2´n, 2´n+1), n P N ,

´22n+1 if y P [2´n´1, 2´n), n P N ,

0 otherwise ,

so that
ż 1

0

f(x, y) dy =

ż

[2´n,2´n+1)

22n dx+

ż

[2´n´1,2´n)

´22n+1 dx

= 22n(2´n+1 ´ 2´n) ´ 22n+1(2´n ´ 2´n´1) = 0 .

3. By 2, we immediately conclude that
ż 1

0

ż 1

0

f(x, y) dy dx = 0 .

On the other hand, note that if y P
[1
2
, 1
)
, then f(x, y) =

#

4 if x P
[1
2
, 1
)
,

0 otherwise ,
so that

ż 1

0

f(x, y) dx =

ż 1

1
2

4 dx = 2 .

Therefore,
ż 1

0

ż 1

0

f(x, y) dx dy =

ż 1
2

0

ż 1

0

f(x, y) dx dy +

ż 1

1
2

ż 1

0

f(x, y) dx dy =

ż 1

1
2

2 dy = 1

which shows that
ż 1

0

ż 1

0
f(x, y)dxdy ‰

ż 1

0

ż 1

0
f(x, y) dydx for this particular f . ˝

Problem 3. Suppose that f : (0, b] Ñ R is continuous, positive, integrable on (0, b], and that f(x)

increases monotonically to 8 as x approaches 0 from the right. Show that lim
xÑ0+

xf(x) = 0.



Proof. Let lim sup
xÑ0+

xf(x) = L. Then L ě 0, and there exists a sequence txku8
k=1 Ď (0, b] such that

lim
kÑ8

xkf(xk) = L. W.L.O.G. we can assume that the sequence xk+1 ă
xk
2

for all k P N. If L ą 0,
then there exists N ą 0 such that

xkf(xk) ą
L

2
@ k ě N

so that f(xk) ą
L

2xk
whenever k ě N . Therefore, by the monotonicity of f we find that

f(x) ą
L

2xk
@x P [xk+1, xk] and k ě N .

Therefore,
ż

(0,b]

f(x) dx ě

8
ÿ

k=N

(xk ´ xk+1)
L

2xk

ě

8
ÿ

k=N

xk

2
¨
L

2xk

=
8
ÿ

k=N

L

4
= 8 ,

a contradiction to that f is integrable on (0, b]. ˝

Problem 4. Let A Ď Rn, B Ď Rm be Riemann measurable sets, and f : AˆB Ñ R be non-negative,
uniformly continuous and integrable on A ˆ B. Define F (x) =

ż

B
f(x, y) dy.

1. Show that if B is bounded, then F : A Ñ R is continuous. How about if B is not bounded?

2. Let f have the additional property that for each ε ą 0, there exists N ą 0 such that
ˇ

ˇ

ˇ

ż

BXB(0,k)

(f ^k)(x, y) dy ´

ż

B

f(x, y) dy
ˇ

ˇ

ˇ
ă ε @ k ě N and x P A .

Show that F is continuous on A. In particular, show that if f(x, y) ď g(y) for all (x, y) P AˆB,
and g is integrable on B, then F is continuous.

Proof. 1. If B is bounded, then B has volume. Let ε ą 0 be given. By the uniform continuity of f ,
there exists δ ą 0 such that

ˇ

ˇf(x1, y1) ´ f(x2, y2)
ˇ

ˇ ă
ε

ν(B) + 1
@

ˇ

ˇ(x1, y1) ´ (x2, y2)
ˇ

ˇ ă δ and x1, x2 P A, y1, y2 P B .

Therefore, if |x1 ´ x2| ă δ and x1, x2 P A,

ˇ

ˇF (x1) ´ F (x2)
ˇ

ˇ =
ˇ

ˇ

ˇ

ż

B

[
f(x1, y) ´ f(x2, y)

]
dy

ˇ

ˇ

ˇ
ď

ż

B

ˇ

ˇf(x1, y) ´ f(x2, y)
ˇ

ˇ dy

ď

ż

B

ε

ν(B) + 1
dx ď

εν(B)

ν(B) + 1
ă ε .

This implies that F is uniformly continuous on A.

If B is unbounded, then the argument above does not apply. In fact, consider the case

f(x, y) =

?
x

1 + x2y2
, A = [0, 1] and B = R .



Then f is non-negative and uniformly continuous on A ˆ B (why?). Note that F (0) = 0 while
if x ą 0,

F (x) =

ż

R
f(x, y) dy =

ż 8

´8

?
x

1 + x2y2
dy =

?
x

x
arctan(xy)

ˇ

ˇ

ˇ

y=8

y=´8
=

π
?
x
.

Therefore, the Tonelli Theorem implies that
ż

AˆB

f(x, y) d(x, y) =

ż

A

( ż

B

f(x, y) dy
)
dx =

ż 1

0

π
?
x
dx = 2π ă 8

which shows that f is integrable on A ˆ B. However, F is not continuous at x = 0.

2. Let ε ą 0 be given. Since f has the property mentioned above, there exists N ą 0 such that
ˇ

ˇ

ˇ

ż

BXB(0,k)

(f ^k)(x, y) dy ´

ż

B

f(x, y) dy
ˇ

ˇ

ˇ
ă

ε

3
@ k ě N and x P A .

By the uniform continuity of f on A ˆ B, there exists δ ą 0 such that
ˇ

ˇf(x1, y1) ´ f(x2, y2)
ˇ

ˇ ă
ε

3ν(B(0, N))
@

ˇ

ˇ(x1, y1) ´ (x2, y2)
ˇ

ˇ ă δ and x1, x2 P A, y1, y2 P B .

Suppose that |x1 ´ x2| ă δ, x1, x2 P A and y P B.

(a) If f(x1, y) and f(x2, y) are both not greater than N , then
ˇ

ˇ(f ^N)(x1, y) ´ (f ^N)(x2, y)
ˇ

ˇ =
ˇ

ˇf(x1, y) ´ f(x2, y)
ˇ

ˇ ă
ε

3ν(B(0, N))
.

(b) If f(x1, y) and f(x2, y) are both greater than N , then
ˇ

ˇ(f ^N)(x1, y) ´ (f ^N)(x2, y)
ˇ

ˇ = |N ´ N | = 0 .

(c) If one and only one of f(x1, y) and f(x2, y) is greater than N , then
ˇ

ˇ(f ^N)(x1, y) ´ (f ^N)(x2, y)
ˇ

ˇ ă
ˇ

ˇf(x1, y) ´ f(x2, y)
ˇ

ˇ ă
ε

3ν(B(0, N))
.

Case (a), (b) and (c) show that
ˇ

ˇ(f ^N)(x1, y) ´ (f ^N)(x2, y)
ˇ

ˇ ă
ε

3ν(B(0, N))
@ |x1 ´ x2| ă δ, x1, x2 P A and y P B .

Therefore, if x1, x2 P A and |x1 ´ x2| ă δ,
ˇ

ˇF (x1) ´ F (x2)
ˇ

ˇ ď

ˇ

ˇ

ˇ

ż

BXB(0,N)

(f ^N)(x1, y) dy ´

ż

B

f(x1, y) dy
ˇ

ˇ

ˇ

+
ˇ

ˇ

ˇ

ż

BXB(0,N)

(f ^N)(x2, y) dy ´

ż

B

f(x2, y) dy
ˇ

ˇ

ˇ

+
ˇ

ˇ

ˇ

ż

BXB(0,N)

(f ^N)(x1, y) dy ´

ż

BXB(0,N)

(f ^N)(x2, y) dy
ˇ

ˇ

ˇ

ă
ε

3
+

ε

3
+

ż

BXB(0,N)

ˇ

ˇ(f ^N)(x1, y) ´ (f ^N)(x2, y)
ˇ

ˇ dy ď ε .



This implies that F is uniformly continuous on A.

Now suppose that f(x, y) ď g(y) for all (x, y) P A ˆ B, and g is integrable on B. Then

lim
kÑ8

ż

BXB(0,k)

(g^k)(y) dy =

ż

B

g(y) dy ;

thus there exists N ą 0 such that
ˇ

ˇ

ˇ

ż

BXB(0,k)

(g^k)(y) dy ´

ż

B

g(y) dy
ˇ

ˇ

ˇ
ă ε whenever k ě N .

Therefore, for all k ě N and x P A,
ˇ

ˇ

ˇ

ż

BXB(0,k)

(f ^k)(x, y) dy ´

ż

B

f(x, y) dy
ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ż

BXB(0,k)

(f ^k)(x, y) dy ´

ż

BXB(0,k)

f(x, y) dy
ˇ

ˇ

ˇ
+

ż

BXB(0,k)A

f(x, y) dy

ď

ż

BXB(0,k)

ˇ

ˇ(f ^k)(x, y) ´ f(x, y)
ˇ

ˇ dy +

ż

BXB(0,k)A

g(y) dy

ď

ż

tyPBXB(0,k) | f(x,y)ąku

[
f(x, y) ´ k

]
dy +

ż

BXB(0,k)A

g(y) dy

ď

ż

tyPBXB(0,k) | g(y)ąku

[
g(y) ´ k

]
dy +

ż

BXB(0,k)A

g(y) dy

ď

ż

BXB(0,k)

[
g(y) ´ (g^k)(y)

]
dy +

ż

BXB(0,k)A

g(y) dy

=

ż

B

g(y) dy ´

ż

BXB(0,k)

(g^k)(y) dy ă ε .

This shows that f satisfies the condition mentioned in 2; thus F is continuous on A. ˝

Problem 5. Let f : R Ñ R be an integrable Riemann measurable function, and F : R Ñ R be
defined by

F (x) =

ż

R
f(y) cos(x ´ y) dy

(which exists for all x P R since f is integrable). Show that F is differentiable on R and

F 1(x) =

ż

R
f(y)

B

Bx
cos(x ´ y) dx = ´

ż

R
f(y) sin(x ´ y) dx .

Hint: Apply the Dominated Convergence Theorem.

Proof. Let x P R be given, and thku8
k=1 be a non-zero sequence with limit 0. Define

gk(y) = f(y)
cos(x+ hk ´ y) ´ cos(x ´ y)

hk

.

Then for all y P R, lim
kÑ8

gk(y) = f(y)
B

Bx
(cos(x ´ y)) = ´f(y) sin(x ´ y).

Since
ˇ

ˇ

ˇ

d

dx
cosx

ˇ

ˇ

ˇ
ď 1, the mean value theorem implies that

ˇ

ˇ cos(x+ hk ´ y) ´ cos(x ´ y)
ˇ

ˇ ď |hk| .



Therefore,
ˇ

ˇgk(y)
ˇ

ˇ ď
ˇ

ˇf(y)
ˇ

ˇ @x P R .

Since f is integrable on R, |f | is integrable on R; thus the Dominated Convergence Theorem implies
that

lim
kÑ8

F (x+ hk) ´ F (x)

hk

= lim
kÑ8

ż

R
gk(y) dx = ´

ż

R
f(x) sin(x ´ y) dx .

The equality above shows that for each non-zero sequence thku8
k=1 with limit 0, the limit

lim
kÑ8

F (x+ hk) ´ F (x)

hk

= ´

ż

R
f(x) sin(x ´ y) dx

exists. By the definition of the limit of functions,

lim
hÑ0

F (x+ h) ´ F (x)

h
= ´

ż

R
f(x) sin(x ´ y) dx . ˝

Problem 6. Let f : R Ñ R be an integrable Riemann measurable function, and F : R Ñ R be
defined by

F (x) =

ż

R
f(y) cos(xy) dy

(which exists for all x P R since f is integrable). Show that if the function g(x) = xf(x) is integrable,
then F is differentiable on R and

F 1(y) =

ż

R
f(x)

B

By
cos(xy) dx = ´

ż

R
xf(x) sin(xy) dx .

Hint: Apply the Dominated Convergence Theorem.

Proof. Let y P R be given, and thku8
k=1 be a non-zero sequence with limit 0. Define

gk(x) = f(x)
cos(x(y + hk)) ´ cos(xy)

hk

.

Then for all x P R, lim
kÑ8

gk(x) = f(x)
B

By
(cos(xy)) = ´xf(x) sin(xy).

Since
ˇ

ˇ

ˇ

d

dx
cosx

ˇ

ˇ

ˇ
ď 1, the mean value theorem implies that

ˇ

ˇ cos(x(y + hk)) ´ cos(xy)
ˇ

ˇ ď |xhk| .

Therefore,
ˇ

ˇgk(x)
ˇ

ˇ ď
ˇ

ˇxf(x)
ˇ

ˇ =
ˇ

ˇg(x)
ˇ

ˇ @x P R .

Since g is integrable on R, |g| is integrable on R; thus the Dominated Convergence Theorem implies
that

lim
kÑ8

F (y + hk) ´ F (y)

hk

= lim
kÑ8

ż

R
hk(x) dx = ´

ż

R
xf(x) sin(xy) dx .

The equality above shows that for each non-zero sequence thku8
k=1 with limit 0, the limit

lim
kÑ8

F (y + hk) ´ F (y)

hk

= ´

ż

R
xf(x) sin(xy) dx

exists. By the definition of the limit of functions,

lim
hÑ0

F (y + h) ´ F (y)

h
= ´

ż

R
xf(x) sin(xy) dx . ˝



Problem 7. Let f(x, y) =

$

&

%

e´xy sin y

y
if y ‰ 0 ,

1 if y = 0 .
.

1. Show that fx(x, y) is continuous everywhere, and show that f(x, ¨) is integrable on [0,8) for
all x ą 0.

2. Define F (x) =
ż 8

0
f(x, y) dy for x ą 0. Show that F 1(x) = ´

1

x2 + 1
.

3. Show that F (x) =
π

2
´ arctanx if x ą 0, and conclude that

ż 8

0

sinx

x
dx =

π

2
.

Proof. 1. Note that if y ‰ 0, fx(x, y) = e´xy sin y while fx(x, 0) = 0. Clearly fx is continuous on R2

except perhaps on the x-axis. On the other hand, since lim
(x,y)Ñ(a,0)

f(x, y) = 0, we conclude that
fx is also continuous on the x-axis. Therefore, fx is continuous everywhere.

Let x ą 0 be given. Then
ˇ

ˇf(x, y)
ˇ

ˇ ď e´xy. Since the right-hand side function, for given x ą 0,
is integrable on [0,8), the comparison test implies that f(x, ¨) is integrable on [0,8).

2. Let x ą 0 be given, and thku8
k=1 be a non-zero sequence with limit 0. W.L.O.G., we can assume

that |hk| ă
x

2
since x ą 0. Define

gk(y) =

$

&

%

e´yhk ´ 1

hk
e´xy sin y

y
if y ‰ 0 ,

0 if y = 0 .

The mean value theorem implies that
ˇ

ˇ

ˇ

e´yhk ´ 1

hk

ˇ

ˇ

ˇ
ď e

xy
2 |y|; thus

ˇ

ˇgk(y)
ˇ

ˇ ď e´
xy
2 @ y ě 0 .

Since the right-hand side function, for given x ą 0, is integrable on [0,8), the Dominated
Convergence Theorem implies that

lim
kÑ8

F (x+ hk) ´ F (x)

hk

= lim
kÑ8

ż 8

0

f(x+ hk, y) ´ f(x, y)

hk

dy = lim
kÑ8

ż 8

0

gk(y) dy

=

ż 8

0

lim
kÑ8

gk(y) dy = ´

ż 8

0

e´xy sin y dy

Integrating by parts, by the fact x ą 0 we find that
ż 8

0

e´xy sin y dy = ´e´xy cos y
ˇ

ˇ

ˇ

y=8

y=0
´ x

ż 8

0

e´xy cos y dy

= 1 ´ x
[
e´xy sin y

ˇ

ˇ

ˇ

y=8

y=0
+ x

ż 8

0

e´xy sin y dy
]

= 1 ´ x2

ż 8

0

e´xy sin y dy ;



thus we conclude that

lim
kÑ8

F (x+ hk) ´ F (x)

hk

= ´
1

1 + x2
for all x ą 0 and non-zero sequence thku8

k=1 with limit 0.

Therefore, for x ą 0 the limit lim
hÑ0

F (x+ h) ´ F (x)

h
exists (so that F is differentiable on (0,8))

and
F 1(x) = lim

hÑ0

F (x+ h) ´ F (x)

h
= ´

1

1 + x2
@x ą 0 .

3. By the (generalized version of) Fundamental Theorem of Calculus, for a, b ą 0 we have

F (b) ´ F (a) =

ż b

a

F 1(x) dx = ´

ż b

a

1

1 + x2
dx = arctanx

ˇ

ˇ

ˇ

x=b

x=a
= arctan a ´ arctan b .

Note that for a ą 0 we have

|F (a)| ď

ż 8

0

e´ay dy =
e´ay

´a

ˇ

ˇ

ˇ

y=8

y=0
=

1

a
;

thus lim
aÑ8

F (a) = 0 by the Sandwich lemma. Therefore, for x ą 0,

F (x) = F (x) ´ lim
aÑ8

F (a) = lim
aÑ8

[
F (x) ´ F (a)

]
= lim

aÑ8

(
arctan a ´ arctanx

)
=

π

2
´ arctanx .

Finally, we show that F (0) = lim
xÑ0+

F (x). Let ε ą 0 be given. Since

B

By

(´e´xy cos y ´ xe´xy sin y

x2 + 1
+ cos y

)
= (e´xy ´ 1) sin y ,

integrating by parts shows that for all n ą 0,
ż 8

n

(e´xy ´ 1)
sin y

y
dy =

1

y

(
´e´xy cos y ´ xe´xy sin y

x2 + 1
+ cos y

)ˇ

ˇ

ˇ

y=8

y=n

+

ż 8

n

(
´e´xy cos y ´ xe´xy sin y

x2 + 1
+ cos y

) 1

y2
dy .

By the fact that
ˇ

ˇ

ˇ

´e´xy cos y ´ xe´xy sin y

x2 + 1
+ cos y

ˇ

ˇ

ˇ
ď

x+ 1

x2 + 1
+ 1 ď

5

2
ă 3 ,

we have
ˇ

ˇ

ˇ

ż 8

n

(e´xy ´ 1)
sin y

y
dy

ˇ

ˇ

ˇ
ď

ż 8

n

3

y2
dy +

3

n
=

6

n
.

Therefore, for all n ą 0,
ˇ

ˇF (x) ´ F (0)
ˇ

ˇ =
ˇ

ˇ

ˇ

ż 8

0

(e´xy ´ 1)
sin y

y
dy

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ż n

0

(e´xy ´ 1)
sin y

y
dy

ˇ

ˇ

ˇ
+

ˇ

ˇ

ˇ

ż 8

n

(e´xy ´ 1)
sin y

y
dy

ˇ

ˇ

ˇ

ď

ż n

0

(1 ´ e´xy) dy +
6

n

=
(
y +

e´xy

x

)ˇ

ˇ

ˇ

y=n

y=0
+

6

n
= n+

e´nx ´ 1

x
+

6

n



so that
lim sup
xÑ0+

ˇ

ˇF (x) ´ F (0)
ˇ

ˇ ď
6

n
@n ą 0 .

Since n ą 0 is given arbitrarily, we conclude that lim sup
xÑ0+

ˇ

ˇF (x) ´ F (0)
ˇ

ˇ = 0 which shows that

lim
xÑ0+

F (x) = F (0). As a consequence,
ż 8

0

sinx

x
dx = F (0) = lim

xÑ0+
F (x) = lim

xÑ0+

(π
2

´ arctanx
)
=

π

2
. ˝


