Exercise Problem Sets 11

Dec. 18. 2020

Problem 1. Let $\left\{T_{k}\right\}_{k=1}^{\infty} \subseteq \mathscr{B}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ be a sequence of bounded linear maps from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Prove that the following three statements are equivalent:

1. there exists a function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that $\left\{T_{k} \boldsymbol{x}\right\}_{k=1}^{\infty}$ converges to $T \boldsymbol{x}$ for all $\boldsymbol{x} \in \mathbb{R}^{n}$;
2. $\lim _{k, \ell \rightarrow \infty}\left\|T_{k}-T_{\ell}\right\|_{\mathscr{B}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)}=0$;
3. there exists a function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that for every compact $K \subseteq \mathbb{R}^{n}$ and $\varepsilon>0$ there exists $N>0$ such that

$$
\left\|T_{k} \boldsymbol{x}-T \boldsymbol{x}\right\|_{\mathbb{R}^{m}}<\varepsilon \quad \text { whenever } \quad \boldsymbol{x} \in K \quad \text { and } \quad k \geqslant N .
$$

Proof. " $1 \Rightarrow 3$ " Let K be a compact set in \mathbb{R}^{n}, and $\varepsilon>0$ be given. Then there exists $R>0$ such that $K \subseteq B[0, R]$. By assumption, for each $1 \leqslant i \leqslant n$, there exist $N_{i}>0$ such that

$$
\left\|T_{k} \mathbf{e}_{i}-T \mathbf{e}_{i}\right\|_{\mathbb{R}^{m}}<\frac{\varepsilon}{R n} \quad \text { whenever } \quad k \geqslant N_{i}
$$

For $\boldsymbol{x} \in \mathbb{R}^{n}$, write $\boldsymbol{x}=x^{(1)} \mathbf{e}_{1}+x^{(2)} \mathbf{e}_{2}+\cdots+x^{(n)} \mathbf{e}_{n}$. Then if $\boldsymbol{x} \in K,\left|x^{(i)}\right| \leqslant R$ for all $1 \leqslant i \leqslant n$. Therefore, if $\boldsymbol{x} \in K$ and $k \geqslant N \equiv \max \left\{N_{1}, \cdots, N_{n}\right\}$,

$$
\begin{aligned}
\left\|T_{k} \boldsymbol{x}-T \boldsymbol{x}\right\|_{\mathbb{R}^{m}} & =\left\|T_{k}\left(\sum_{i=1}^{n} x^{(i)} \mathbf{e}_{i}\right)-T\left(\sum_{i=1}^{n} x^{(i)} \mathbf{e}_{i}\right)\right\|_{\mathbb{R}^{m}}=\left\|\sum_{i=1}^{n} x^{(i)}\left(T_{k} \mathbf{e}_{i}-T \mathbf{e}_{i}\right)\right\|_{\mathbb{R}^{m}} \\
& \leqslant \sum_{i=1}^{n}\left|x^{(i)}\right|\left\|T_{k} \mathbf{e}_{i}-T \mathbf{e}_{i}\right\|_{\mathbb{R}^{m}}<\sum_{i=1}^{n} R \frac{\varepsilon}{R n}=\varepsilon .
\end{aligned}
$$

" $3 \Rightarrow 2$ " Let $K=B[0,1]$ (which is compact), and $\varepsilon>0$ be given. By assumption there exists $N>0$ such that

$$
\left\|T_{k} \boldsymbol{x}-T \boldsymbol{x}\right\|_{\mathbb{R}^{m}}<\frac{\varepsilon}{3} \quad \text { whenever } \quad \boldsymbol{x} \in B[0,1] \text { and } k \geqslant N .
$$

If $k, \ell \geqslant N$ and $\boldsymbol{x} \in B[0,1]$,

$$
\left\|T_{k} \boldsymbol{x}-T_{\ell} x\right\|_{\mathbb{R}^{m}} \leqslant\left\|T_{k} \boldsymbol{x}-T \boldsymbol{x}\right\|_{\mathbb{R}^{m}}+\left\|T_{\ell} \boldsymbol{x}-T \boldsymbol{x}\right\|_{\mathbb{R}^{m}}<\frac{2 \varepsilon}{3}
$$

which shows that

$$
\left\|T_{k}-T_{\ell}\right\|=\sup _{x \in B[0,1]}\left\|T_{k} x-T_{\ell} x\right\|_{\mathbb{R}^{m}} \leqslant \frac{2 \varepsilon}{3}<\varepsilon \quad \forall k, \ell \geqslant N
$$

Therefore, $\lim _{k, \ell \rightarrow \infty}\left\|T_{k}-T_{\ell}\right\|_{\mathscr{B}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)}=0$.
" $2 \Rightarrow 1$ " By assumption, for each $\boldsymbol{x} \in \mathbb{R}^{n}$ we have

$$
\left\|T_{k} \boldsymbol{x}-T_{\ell} \boldsymbol{x}\right\|_{\mathbb{R}^{m}}=\left\|\left(T_{k}-T_{\ell}\right) \boldsymbol{x}\right\|_{\mathbb{R}^{m}} \leqslant\left\|T_{k}-T_{\ell}\right\|_{\mathscr{B}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)}\|\boldsymbol{x}\|_{\mathbb{R}^{n}} \rightarrow 0 \quad \text { as } \quad k, \ell \rightarrow \infty .
$$

Therefore, for each $\boldsymbol{x} \in \mathbb{R}^{n}$ the sequence $\left\{T_{k} \boldsymbol{x}\right\}_{k=1}^{\infty}$ is Cauchy in \mathbb{R}^{m}; thus convergent. So we establish a map $x \mapsto \lim _{k \rightarrow \infty} T_{k} \boldsymbol{x}$ which is denoted by T. In other words, $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is defined by $T(\boldsymbol{x})=\lim _{k \rightarrow \infty} T_{k} \boldsymbol{x}$.
If $\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$, then

$$
T\left(c \boldsymbol{x}_{1}+\boldsymbol{x}_{2}\right)=\lim _{k \rightarrow \infty} T_{k}\left(c \boldsymbol{x}_{1}+\boldsymbol{x}_{2}\right)=\lim _{k \rightarrow \infty}\left(c T_{k} \boldsymbol{x}_{1}+T_{k} \boldsymbol{x}_{2}\right)=c T\left(\boldsymbol{x}_{1}\right)+T\left(\boldsymbol{x}_{2}\right) .
$$

Therefore, $T \in \mathscr{L}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$. Since $\operatorname{dim}\left(\mathbb{R}^{n}\right)=n<\infty$, we conclude that $T \in \mathscr{B}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$.
Problem 2. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be defined by $f(x, y, z)=\left(x^{2}+y^{2}\right) \mathbf{i}+x y z \mathbf{j}$. Show that f is differentiable on \mathbb{R}^{3} and find $(D f)(a, b, c)$.

Proof. For $(h, k, \ell) \in \mathbb{R}^{3}$,

$$
\begin{aligned}
f(a+ & h, b+k, c+\ell)-f(a, b, c) \\
& =\left((a+h)^{2}+(b+k)^{2}\right) \mathbf{i}+(a+h)(b+k)(c+\ell) \mathbf{j}-\left(a^{2}+b^{2}\right) \mathbf{i}-a b c \mathbf{j} \\
& =\left(2 a h+2 b k+h^{2}+k^{2}\right) \mathbf{i}+(a b \ell+b c h+a c k+a k \ell+b h \ell+c h k+h k \ell) \mathbf{j}
\end{aligned}
$$

thus we expect that

$$
(D f)(a, b, c)(h, k, \ell)=(2 a h+2 b k) \mathbf{i}+(a b \ell+b c h+a c k) \mathbf{j} .
$$

Let $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be defined by $L(h, k, \ell)=(2 a h+2 b k) \mathbf{i}+(a b \ell+b c h+a c k) \mathbf{j}$. Clearly $L \in \mathscr{B}\left(\mathbb{R}^{3}, \mathbb{R}^{2}\right)$. Moreover, for $(h, k, \ell) \neq(0,0,0)$,

$$
\begin{aligned}
&\left.\frac{\| f(a}{}+h, b+k, c+\ell\right)-f(a, b, c)-L(h, k, \ell) \| \\
& \sqrt{h^{2}+k^{2}+\ell^{2}} \\
&=\frac{\left\|\left(h^{2}+k^{2}\right) \mathbf{i}+(a k \ell+b h \ell+c h k+h k \ell) \mathbf{j}\right\|}{\sqrt{h^{2}+k^{2}+\ell^{2}}} \leqslant \frac{\left(h^{2}+k^{2}\right)+|a k \ell|+|b h \ell|+|c h k|+|h k \ell|}{\sqrt{h^{2}+k^{2}+\ell^{2}}} \\
& \leqslant \sqrt{h^{2}+k^{2}+\ell^{2}}+|a||k|+|b||h|+c|h|+|h k|
\end{aligned}
$$

thus

$$
\lim _{(h, k, \ell) \rightarrow(0,0,0)} \frac{\|f(a+h, b+k, c+\ell)-f(a, b, c)-L(h, k, \ell)\|}{\sqrt{h^{2}+k^{2}+\ell^{2}}}=0 .
$$

Therefore, f is differentiable at (a, b, c) and $(D f)(a, b, c)$ is given by (\diamond).
Problem 3. Let $X=\mathscr{B}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ equipped with norm $\|\cdot\|$, and $f: \operatorname{GL}(n) \rightarrow \mathscr{B}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ be defined by $f(L)=L^{-2} \equiv L^{-1} \circ L^{-1}$. Show that f is differentiable on GL (n) and find $(D f)(L)$ for $L \in \operatorname{GL}(n)$.

Proof. Let $L \in \operatorname{GL}(n)$. By the fact that

$$
K^{-1}-L^{-1}=-K^{-1}(K-L) L^{-1} \quad \text { and } \quad K^{-2}-L^{-2}=-K^{-2}(K-L) L^{-1}-K^{-1}(K-L) L^{-2}
$$

we have

$$
\begin{aligned}
K^{-2}-L^{-2}= & -\left[L^{-2}-K^{-2}(K-L) L^{-1}-K^{-1}(K-L) L^{-2}\right](K-L) L^{-1} \\
& -\left[L^{-1}-K^{-1}(K-L) L^{-1}\right](K-L) L^{-2} \\
= & -L^{-2}(K-L) L^{-1}-L^{-1}(K-L) L^{-2}+K^{-2}(K-L) L^{-1}(K-L) L^{-1} \\
& +K^{-1}(K-L) L^{-2}(K-L) L^{-1}+K^{-1}(K-L) L^{-1}(K-L) L^{-2} ;
\end{aligned}
$$

thus

$$
\left\|K^{-2}-L^{-2}+L^{-2}(K-L) L^{-1}+L^{-1}(K-L) L^{-2}\right\| \leqslant\left[\left\|K^{-2}\right\|\left\|L^{-1}\right\|^{2}+2\left\|K^{-1}\right\|\left\|L^{-1}\right\|\left\|L^{-2}\right\|\right]\|K-L\|^{2} .
$$

This motivates us to define $(D f)(L) \in \mathscr{B}(X, X)$ by

$$
(D f)(L)(H)=-L^{-2} H L^{-1}-L^{-1} H L^{-2} \quad \forall H \in X,
$$

and (\star) implies that

$$
\lim _{K \rightarrow L} \frac{\|f(K)-f(L)-(D f)(L)(K-L)\|}{\|K-L\|}=0 .
$$

Therefore, f is differentiable on $\mathrm{GL}(n)$, and $(D f)(L)$ is given by
Problem 4. Let $X=\mathscr{C}([-, 1,1] ; \mathbb{R})$ and $\|\cdot\|_{X}$ be defined by $\|f\|_{X}=\max _{x \in[-1,1]}|f(x)|$, and $\left(Y,\|\cdot\|_{Y}\right)=$ $(\mathbb{R},|\cdot|)$. Consider the map $\delta: X \rightarrow \mathbb{R}$ be defined by $\delta(f)=f(0)$. Show that δ is differentiable on X. Find $(D \delta)(f)($ for $f \in \mathscr{C}([-1,1] ; \mathbb{R}))$.

Proof. Let $f \in X$ be given. For $h \in X$, we have

$$
\delta(f+h)-\delta f=(f(0)+h(0))-f(0)=h(0)=\delta h ;
$$

thus we expect that $(D \delta)(f)(h)=\delta h$. We first show that $\delta \in \mathscr{B}(X, \mathbb{R})$.

1. For linearity, for $h_{1}, h_{2} \in X$ and $c \in \mathbb{R}$, we have

$$
\delta\left(c h_{1}+h_{2}\right)=\left(c h_{1}+h_{2}\right)(0)=c h_{1}(0)+h_{2}(0)=c \delta h_{1}+\delta h_{2} .
$$

2. For boundedness, if $\|h\|_{X}=1$, then $\max _{x \in[-1,1]}|h(x)|=1$ so that

$$
|\delta h|=|h(0)| \leqslant \max _{x \in[-1,1]}|h(x)|=1<\infty .
$$

Having established that $\delta \in \mathscr{B}(X, \mathbb{R})$, we note that

$$
\lim _{h \rightarrow 0} \frac{|\delta(f+h)-\delta f-\delta h|}{\|h\|_{X}}=\lim _{h \rightarrow 0} \frac{0}{\|h\|_{X}}=0
$$

thus δ is differentiable at f (for all $f \in X$), and $(D \delta)(f)=\delta$ for all $f \in X$.

Problem 5. Let $X=\mathscr{C}([a, b] ; \mathbb{R})$ and $\|\cdot\|_{2}$ be the norm induced by the inner product $\langle f, g\rangle=$ $\int_{a}^{b} f(x) g(x) d x$. Define $I: X \rightarrow X$ by

$$
I(f)(x)=\int_{a}^{x} f(t)^{2} d t \quad \forall x \in[a, b]
$$

Show that I is differentiable on X, and find $(D I)(f)$.
Proof. Let $f \in X$ be given. For $h \in X$,

$$
I(f+h)(x)-I(f)(x)=\int_{a}^{x}(f(t)+h(t))^{2} d t-\int_{a}^{x} f(t)^{2} d t=\int_{a}^{x}\left[2 f(t) h(t)+h(t)^{2}\right] d t ;
$$

thus we expect that

$$
(D I)(f)(h)(x)=2 \int_{a}^{x} f(t) h(t) d t
$$

Define L by $(L h)(x)=2 \int_{a}^{x} f(t) h(t) d t$.
Claim: $L \in \mathscr{B}(X, X)$.

1. For linearity, let $h_{1}, h_{2} \in X$ and $c \in \mathbb{R}$. Then

$$
L\left(c h_{1}+h_{2}\right)(x)=2 \int_{a}^{x} f(t)\left(c h_{1}(t)+h_{2}(t)\right) d t=2 c \int_{a}^{x} f(t) h_{1}(t) d t+2 \int_{a}^{x} f(t) h_{2}(t) d t
$$

which shows that $L\left(c h_{1}+h_{2}\right)=c L\left(h_{1}\right)+L\left(h_{2}\right)$.
2. Note that by the Cauchy-Schwarz inequality,

$$
\left|\int_{a}^{x} f(t) h(t) d t\right| \leqslant \int_{a}^{b}\left|f(t)\|h(t) \mid d t \leqslant\| f\left\|_{2}\right\| h \|_{2}\right.
$$

thus for $\|h\|_{2}=1$,

$$
\|L(h)\|_{2}=\left[\int_{a}^{b}\left(\int_{a}^{x} f(t) h(t) d t\right)^{2} d x\right]^{\frac{1}{2}} \leqslant\left(\int_{a}^{b}\|f\|_{2}^{2}\|h\|_{2}^{2} d x\right)^{\frac{1}{2}} \leqslant \sqrt{b-a}\|f\|_{2} .
$$

Therefore,

$$
\|L\|=\sup _{\|h\|_{2}=1}\|L(h)\|_{2} \leqslant \sqrt{b-a}\|f\|_{2}<\infty
$$

which shows that L is bounded.
Finally, using ($\star \star$) we obtain that

$$
\begin{aligned}
\|I(f+h)-I(f)-L(h)\|_{2} & =\left[\int_{a}^{b}\left(\int_{a}^{x} h(t)^{2} d t\right)^{2} d x\right]^{\frac{1}{2}} \leqslant\left[\int_{a}^{b}\left(\int_{a}^{b} h(t)^{2} d t\right)^{2} d x\right]^{\frac{1}{2}} \\
& =\left[\int_{a}^{b}\|h\|_{2}^{4} d x\right]^{\frac{1}{2}}=\sqrt{b-a}\|h\|_{2}^{2}
\end{aligned}
$$

thus

$$
\lim _{h \rightarrow 0} \frac{\|I(f+h)-I(f)-(D I)(f)(h)\|_{2}}{\|h\|_{2}}=0 .
$$

Therefore, I is differentiable at f for all $f \in X$ and $(D I)(f)$ is given by (\diamond).

