Exercise Problem Sets 3

Oct. 9. 2020

Problem 1. Let $(\mathbb{F},+, \cdot, \leqslant)$ be an Archimedean ordered field, and $f: \mathbb{F} \rightarrow \mathbb{F}$ be a function so that

$$
|f(x)-f(y)| \leqslant \frac{|x-y|}{2} \quad \forall x, y \in \mathbb{F} .
$$

Pick an arbitrary $x_{1} \in \mathbb{F}$, and define $x_{k+1}=f\left(x_{k}\right)$ for all $k \in \mathbb{N}$. Show that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence in \mathbb{F}.

Proof. Let $x_{1} \in \mathbb{F}$ be given, and $x_{k+1}=f\left(x_{k}\right)$ for all $k \in \mathbb{N}$. Then

$$
\begin{aligned}
\left|x_{k+1}-x_{k}\right| & =\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right| \leqslant \frac{\left|x_{k}-x_{k-1}\right|}{2}=\frac{1}{2}\left|f\left(x_{k-1}\right)-f\left(x_{k-2}\right)\right| \\
& \leqslant \frac{1}{2^{2}}\left|x_{k-1}-x_{k-2}\right| \leqslant \cdots \leqslant \frac{1}{2^{k-1}}\left|x_{2}-x_{1}\right|=\frac{1}{2^{k-1}}\left|f\left(x_{1}\right)-x_{1}\right| .
\end{aligned}
$$

Let $\varepsilon>0$ be given. By the Archimedean Property, there exists $N>0$ such that

$$
\frac{1}{2^{N-2}}\left|f\left(x_{1}\right)-x_{1}\right|<\varepsilon .
$$

Therefore, if $n>m \geqslant N$,

$$
\begin{aligned}
\left|x_{n}-x_{m}\right| & \leqslant\left|x_{m}-x_{m+1}\right|+\left|x_{m+1}-x_{n}\right| \leqslant\left|x_{m}-x_{m+1}\right|+\left|x_{m+1}-x_{m+2}\right|+\left|x_{m+2}-x_{n}\right| \leqslant \cdots \\
& \leqslant\left|x_{m}-x_{m+1}\right|+\left|x_{m+1}-x_{m+2}\right|+\cdots+\left|x_{n-1}-x_{n}\right| \\
& \leqslant \frac{1}{2^{m-1}}\left|f\left(x_{1}\right)-x_{1}\right|+\frac{1}{2^{m}}\left|f\left(x_{1}\right)-x_{1}\right|+\cdots+\frac{1}{2^{n-2}}\left|f\left(x_{1}\right)-x_{1}\right| \\
& \leqslant\left|f\left(x_{1}\right)-x_{1}\right|\left(\frac{1}{2^{m-1}}+\frac{1}{2^{m}}+\cdots+\frac{1}{2^{n-2}}\right) \leqslant \frac{1}{2^{m-2}}\left|f\left(x_{1}\right)-x_{1}\right| \\
& \leqslant \frac{1}{2^{N-2}}\left|f\left(x_{1}\right)-x_{1}\right|<\varepsilon
\end{aligned}
$$

thus $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence.
Problem 2. Let $(\mathbb{F},+, \cdot, \leqslant)$ be an ordered field satisfying the monotone sequence property, $b \in \mathbb{F}$ and $b>1$.

1. Show the law of exponents holds (for rational exponents); that is, show that
(a) if r, s in \mathbb{Q}, then $b^{r+s}=b^{r} \cdot b^{s}$.
(b) if r, s in \mathbb{Q}, then $b^{r \cdot s}=\left(b^{r}\right)^{s}$.
2. For $x \in \mathbb{F}$, let $B(x)=\left\{b^{t} \in \mathbb{F} \mid t \in \mathbb{Q}, t \leqslant x\right\}$. Show that $\sup B(x)$ exists for all $x \in \mathbb{F}$, and $b^{r}=\sup B(r)$ if $r \in \mathbb{Q}$.
3. Define $b^{x}=\sup B(x)$ for $x \in \mathbb{F}$. Show that $B(x)>0$ for all $x \in \mathbb{F}$ and the law of exponents (for exponents in \mathbb{F})
(a) if x, y in \mathbb{F}, then $b^{x+y}=b^{x} \cdot b^{y}$,
(b) if $x, y>0$, then $b^{x \cdot y}=\left(b^{x}\right)^{y}$,
are also valid.
4. Show that if $x_{1}, x_{2} \in \mathbb{F}$ and $x_{1}<x_{2}$, then $b^{x_{1}}<b^{x_{2}}$. This implies that if x_{1}, x_{2} are two numbers in \mathbb{F} satisfying $b^{x_{1}}=b^{x_{2}}$, then $x_{1}=x_{2}$.
5. Let $y>0$ be given. Show that if $u, v \in \mathbb{F}$ such that $b^{u}<y$ and $b^{v}>y$, then $b^{u+1 / n}<y$ and $b^{v-1 / n}>y$ for sufficiently large n.
6. Let $y>0$ be given, and $A \subseteq \mathbb{F}$ be the set of all w such that $b^{w}<y$. Show that sup A exists and $x=\sup A$ satisfies $b^{x}=y$. The number x (the uniqueness is guaranteed by 4) satisfying $b^{x}=y$ is called the logarithm of y to the base b, and is denoted by $\log _{b} y$.

Hint: Make use of Problem 4 in Exercise 1.
Proof. We note that \mathbb{F} also satisfies the Archimedean Property and the least upper bound property because of a Proposition and a Theorem that we talked about in class.
2. First we show that $x \in \mathbb{F}, B(x)$ is non-empty and bounded from above. By the Archimedean Property, there exists $n \in \mathbb{N}$ such that $-x<n$. Therefore, there exists a rational number $-n$ such that $-n<x$; thus $b^{-n} \in B(x)$ which implies that $B(x)$ is non-empty.

On the other hand, the Archimedean Property implies that there exists $m \in \mathbb{N}$ such that $x<m$. By the fact that

$$
\begin{equation*}
b^{t} \leqslant b^{s} \quad \text { whenever } \quad t \leqslant s \text { and } t, s \in \mathbb{Q}, \tag{*}
\end{equation*}
$$

we conclude that b^{m} is an upper bound for $B(x)$. Therefore, $B(x)$ is bounded from above. By the least upper bound property, we conclude that $\sup B(x)$ exists for all $x \in \mathbb{F}$.

Next we show that $b^{r}=\sup B(r)$ if $r \in \mathbb{Q}$. To see this, we note that $b^{r} \in B(r)$ if $r \in \mathbb{Q}$. On theother hand, (*) implies that b^{r} is an upper bound for $B(r)$; thus $\sup B(r)=b^{r}$.
3. We first show that

$$
\sup (c A)=c \cdot \sup A \quad \forall c>0
$$

where $c A=\{c \cdot x \mid x \in A\}$. To see (\star), we observe that

$$
x \in A \Rightarrow x \leqslant \sup A \Rightarrow c \cdot x \leqslant c \cdot \sup A \text { (by the compatibility of } \cdot \text { and } \leqslant) ;
$$

thus every element in $c A$ is bounded from above by $c \cdot \sup A$. Therefore,

$$
\sup (c A) \leqslant c \cdot \sup A
$$

On the other hand, let $\varepsilon>0$ be given. Then there exists $x \in A$ and $x>\sup A-\frac{\varepsilon}{c}$. Therefore, $c \cdot x>c \cdot \sup A-\varepsilon$; thus

$$
\sup (c A) \geqslant c \cdot x>c \cdot \sup A-\varepsilon
$$

Since $\varepsilon>0$ is given arbitrarily, we find that $\sup (c A) \geqslant c \cdot \sup A$; thus (\star) is concluded.
Next we show that

$$
\sup \left\{b^{t} \mid t \in \mathbb{Q}, t \leqslant x\right\}=\inf \left\{b^{s} \mid s \in \mathbb{Q}, s \geqslant x\right\} .
$$

Let $S(x)=\left\{b^{s} \mid s \in \mathbb{Q}, s \geqslant x\right\}$. If $b^{t} \in B(x)$, then b^{t} is a lower bound for $S(x)$. Therefore, $B(x)$ is a subset of the collection of all lower bounds for $S(x)$. By Problem 3 of Exercise 2,

$$
\sup B(x) \leqslant \sup \{y \mid y \text { is a lower bound for } S(x)\}=\inf S(x) .
$$

Suppose that $\sup B(x)<\inf S(x)$. Since $b^{\frac{1}{n}} \searrow 1$ as $n \rightarrow \infty$ (Problem 4 of Exercise 1), there exists $n \in \mathbb{N}$ such that $\inf S(x)>b^{\frac{1}{n}} \sup B(x)$. By the fact that there exists $r \in \mathbb{Q}$ and $x \leqslant r \leqslant x+\frac{1}{n}$, we find that

$$
\begin{aligned}
\inf S(x) & >b^{\frac{1}{n}} \sup B(x)=\sup \left\{\left.b^{r+\frac{1}{n}} \right\rvert\, r \in \mathbb{Q}, r \leqslant x\right\}=\sup \left\{b^{s} \mid s \in \mathbb{Q}, s \leqslant x+\frac{1}{n}\right\} \\
& \geqslant b^{r} \geqslant \inf \left\{b^{s} \mid s \in \mathbb{Q}, s \geqslant x\right\}=\inf S(x),
\end{aligned}
$$

a contradiction. Observe that

$$
\sup A^{-1}=(\inf A)^{-1} \quad \text { for every subset } A \text { of }(0, \infty)
$$

where $A^{-1}=\left\{t^{-1} \mid t \in A\right\}$ and $(0, \infty)$ is the collection consisting of positive elements in \mathbb{F}. Therefore, (\diamond) implies that for $x \in \mathbb{F}$,

$$
\begin{aligned}
b^{-x} & =\sup \left\{b^{t} \mid t \in \mathbb{Q}, t \leqslant-x\right\}=\sup \left\{b^{-t} \mid t \in \mathbb{Q}, t \geqslant x\right\}=\left[\inf \left\{b^{t} \mid t \in \mathbb{Q}, t \geqslant x\right\}\right]^{-1} \\
& =\left(b^{x}\right)^{-1}
\end{aligned}
$$

Now we show the law of exponential

$$
b^{x} \cdot b^{y}=b^{x+y} \quad \forall x, y \in \mathbb{F}
$$

Let $x, y \in \mathbb{F}$ be given. If $t, s \in \mathbb{Q}$ and $t \leqslant x, s \leqslant y$, then $t+s \in \mathbb{Q}$ and $t+s \leqslant x+y$; thus

$$
b^{t} \cdot b^{s}=b^{t+s} \leqslant \sup B(x+y)=b^{x+y} .
$$

For any given rational $t \leqslant x$, taking the supremum of the left-hand side over all rational $s \leqslant y$ and using ($*$) we find that

$$
b^{t} \cdot b^{y}=b^{t} \cdot \sup \left\{b^{s} \mid s \in \mathbb{Q}, s \leqslant y\right\} \leqslant b^{x+y}
$$

Taking the supremum of the left-hand side over all rational $t \leqslant x$, using (\star) again we find that

$$
b^{y} \cdot b^{x}=b^{y} \cdot \sup \left\{b^{t} \mid t \in \mathbb{Q}, t \leqslant x\right\} \leqslant b^{x+y}
$$

thus we establish that

$$
b^{x} \cdot b^{y} \leqslant b^{x+y} \quad \forall x, y \in \mathbb{F}
$$

Now, note that $(\diamond>)$ implies that for all $x, y \in \mathbb{F}$,

$$
b^{y}=b^{-x+x+y} \geqslant b^{-x} \cdot b^{x+y}=\left(b^{x}\right)^{-1} \cdot b^{x+y} \geqslant\left(b^{x}\right)^{-1} \cdot b^{x} \cdot b^{y}=b^{y} .
$$

The inequality above is indeed an equality and we obtain that

$$
b^{y}=b^{-x} b^{x+y} \quad \forall x, y \in \mathbb{F} .
$$

This is indeed $(\star \star)$ because of that $b^{-x}=\left(b^{x}\right)^{-1}$.
Next we show that $\left(b^{x}\right)^{y}=\sup B(x \cdot y)$ for all $x>0$ and $y \in \mathbb{F}$. For $z>0$, define $A(z)=\{s \in$ $\mathbb{F} \mid s \in \mathbb{Q}, 0<s \leqslant z\}$. Note that if $z>0$, then $b^{z}=\sup A(z)$. Since for $x>0$, we have $b^{x}>1$; thus for $x, y>0$,

$$
\left(b^{x}\right)^{y}=\sup \left\{\left(b^{x}\right)^{t} \mid t \in \mathbb{Q}, 0<t \leqslant y\right\}=\sup _{t \in A(y)}\left(b^{x}\right)^{t}=\sup _{t \in A(y)}\left(\sup _{s \in A(x)} b^{s}\right)^{t}
$$

By Problem 4 of Exercise 2,

$$
\sup _{t \in A(y)}\left(\sup _{s \in A(x)} b^{s}\right)^{t}=\sup _{(t, s) \in A(y) \times A(x)}\left(b^{s}\right)^{t}=\sup _{(t, s) \in A(y) \times A(x)} b^{s t}=b^{\sup _{(t, s) \in A(y) \times A(x)} t^{s}}=b^{x y} .
$$

4. Let $x_{1}<x_{2}$ be given. Then AP implies that there exists $r, s \in \mathbb{Q}$ such that $x_{1}<r<s<x_{2}$. Therefore, $B\left(x_{1}\right) \subseteq B(r) \subseteq B(s) \subseteq B\left(x_{2}\right)$; thus

$$
b^{x_{1}}=\sup B\left(x_{1}\right) \leqslant \sup B(r) \leqslant \sup B(s) \leqslant \sup B\left(x_{2}\right)=b^{x_{2}} .
$$

Since $B(r)=b^{r}$ and $B(s)=b^{s}$, we must have $B(r)<B(s)$; thus 4 is concluded.
5. Since $\frac{y}{b^{u}}>1$ and $\frac{b^{v}}{y}>1$, by the fact that $b^{\frac{1}{n}} \rightarrow 1$ as $n \rightarrow \infty$, there exist $N_{1}, N_{2}>0$ such that

$$
\left|b^{\frac{1}{n}}-1\right|<\frac{y}{b^{u}}-1 \text { whenever } n \geqslant N_{1} \quad \text { and } \quad\left|b^{\frac{1}{n}}-1\right|<\frac{b^{v}}{y}-1 \text { whenever } n \geqslant N_{2}
$$

Let $N=\max \left\{N_{1}, N_{2}\right\}$. For $n \geqslant N$, we have $b^{\frac{1}{n}}<\frac{y}{b^{u}}$ and $b^{\frac{1}{n}}<\frac{b^{v}}{y}$ or equivalently,

$$
b^{u+\frac{1}{n}}<y \quad \text { and } \quad b^{v-\frac{1}{n}}>y \quad \forall n \geqslant N .
$$

6. Let $A=\left\{w \in \mathbb{F} \mid b^{w}<y\right\}$. Since $b>1,2$ of Problem 4 in Exercise 1 implies that

$$
b^{n}>1+n(b-1) \quad \text { whenever } \quad n \geqslant 2 .
$$

By AP, there exists $N \geqslant 2$ such that $1+N(b-1)>y$; thus A is bounded from above by N. Moreover, there exists $M \geqslant 2$ such that

$$
1+M(b-1)>\frac{1}{y}
$$

thus ($\star \star \star$) implies that $b^{-M}<y$ or $-N \in A$. Therefore, A is non-empty. By LUBP, we conclude that $\sup A$ exists.

Let $x=\sup A$. Then $x+\frac{1}{n} \notin A$; thus $b^{x+\frac{1}{n}} \geqslant y$ for all $n \in \mathbb{N}$. Since $b^{\frac{1}{n}} \rightarrow 1$ sa $n \rightarrow \infty$, we find that

$$
b^{x}=b^{x} \lim _{n \rightarrow \infty} b^{\frac{1}{n}}=\lim _{n \rightarrow \infty} b^{x+\frac{1}{n}} \geqslant y .
$$

On the other hand, 4 implies that $x-\frac{1}{n} \in A$; thus $b^{x-\frac{1}{n}}>y$ for all $n \in \infty$ and we have

$$
b^{x}=b^{x} \lim _{n \rightarrow \infty} b^{-\frac{1}{n}}=\lim _{n \rightarrow \infty} b^{x-\frac{1}{n}} \leqslant y
$$

Therefore, $b^{x}=y$.
Problem 3. Let $(\mathbb{F},+\cdot, \leqslant)$ be an ordered field satisfying the monotone sequence property. In this problem we prove the Intermediate Value Theorem:

Let $a, b \in \mathbb{F}, a<b$ and $f:[a, b] \rightarrow \mathbb{F}$ be continuous (at every point of $[a, b]$); that is,

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(\lim _{n \rightarrow \infty} x_{n}\right) \quad \text { for all convergent sequence }\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq[a, b] .
$$

If $f(a) f(b)<0$, then there exists $c \in[a, b]$ such that $f(c)=0$.

Complete the following.

1. W.L.O.G, we can assume that $f(a)<0$. Define the set $S=\{x \in[a, b] \mid f(x)>0\}$. Show that $\inf S$ exists.
2. Let $c=\inf S$. Show that $f(c) \geqslant 0$.
3. Conclude that $f(c) \leqslant 0$ as well.

Hint:

1. Show that S is non-empty and bounded from below and note that MSP \Leftrightarrow LUBP.
2. Show that there exists a sequence $\left\{c_{n}\right\}_{n=1}^{\infty}$ in S such that $c_{n} \rightarrow c$ as $n \rightarrow \infty$.
3. Show that there exists a sequence $\left\{c_{n}\right\}_{n=1}^{\infty}$ in $[a, c)$ such that $c_{n} \rightarrow c$ as $n \rightarrow \infty$.

Proof. 1. Since $f(b)>0, b \in S$. Moreover, a is a lower bound for S; thus S is non-empty and bounded from below. Since MSP $\Leftrightarrow \mathbf{L U B P}, \inf S \in \mathbb{F}$ exists.
2. Let $c=\inf S$. For each $n \in \mathbb{N}$, there exists $c_{n}<c+\frac{1}{n}$ and $c_{n} \in S$. Then $f\left(c_{n}\right)>0$ for all $n \in \mathbb{N}$ and

$$
c \leqslant c_{n}<c+\frac{1}{n} \quad \forall n \in \mathbb{N}
$$

Then the Sandwich Lemma implies that $c_{n} \rightarrow c$ as $n \rightarrow \infty$. By the continuity of f,

$$
f(c)=f\left(\lim _{n \rightarrow \infty} c_{n}\right)=\lim _{n \rightarrow \infty} f\left(c_{n}\right) \geqslant 0 .
$$

3. Consider the sequence $\left\{c_{n}\right\}_{n=N}^{\infty}$ defined by $c_{n}=c-\frac{1}{n}$, where N is chosen large enough so that $c_{N} \geqslant a$. Since $c=\inf S$ and $c_{n}<c, c_{n} \notin S$ for all $n \geqslant N$. Therefore, $f\left(c_{n}\right)<0$ for all $n \in \mathbb{N}$. Since $c_{n} \rightarrow c$ as $n \rightarrow \infty$, by the continuity of f we find that

$$
\begin{equation*}
f(c)=f\left(\lim _{n \rightarrow \infty} c_{n}\right)=\lim _{n \rightarrow \infty} f\left(c_{n}\right) \leqslant 0 \tag{ㅁ}
\end{equation*}
$$

Problem 4. Let $(\mathbb{F},+\cdot, \leqslant)$ be an ordered field satisfying the monotone sequence property. In this problem we prove the Extreme Value Theorem:

Let $a, b \in \mathbb{F}, a<b$ and $f:[a, b] \rightarrow \mathbb{F}$ be continuous (at every point of $[a, b])$; that is,

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(\lim _{n \rightarrow \infty} x_{n}\right) \quad \text { for all convergent sequence }\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq[a, b] .
$$

Then there exist $c, d \in[a, b]$ such that $f(c)=\sup _{x \in[a, b]} f(x)$ and $f(d)=\inf _{x \in[a, b]} f(x)$.

Complete the following.

1. Show that there exist sequences $\left\{c_{n}\right\}_{n=1}^{\infty}$ and $\left\{d_{n}\right\}_{n=1}^{\infty}$ in $[a, b]$ such that

$$
\lim _{n \rightarrow \infty} f\left(c_{n}\right)=\sup _{x \in[a, b]} f(x) \quad \text { and } \quad \lim _{n \rightarrow \infty} f\left(d_{n}\right)=\inf _{x \in[a, b]} f(x) .
$$

2. Extract convergent subsequences $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ and $\left\{y_{n_{k}}\right\}_{k=1}^{\infty}$ with limit c and d, respectively. Show that $c, d \in[a, b]$.
3. Show that $f(c)=\sup _{x \in[a, b]} f(x)$ and $f(d)=\inf _{x \in[a, b]} f(x)$.

Hint: For 2, note that MSP \Rightarrow BWP.
Proof. It suffices to show the case of $\sup _{x \in[a, b]} f(x)$ since $\inf _{x \in[a, b]} f(x)=-\sup _{x \in[a, b]}(-f)(x)$ by Problem 1 of Exercise 2.

1. Suppose that $f([a, b])$ is bounded from above. Then $M=\sup f([a, b])=\sup _{x \in[a, b]} f(x)$ exists. For each $n \in \mathbb{F}$, there exists $c_{n} \in[a, b]$ such that

$$
M-\frac{1}{n}<f\left(c_{n}\right) \leqslant M
$$

By the Sandwich Lemma, $\lim _{n \rightarrow \infty} f\left(c_{n}\right)=M=\sup _{x \in[a, b]} f(x)$.
On the other hand, if $f([a, b])$ is not bounded from above, then $\sup f([a, b])=\sup _{x \in[a, b]} f(x)=\infty$. Moreover, for each $n \in \mathbb{F}$ there exists $c_{n} \in[a, b]$ such that

$$
f\left(c_{n}\right)>n .
$$

Then $\lim _{n \rightarrow \infty} f\left(c_{n}\right)=\infty=\sup _{x \in[a, b]} f(x)$. In either case, there exists $\left\{c_{n}\right\}_{n=1}^{\infty} \subseteq[a, b]$ such that $\lim _{n \rightarrow \infty} f\left(c_{n}\right)=\sup _{x \in[a, b]} f(x)$.
2. Since $\left\{c_{n}\right\}_{n=1}^{\infty} \subseteq[a, b],\left\{c_{n}\right\}_{n=1}^{\infty}$ is bounded. By the fact that MSP $\Rightarrow \mathbf{B W P}$, there exists a convergent subsequence $\left\{c_{n_{k}}\right\}_{k=1}^{\infty}$ of $\left\{c_{n}\right\}_{n=1}^{\infty}$ with limit c. Since $a \leqslant c_{n_{k}} \leqslant b$ for all $k \in \mathbb{N}$, by a Proposition that we talked about in class we conclude that $a \leqslant c \leqslant b$.
3. Since $c_{n_{k}} \rightarrow c$ as $k \rightarrow \infty$, the continuity of f implies that

$$
f(c)=f\left(\lim _{n \rightarrow \infty} c_{n}\right)=\lim _{n \rightarrow \infty} f\left(c_{n}\right)=\sup _{x \in[a, b]} f(x) .
$$

