
Exercise Problem Sets 3
Oct. 9. 2020

Problem 1. Let (F,+, ¨,ď) be an Archimedean ordered field, and f : F Ñ F be a function so that

|f(x) ´ f(y)| ď
|x ´ y|

2
@x, y P F .

Pick an arbitrary x1 P F, and define xk+1 = f(xk) for all k P N. Show that txnu8
n=1 is a Cauchy

sequence in F.

Proof. Let x1 P F be given, and xk+1 = f(xk) for all k P N. Then

|xk+1 ´ xk| =
ˇ

ˇf(xk) ´ f(xk´1)
ˇ

ˇ ď
|xk ´ xk´1|

2
=

1

2

ˇ

ˇf(xk´1) ´ f(xk´2)
ˇ

ˇ

ď
1

22
ˇ

ˇxk´1 ´ xk´2

ˇ

ˇ ď ¨ ¨ ¨ ď
1

2k´1
|x2 ´ x1| =

1

2k´1

ˇ

ˇf(x1) ´ x1

ˇ

ˇ .

Let ε ą 0 be given. By the Archimedean Property, there exists N ą 0 such that

1

2N´2

ˇ

ˇf(x1) ´ x1

ˇ

ˇ ă ε .

Therefore, if n ą m ě N ,

|xn ´ xm| ď |xm ´ xm+1| + |xm+1 ´ xn| ď |xm ´ xm+1| + |xm+1 ´ xm+2| + |xm+2 ´ xn| ď ¨ ¨ ¨

ď |xm ´ xm+1| + |xm+1 ´ xm+2| + ¨ ¨ ¨ + |xn´1 ´ xn|

ď
1

2m´1

ˇ

ˇf(x1) ´ x1

ˇ

ˇ+
1

2m
ˇ

ˇf(x1) ´ x1

ˇ

ˇ+ ¨ ¨ ¨ +
1

2n´2

ˇ

ˇf(x1) ´ x1

ˇ

ˇ

ď
ˇ

ˇf(x1) ´ x1

ˇ

ˇ

( 1

2m´1
+

1

2m
+ ¨ ¨ ¨ +

1

2n´2

)
ď

1

2m´2

ˇ

ˇf(x1) ´ x1

ˇ

ˇ

ď
1

2N´2

ˇ

ˇf(x1) ´ x1

ˇ

ˇ ă ε ;

thus txnu8
n=1 is a Cauchy sequence. ˝

Problem 2. Let (F,+, ¨,ď) be an ordered field satisfying the monotone sequence property, b P F
and b ą 1.

1. Show the law of exponents holds (for rational exponents); that is, show that

(a) if r, s in Q, then br+s = br ¨ bs.

(b) if r, s in Q, then br¨s = (br)s.

2. For x P F, let B(x) =
␣

bt P F
ˇ

ˇ t P Q, t ď x
(

. Show that supB(x) exists for all x P F, and
br = supB(r) if r P Q.

3. Define bx = supB(x) for x P F. Show that B(x) ą 0 for all x P F and the law of exponents
(for exponents in F)



(a) if x, y in F, then bx+y = bx ¨ by , (b) if x, y ą 0, then bx¨y = (bx)y ,

are also valid.

4. Show that if x1, x2 P F and x1 ă x2, then bx1 ă bx2 . This implies that if x1, x2 are two numbers
in F satisfying bx1 = bx2 , then x1 = x2.

5. Let y ą 0 be given. Show that if u, v P F such that bu ă y and bv ą y, then bu+1/n ă y and
bv´1/n ą y for sufficiently large n.

6. Let y ą 0 be given, and A Ď F be the set of all w such that bw ă y. Show that supA exists
and x = supA satisfies bx = y. The number x (the uniqueness is guaranteed by 4) satisfying
bx = y is called the logarithm of y to the base b, and is denoted by logb y.

Hint: Make use of Problem 4 in Exercise 1.

Proof. We note that F also satisfies the Archimedean Property and the least upper bound property
because of a Proposition and a Theorem that we talked about in class.

2. First we show that x P F, B(x) is non-empty and bounded from above. By the Archimedean
Property, there exists n P N such that ´x ă n. Therefore, there exists a rational number ´n

such that ´n ă x; thus b´n P B(x) which implies that B(x) is non-empty.

On the other hand, the Archimedean Property implies that there exists m P N such that x ă m.
By the fact that

bt ď bs whenever t ď s and t, s P Q , (˚)

we conclude that bm is an upper bound for B(x). Therefore, B(x) is bounded from above. By
the least upper bound property, we conclude that supB(x) exists for all x P F.

Next we show that br = supB(r) if r P Q. To see this, we note that br P B(r) if r P Q. On
theother hand, (˚) implies that br is an upper bound for B(r); thus supB(r) = br.

3. We first show that
sup(cA) = c ¨ supA @ c ą 0 , (‹)

where cA =
␣

c ¨ x
ˇ

ˇx P A
(

. To see (‹), we observe that

x P A ñ x ď supA ñ c ¨ x ď c ¨ supA (by the compatibility of ¨ and ď) ;

thus every element in cA is bounded from above by c ¨ supA. Therefore,

sup(cA) ď c ¨ supA .

On the other hand, let ε ą 0 be given. Then there exists x P A and x ą supA ´
ε

c
. Therefore,

c ¨ x ą c ¨ supA ´ ε; thus
sup(cA) ě c ¨ x ą c ¨ supA ´ ε .



Since ε ą 0 is given arbitrarily, we find that sup(cA) ě c ¨ supA; thus (‹) is concluded.

Next we show that
sup

␣

bt
ˇ

ˇ t P Q, t ď x
(

= inf
␣

bs
ˇ

ˇ s P Q, s ě x
(

. (˛)

Let S(x) =
␣

bs
ˇ

ˇ s P Q, s ě x
(

. If bt P B(x), then bt is a lower bound for S(x). Therefore, B(x)

is a subset of the collection of all lower bounds for S(x). By Problem 3 of Exercise 2,

supB(x) ď sup
␣

y
ˇ

ˇ y is a lower bound for S(x)
(

= infS(x) .

Suppose that supB(x) ă infS(x). Since b
1
n Œ 1 as n Ñ 8 (Problem 4 of Exercise 1), there

exists n P N such that infS(x) ą b
1
n supB(x). By the fact that there exists r P Q and

x ď r ď x+
1

n
, we find that

infS(x) ą b
1
n supB(x) = sup

␣

br+
1
n

ˇ

ˇ r P Q, r ď x
(

= sup
␣

bs
ˇ

ˇ s P Q, s ď x+
1

n

(

ě br ě inf
␣

bs
ˇ

ˇ s P Q, s ě x
(

= infS(x) ,

a contradiction. Observe that

supA´1 =
(

infA
)´1 for every subset A of (0,8) ,

where A´1 =
␣

t´1
ˇ

ˇ t P A
(

and (0,8) is the collection consisting of positive elements in F.
Therefore, (˛) implies that for x P F,

b´x = sup
␣

bt
ˇ

ˇ t P Q, t ď ´x
(

= sup
␣

b´t
ˇ

ˇ t P Q, t ě x
(

=
[

inf
␣

bt
ˇ

ˇ t P Q, t ě x
(

]´1

= (bx)´1 .

Now we show the law of exponential

bx ¨ by = bx+y @x, y P F . (‹‹)

Let x, y P F be given. If t, s P Q and t ď x, s ď y, then t+ s P Q and t+ s ď x+ y; thus

bt ¨ bs = bt+s ď supB(x+ y) = bx+y .

For any given rational t ď x, taking the supremum of the left-hand side over all rational s ď y

and using (‹) we find that

bt ¨ by = bt ¨ sup
␣

bs
ˇ

ˇ s P Q, s ď y
(

ď bx+y .

Taking the supremum of the left-hand side over all rational t ď x, using (‹) again we find that

by ¨ bx = by ¨ sup
␣

bt
ˇ

ˇ t P Q, t ď x
(

ď bx+y ;

thus we establish that
bx ¨ by ď bx+y @x, y P F (˛˛)



Now, note that (˛˛) implies that for all x, y P F,

by = b´x+x+y ě b´x ¨ bx+y = (bx)´1 ¨ bx+y ě (bx)´1 ¨ bx ¨ by = by .

The inequality above is indeed an equality and we obtain that

by = b´xbx+y @x, y P F .

This is indeed (‹‹) because of that b´x = (bx)´1.

Next we show that (bx)y = supB(x ¨ y) for all x ą 0 and y P F. For z ą 0, define A(z) =
␣

s P

F
ˇ

ˇ s P Q, 0 ă s ď z
(

. Note that if z ą 0, then bz = supA(z). Since for x ą 0, we have bx ą 1;
thus for x, y ą 0,

(bx)y = sup
␣

(bx)t
ˇ

ˇ t P Q, 0 ă t ď y
(

= sup
tPA(y)

(bx)t = sup
tPA(y)

(
sup

sPA(x)

bs
)t
.

By Problem 4 of Exercise 2,

sup
tPA(y)

(
sup

sPA(x)

bs
)t

= sup
(t,s)PA(y)ˆA(x)

(bs)t = sup
(t,s)PA(y)ˆA(x)

bst = bsup(t,s)PA(y)ˆA(x) ts = bxy .

4. Let x1 ă x2 be given. Then AP implies that there exists r, s P Q such that x1 ă r ă s ă x2.
Therefore, B(x1) Ď B(r) Ď B(s) Ď B(x2); thus

bx1 = supB(x1) ď supB(r) ď supB(s) ď supB(x2) = bx2 .

Since B(r) = br and B(s) = bs, we must have B(r) ă B(s); thus 4 is concluded.

5. Since y

bu
ą 1 and bv

y
ą 1, by the fact that b

1
n Ñ 1 as n Ñ 8, there exist N1, N2 ą 0 such that

ˇ

ˇb
1
n ´ 1

ˇ

ˇ ă
y

bu
´ 1 whenever n ě N1 and

ˇ

ˇb
1
n ´ 1

ˇ

ˇ ă
bv

y
´ 1 whenever n ě N2 .

Let N = maxtN1, N2u. For n ě N , we have b
1
n ă

y

bu
and b

1
n ă

bv

y
or equivalently,

bu+
1
n ă y and bv´ 1

n ą y @n ě N .

6. Let A =
␣

w P F
ˇ

ˇ bw ă y
(

. Since b ą 1, 2 of Problem 4 in Exercise 1 implies that

bn ą 1 + n(b ´ 1) whenever n ě 2 . (‹‹‹)

By AP, there exists N ě 2 such that 1 +N(b ´ 1) ą y; thus A is bounded from above by N .
Moreover, there exists M ě 2 such that

1 +M(b ´ 1) ą
1

y
;

thus (‹‹‹) implies that b´M ă y or ´N P A. Therefore, A is non-empty. By LUBP, we
conclude that supA exists.



Let x = supA. Then x+
1

n
R A; thus bx+

1
n ě y for all n P N. Since b

1
n Ñ 1 sa n Ñ 8, we find

that
bx = bx lim

nÑ8
b

1
n = lim

nÑ8
bx+

1
n ě y .

On the other hand, 4 implies that x ´
1

n
P A; thus bx´ 1

n ą y for all n P 8 and we have

bx = bx lim
nÑ8

b´ 1
n = lim

nÑ8
bx´ 1

n ď y .

Therefore, bx = y. ˝

Problem 3. Let (F,+¨,ď) be an ordered field satisfying the monotone sequence property. In this
problem we prove the Intermediate Value Theorem:

Let a, b P F, a ă b and f : [a, b] Ñ F be continuous (at every point of [a, b]); that is,

lim
nÑ8

f(xn) = f
(

lim
nÑ8

xn

)
for all convergent sequence txnu8

n=1 Ď [a, b].

If f(a)f(b) ă 0, then there exists c P [a, b] such that f(c) = 0.

Complete the following.

1. W.L.O.G, we can assume that f(a) ă 0. Define the set S = tx P [a, b] | f(x) ą 0u. Show that
infS exists.

2. Let c = infS. Show that f(c) ě 0.

3. Conclude that f(c) ď 0 as well.

Hint:

1. Show that S is non-empty and bounded from below and note that MSP ô LUBP.

2. Show that there exists a sequence tcnu8
n=1 in S such that cn Ñ c as n Ñ 8.

3. Show that there exists a sequence tcnu8
n=1 in [a, c) such that cn Ñ c as n Ñ 8.

Proof. 1. Since f(b) ą 0, b P S. Moreover, a is a lower bound for S; thus S is non-empty and
bounded from below. Since MSP ô LUBP, infS P F exists.

2. Let c = infS. For each n P N, there exists cn ă c+
1

n
and cn P S. Then f(cn) ą 0 for all n P N

and
c ď cn ă c+

1

n
@n P N .

Then the Sandwich Lemma implies that cn Ñ c as n Ñ 8. By the continuity of f ,

f(c) = f
(

lim
nÑ8

cn
)
= lim

nÑ8
f(cn) ě 0 .



3. Consider the sequence tcnu8
n=N defined by cn = c ´

1

n
, where N is chosen large enough so that

cN ě a. Since c = infS and cn ă c, cn R S for all n ě N . Therefore, f(cn) ă 0 for all n P N.
Since cn Ñ c as n Ñ 8, by the continuity of f we find that

f(c) = f
(

lim
nÑ8

cn
)
= lim

nÑ8
f(cn) ď 0 . ˝

Problem 4. Let (F,+¨,ď) be an ordered field satisfying the monotone sequence property. In this
problem we prove the Extreme Value Theorem:

Let a, b P F, a ă b and f : [a, b] Ñ F be continuous (at every point of [a, b]); that is,

lim
nÑ8

f(xn) = f
(

lim
nÑ8

xn

)
for all convergent sequence txnu8

n=1 Ď [a, b].

Then there exist c, d P [a, b] such that f(c) = sup
xP[a,b]

f(x) and f(d) = inf
xP[a,b]

f(x).

Complete the following.

1. Show that there exist sequences tcnu8
n=1 and tdnu8

n=1 in [a, b] such that

lim
nÑ8

f(cn) = sup
xP[a,b]

f(x) and lim
nÑ8

f(dn) = inf
xP[a,b]

f(x) .

2. Extract convergent subsequences txnk
u8
k=1 and tynk

u8
k=1 with limit c and d, respectively. Show

that c, d P [a, b].

3. Show that f(c) = sup
xP[a,b]

f(x) and f(d) = inf
xP[a,b]

f(x).

Hint: For 2, note that MSP ñ BWP.

Proof. It suffices to show the case of sup
xP[a,b]

f(x) since inf
xP[a,b]

f(x) = ´ sup
xP[a,b]

(´f)(x) by Problem 1 of

Exercise 2.

1. Suppose that f([a, b]) is bounded from above. Then M = sup f([a, b]) = sup
xP[a,b]

f(x) exists. For

each n P F, there exists cn P [a, b] such that

M ´
1

n
ă f(cn) ď M .

By the Sandwich Lemma, lim
nÑ8

f(cn) = M = sup
xP[a,b]

f(x).

On the other hand, if f([a, b]) is not bounded from above, then sup f([a, b]) = sup
xP[a,b]

f(x) = 8.

Moreover, for each n P F there exists cn P [a, b] such that

f(cn) ą n .

Then lim
nÑ8

f(cn) = 8 = sup
xP[a,b]

f(x). In either case, there exists tcnu8
n=1 Ď [a, b] such that

lim
nÑ8

f(cn) = sup
xP[a,b]

f(x).



2. Since tcnu8
n=1 Ď [a, b], tcnu8

n=1 is bounded. By the fact that MSP ñ BWP, there exists a
convergent subsequence tcnk

u8
k=1 of tcnu8

n=1 with limit c. Since a ď cnk
ď b for all k P N, by a

Proposition that we talked about in class we conclude that a ď c ď b.

3. Since cnk
Ñ c as k Ñ 8, the continuity of f implies that

f(c) = f( lim
nÑ8

cn) = lim
nÑ8

f(cn) = sup
xP[a,b]

f(x) . ˝


