Exercise Problem Sets 3

Oct. 9. 2020

Problem 1. Let $(\mathbb{F}, +, \cdot, \leq)$ be an Archimedean ordered field, and $f : \mathbb{F} \to \mathbb{F}$ be a function so that

$$|f(x) - f(y)| \leq \frac{|x - y|}{2} \qquad \forall x, y \in \mathbb{F}.$$

Pick an arbitrary $x_1 \in \mathbb{F}$, and define $x_{k+1} = f(x_k)$ for all $k \in \mathbb{N}$. Show that $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence in \mathbb{F} .

Proof. Let $x_1 \in \mathbb{F}$ be given, and $x_{k+1} = f(x_k)$ for all $k \in \mathbb{N}$. Then

$$|x_{k+1} - x_k| = |f(x_k) - f(x_{k-1})| \leq \frac{|x_k - x_{k-1}|}{2} = \frac{1}{2} |f(x_{k-1}) - f(x_{k-2})|$$
$$\leq \frac{1}{2^2} |x_{k-1} - x_{k-2}| \leq \dots \leq \frac{1}{2^{k-1}} |x_2 - x_1| = \frac{1}{2^{k-1}} |f(x_1) - x_1|.$$

Let $\varepsilon > 0$ be given. By the Archimedean Property, there exists N > 0 such that

$$\frac{1}{2^{N-2}} \big| f(x_1) - x_1 \big| < \varepsilon \,.$$

Therefore, if $n > m \ge N$,

$$\begin{aligned} |x_n - x_m| &\leq |x_m - x_{m+1}| + |x_{m+1} - x_n| \leq |x_m - x_{m+1}| + |x_{m+1} - x_{m+2}| + |x_{m+2} - x_n| \leq \cdots \\ &\leq |x_m - x_{m+1}| + |x_{m+1} - x_{m+2}| + \cdots + |x_{n-1} - x_n| \\ &\leq \frac{1}{2^{m-1}} |f(x_1) - x_1| + \frac{1}{2^m} |f(x_1) - x_1| + \cdots + \frac{1}{2^{n-2}} |f(x_1) - x_1| \\ &\leq |f(x_1) - x_1| \left(\frac{1}{2^{m-1}} + \frac{1}{2^m} + \cdots + \frac{1}{2^{n-2}}\right) \leq \frac{1}{2^{m-2}} |f(x_1) - x_1| \\ &\leq \frac{1}{2^{N-2}} |f(x_1) - x_1| < \varepsilon \,; \end{aligned}$$

thus $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence.

Problem 2. Let $(\mathbb{F}, +, \cdot, \leq)$ be an ordered field satisfying the monotone sequence property, $b \in \mathbb{F}$ and b > 1.

1. Show the law of exponents holds (for rational exponents); that is, show that

(a) if
$$r, s$$
 in \mathbb{Q} , then $b^{r+s} = b^r \cdot b^s$.

- (b) if r, s in \mathbb{Q} , then $b^{r \cdot s} = (b^r)^s$.
- 2. For $x \in \mathbb{F}$, let $B(x) = \{b^t \in \mathbb{F} \mid t \in \mathbb{Q}, t \leq x\}$. Show that $\sup B(x)$ exists for all $x \in \mathbb{F}$, and $b^r = \sup B(r)$ if $r \in \mathbb{Q}$.
- 3. Define $b^x = \sup B(x)$ for $x \in \mathbb{F}$. Show that B(x) > 0 for all $x \in \mathbb{F}$ and the law of exponents (for exponents in \mathbb{F})

(a) if x, y in \mathbb{F} , then $b^{x+y} = b^x \cdot b^y$, (b) if x, y > 0, then $b^{x \cdot y} = (b^x)^y$,

are also valid.

- 4. Show that if $x_1, x_2 \in \mathbb{F}$ and $x_1 < x_2$, then $b^{x_1} < b^{x_2}$. This implies that if x_1, x_2 are two numbers in \mathbb{F} satisfying $b^{x_1} = b^{x_2}$, then $x_1 = x_2$.
- 5. Let y > 0 be given. Show that if $u, v \in \mathbb{F}$ such that $b^u < y$ and $b^v > y$, then $b^{u+1/n} < y$ and $b^{v-1/n} > y$ for sufficiently large n.
- 6. Let y > 0 be given, and $A \subseteq \mathbb{F}$ be the set of all w such that $b^w < y$. Show that $\sup A$ exists and $x = \sup A$ satisfies $b^x = y$. The number x (the uniqueness is guaranteed by 4) satisfying $b^x = y$ is called the logarithm of y to the base b, and is denoted by $\log_b y$.

Hint: Make use of Problem 4 in Exercise 1.

Proof. We note that \mathbb{F} also satisfies the Archimedean Property and the least upper bound property because of a Proposition and a Theorem that we talked about in class.

2. First we show that $x \in \mathbb{F}$, B(x) is non-empty and bounded from above. By the Archimedean Property, there exists $n \in \mathbb{N}$ such that -x < n. Therefore, there exists a rational number -n such that -n < x; thus $b^{-n} \in B(x)$ which implies that B(x) is non-empty.

On the other hand, the Archimedean Property implies that there exists $m \in \mathbb{N}$ such that x < m. By the fact that

$$b^t \leq b^s$$
 whenever $t \leq s$ and $t, s \in \mathbb{Q}$, (*)

we conclude that b^m is an upper bound for B(x). Therefore, B(x) is bounded from above. By the least upper bound property, we conclude that $\sup B(x)$ exists for all $x \in \mathbb{F}$.

Next we show that $b^r = \sup B(r)$ if $r \in \mathbb{Q}$. To see this, we note that $b^r \in B(r)$ if $r \in \mathbb{Q}$. On theother hand, (*) implies that b^r is an upper bound for B(r); thus $\sup B(r) = b^r$.

3. We first show that

$$\sup(cA) = c \cdot \sup A \qquad \forall c > 0, \qquad (\star)$$

where $cA = \{c \cdot x \mid x \in A\}$. To see (*), we observe that

$$x \in A \Rightarrow x \leq \sup A \Rightarrow c \cdot x \leq c \cdot \sup A$$
 (by the compatibility of \cdot and \leq);

thus every element in cA is bounded from above by $c \cdot \sup A$. Therefore,

$$\sup(cA) \leqslant c \cdot \sup A$$

On the other hand, let $\varepsilon > 0$ be given. Then there exists $x \in A$ and $x > \sup A - \frac{\varepsilon}{c}$. Therefore, $c \cdot x > c \cdot \sup A - \varepsilon$; thus

$$\sup(cA) \ge c \cdot x > c \cdot \sup A - \varepsilon.$$

Since $\varepsilon > 0$ is given arbitrarily, we find that $\sup(cA) \ge c \cdot \sup A$; thus (\star) is concluded.

Next we show that

$$\sup\left\{b^{t} \mid t \in \mathbb{Q}, t \leqslant x\right\} = \inf\left\{b^{s} \mid s \in \mathbb{Q}, s \geqslant x\right\}.$$
(\diamond)

Let $S(x) = \{b^s \mid s \in \mathbb{Q}, s \ge x\}$. If $b^t \in B(x)$, then b^t is a lower bound for S(x). Therefore, B(x) is a subset of the collection of all lower bounds for S(x). By Problem 3 of Exercise 2,

 $\sup B(x) \leq \sup \{y \mid y \text{ is a lower bound for } S(x)\} = \inf S(x).$

Suppose that $\sup B(x) < \inf S(x)$. Since $b^{\frac{1}{n}} \searrow 1$ as $n \to \infty$ (Problem 4 of Exercise 1), there exists $n \in \mathbb{N}$ such that $\inf S(x) > b^{\frac{1}{n}} \sup B(x)$. By the fact that there exists $r \in \mathbb{Q}$ and $x \leq r \leq x + \frac{1}{n}$, we find that

$$\inf S(x) > b^{\frac{1}{n}} \sup B(x) = \sup \left\{ b^{r+\frac{1}{n}} \, \middle| \, r \in \mathbb{Q}, r \leqslant x \right\} = \sup \left\{ b^{s} \, \middle| \, s \in \mathbb{Q}, s \leqslant x + \frac{1}{n} \right\}$$
$$\geqslant b^{r} \geqslant \inf \left\{ b^{s} \, \middle| \, s \in \mathbb{Q}, s \geqslant x \right\} = \inf S(x) \,,$$

a contradiction. Observe that

$$\sup A^{-1} = (\inf A)^{-1}$$
 for every subset A of $(0, \infty)$

where $A^{-1} = \{t^{-1} | t \in A\}$ and $(0, \infty)$ is the collection consisting of positive elements in \mathbb{F} . Therefore, (\diamond) implies that for $x \in \mathbb{F}$,

$$b^{-x} = \sup\left\{b^t \mid t \in \mathbb{Q}, t \leqslant -x\right\} = \sup\left\{b^{-t} \mid t \in \mathbb{Q}, t \geqslant x\right\} = \left[\inf\left\{b^t \mid t \in \mathbb{Q}, t \geqslant x\right\}\right]^{-1}$$
$$= (b^x)^{-1}.$$

Now we show the law of exponential

$$b^{x} \cdot b^{y} = b^{x+y} \qquad \forall x, y \in \mathbb{F}.$$
(**)

Let $x, y \in \mathbb{F}$ be given. If $t, s \in \mathbb{Q}$ and $t \leq x, s \leq y$, then $t + s \in \mathbb{Q}$ and $t + s \leq x + y$; thus

$$b^t \cdot b^s = b^{t+s} \leq \sup B(x+y) = b^{x+y}$$
.

For any given rational $t \leq x$, taking the supremum of the left-hand side over all rational $s \leq y$ and using (\star) we find that

$$b^{t} \cdot b^{y} = b^{t} \cdot \sup\left\{b^{s} \mid s \in \mathbb{Q}, s \leqslant y\right\} \leqslant b^{x+y}$$

Taking the supremum of the left-hand side over all rational $t \leq x$, using (\star) again we find that

$$b^{y} \cdot b^{x} = b^{y} \cdot \sup \left\{ b^{t} \mid t \in \mathbb{Q}, t \leq x \right\} \leq b^{x+y};$$

thus we establish that

$$b^x \cdot b^y \leqslant b^{x+y} \qquad \forall x, y \in \mathbb{F} \tag{(\diamond)}$$

Now, note that $(\diamond\diamond)$ implies that for all $x, y \in \mathbb{F}$,

$$b^{y} = b^{-x+x+y} \ge b^{-x} \cdot b^{x+y} = (b^{x})^{-1} \cdot b^{x+y} \ge (b^{x})^{-1} \cdot b^{x} \cdot b^{y} = b^{y}$$

The inequality above is indeed an equality and we obtain that

$$b^y = b^{-x} b^{x+y} \qquad \forall x, y \in \mathbb{F}.$$

This is indeed $(\star\star)$ because of that $b^{-x} = (b^x)^{-1}$.

Next we show that $(b^x)^y = \sup B(x \cdot y)$ for all x > 0 and $y \in \mathbb{F}$. For z > 0, define $A(z) = \{s \in \mathbb{F} \mid s \in \mathbb{Q}, 0 < s \leq z\}$. Note that if z > 0, then $b^z = \sup A(z)$. Since for x > 0, we have $b^x > 1$; thus for x, y > 0,

$$(b^x)^y = \sup\left\{ (b^x)^t \, \big| \, t \in \mathbb{Q}, \, 0 < t \le y \right\} = \sup_{t \in A(y)} (b^x)^t = \sup_{t \in A(y)} \left(\sup_{s \in A(x)} b^s \right)^t.$$

By Problem 4 of Exercise 2,

$$\sup_{t \in A(y)} \left(\sup_{s \in A(x)} b^s\right)^t = \sup_{(t,s) \in A(y) \times A(x)} (b^s)^t = \sup_{(t,s) \in A(y) \times A(x)} b^{st} = b^{\sup_{(t,s) \in A(y) \times A(x)} ts} = b^{xy}$$

4. Let $x_1 < x_2$ be given. Then **AP** implies that there exists $r, s \in \mathbb{Q}$ such that $x_1 < r < s < x_2$. Therefore, $B(x_1) \subseteq B(r) \subseteq B(s) \subseteq B(x_2)$; thus

$$b^{x_1} = \sup B(x_1) \leqslant \sup B(r) \leqslant \sup B(s) \leqslant \sup B(x_2) = b^{x_2}.$$

Since $B(r) = b^r$ and $B(s) = b^s$, we must have B(r) < B(s); thus 4 is concluded.

5. Since $\frac{y}{b^u} > 1$ and $\frac{b^v}{y} > 1$, by the fact that $b^{\frac{1}{n}} \to 1$ as $n \to \infty$, there exist $N_1, N_2 > 0$ such that

$$\left|b^{\frac{1}{n}}-1\right| < \frac{y}{b^u}-1$$
 whenever $n \ge N_1$ and $\left|b^{\frac{1}{n}}-1\right| < \frac{b^v}{y}-1$ whenever $n \ge N_2$.

Let $N = \max\{N_1, N_2\}$. For $n \ge N$, we have $b^{\frac{1}{n}} < \frac{y}{b^u}$ and $b^{\frac{1}{n}} < \frac{b^v}{y}$ or equivalently,

$$b^{u+\frac{1}{n}} < y$$
 and $b^{v-\frac{1}{n}} > y$ $\forall n \ge N$

6. Let $A = \{ w \in \mathbb{F} \mid b^w < y \}$. Since b > 1, 2 of Problem 4 in Exercise 1 implies that

$$b^n > 1 + n(b-1)$$
 whenever $n \ge 2$. (***)

By **AP**, there exists $N \ge 2$ such that 1 + N(b-1) > y; thus A is bounded from above by N. Moreover, there exists $M \ge 2$ such that

$$1 + M(b-1) > \frac{1}{y};$$

thus $(\star\star\star)$ implies that $b^{-M} < y$ or $-N \in A$. Therefore, A is non-empty. By **LUBP**, we conclude that sup A exists.

Let $x = \sup A$. Then $x + \frac{1}{n} \notin A$; thus $b^{x + \frac{1}{n}} \ge y$ for all $n \in \mathbb{N}$. Since $b^{\frac{1}{n}} \to 1$ sa $n \to \infty$, we find that

$$b^{x} = b^{x} \lim_{n \to \infty} b^{\frac{1}{n}} = \lim_{n \to \infty} b^{x + \frac{1}{n}} \ge y \,.$$

On the other hand, 4 implies that $x - \frac{1}{n} \in A$; thus $b^{x-\frac{1}{n}} > y$ for all $n \in \infty$ and we have

$$b^x = b^x \lim_{n \to \infty} b^{-\frac{1}{n}} = \lim_{n \to \infty} b^{x - \frac{1}{n}} \leqslant y$$

Therefore, $b^x = y$.

Problem 3. Let $(\mathbb{F}, +\cdot, \leq)$ be an ordered field satisfying the monotone sequence property. In this problem we prove the Intermediate Value Theorem:

Let $a, b \in \mathbb{F}$, a < b and $f : [a, b] \to \mathbb{F}$ be continuous (at every point of [a, b]); that is, $\lim_{n \to \infty} f(x_n) = f\left(\lim_{n \to \infty} x_n\right) \quad \text{for all convergent sequence } \{x_n\}_{n=1}^{\infty} \subseteq [a, b].$ If f(a)f(b) < 0, then there exists $c \in [a, b]$ such that f(c) = 0.

Complete the following.

- 1. W.L.O.G, we can assume that f(a) < 0. Define the set $S = \{x \in [a, b] | f(x) > 0\}$. Show that inf S exists.
- 2. Let $c = \inf S$. Show that $f(c) \ge 0$.
- 3. Conclude that $f(c) \leq 0$ as well.

Hint:

- 1. Show that S is non-empty and bounded from below and note that $MSP \Leftrightarrow LUBP$.
- 2. Show that there exists a sequence $\{c_n\}_{n=1}^{\infty}$ in S such that $c_n \to c$ as $n \to \infty$.
- 3. Show that there exists a sequence $\{c_n\}_{n=1}^{\infty}$ in [a, c) such that $c_n \to c$ as $n \to \infty$.
- *Proof.* 1. Since f(b) > 0, $b \in S$. Moreover, a is a lower bound for S; thus S is non-empty and bounded from below. Since **MSP** \Leftrightarrow **LUBP**, inf $S \in \mathbb{F}$ exists.
 - 2. Let $c = \inf S$. For each $n \in \mathbb{N}$, there exists $c_n < c + \frac{1}{n}$ and $c_n \in S$. Then $f(c_n) > 0$ for all $n \in \mathbb{N}$ and

$$c \leq c_n < c + \frac{1}{n} \qquad \forall n \in \mathbb{N}.$$

Then the Sandwich Lemma implies that $c_n \to c$ as $n \to \infty$. By the continuity of f,

$$f(c) = f\left(\lim_{n \to \infty} c_n\right) = \lim_{n \to \infty} f(c_n) \ge 0$$

3. Consider the sequence $\{c_n\}_{n=N}^{\infty}$ defined by $c_n = c - \frac{1}{n}$, where N is chosen large enough so that $c_N \ge a$. Since $c = \inf S$ and $c_n < c$, $c_n \notin S$ for all $n \ge N$. Therefore, $f(c_n) < 0$ for all $n \in \mathbb{N}$. Since $c_n \to c$ as $n \to \infty$, by the continuity of f we find that

$$f(c) = f\left(\lim_{n \to \infty} c_n\right) = \lim_{n \to \infty} f(c_n) \le 0.$$

Problem 4. Let $(\mathbb{F}, +\cdot, \leq)$ be an ordered field satisfying the monotone sequence property. In this problem we prove the Extreme Value Theorem:

Let $a, b \in \mathbb{F}$, a < b and $f : [a, b] \to \mathbb{F}$ be continuous (at every point of [a, b]); that is, $\lim_{n \to \infty} f(x_n) = f\left(\lim_{n \to \infty} x_n\right) \quad \text{for all convergent sequence } \{x_n\}_{n=1}^{\infty} \subseteq [a, b].$ Then there exist $c, d \in [a, b]$ such that $f(c) = \sup_{x \in [a, b]} f(x)$ and $f(d) = \inf_{x \in [a, b]} f(x)$.

Complete the following.

1. Show that there exist sequences $\{c_n\}_{n=1}^{\infty}$ and $\{d_n\}_{n=1}^{\infty}$ in [a, b] such that

$$\lim_{n \to \infty} f(c_n) = \sup_{x \in [a,b]} f(x) \quad \text{and} \quad \lim_{n \to \infty} f(d_n) = \inf_{x \in [a,b]} f(x)$$

2. Extract convergent subsequences $\{x_{n_k}\}_{k=1}^{\infty}$ and $\{y_{n_k}\}_{k=1}^{\infty}$ with limit c and d, respectively. Show that $c, d \in [a, b]$.

3. Show that
$$f(c) = \sup_{x \in [a,b]} f(x)$$
 and $f(d) = \inf_{x \in [a,b]} f(x)$.

Hint: For 2, note that $MSP \Rightarrow BWP$.

Proof. It suffices to show the case of $\sup_{x \in [a,b]} f(x)$ since $\inf_{x \in [a,b]} f(x) = -\sup_{x \in [a,b]} (-f)(x)$ by Problem 1 of Exercise 2.

1. Suppose that f([a, b]) is bounded from above. Then $M = \sup f([a, b]) = \sup_{x \in [a, b]} f(x)$ exists. For each $n \in \mathbb{F}$, there exists $c_n \in [a, b]$ such that

$$M - \frac{1}{n} < f(c_n) \le M \,.$$

By the Sandwich Lemma, $\lim_{n \to \infty} f(c_n) = M = \sup_{x \in [a,b]} f(x).$

On the other hand, if f([a, b]) is not bounded from above, then $\sup f([a, b]) = \sup_{x \in [a, b]} f(x) = \infty$. Moreover, for each $n \in \mathbb{F}$ there exists $c_n \in [a, b]$ such that

$$f(c_n) > n \, .$$

Then $\lim_{n \to \infty} f(c_n) = \infty = \sup_{x \in [a,b]} f(x)$. In either case, there exists $\{c_n\}_{n=1}^{\infty} \subseteq [a,b]$ such that $\lim_{n \to \infty} f(c_n) = \sup_{x \in [a,b]} f(x)$.

- 2. Since $\{c_n\}_{n=1}^{\infty} \subseteq [a, b], \{c_n\}_{n=1}^{\infty}$ is bounded. By the fact that $\mathbf{MSP} \Rightarrow \mathbf{BWP}$, there exists a convergent subsequence $\{c_{n_k}\}_{k=1}^{\infty}$ of $\{c_n\}_{n=1}^{\infty}$ with limit c. Since $a \leq c_{n_k} \leq b$ for all $k \in \mathbb{N}$, by a Proposition that we talked about in class we conclude that $a \leq c \leq b$.
- 3. Since $c_{n_k} \to c$ as $k \to \infty$, the continuity of f implies that

$$f(c) = f(\lim_{n \to \infty} c_n) = \lim_{n \to \infty} f(c_n) = \sup_{x \in [a,b]} f(x) \,.$$