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Chapter 0

Review of Contents from Basic
Mathematics

0.1 Sets

Definition 0.1. A set is a collection of objects called elements or members of the set.
To denote a set, we make a complete list tx1, x2, ¨ ¨ ¨ , xNu or use the notation

␣

x : P (x)
(

or
␣

x
ˇ

ˇP (x)
(

,

where the sentence P (x) describes the property that defines the set. A set A is said to be a
subset of S if every member of A is also a member of S. We write x P A (or A contains x)
if x is a member of A, and write A Ď S (or S includes A) if A is a subset of S. The empty
set, denoted H, is the set with no member.

Definition 0.2. Let S be a given set, and A Ď S, B Ď S. The set AYB, called the union
of A and B, consists of members belonging to set A or set B, and the set AXB, called the
intersection of A and B, consists of members belonging to both set A and set B.

Let F be a collection of subsets in S. The set
Ť

APF

A, called the union of sets in F , is

defined by
ď

APF

A =
␣

x P S
ˇ

ˇ (DA P F )(x P A)
(

,

and
Ş

APF

A =
␣

x P S
ˇ

ˇ (@A P F )(x P A)
(

is the intersection of sets in F . When F =
␣

Aα
ˇ

ˇα P I
(

, the union and the intersection of sets in F can also be written as
Ť

αPI

Aα and

i
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Ş

αPI

Aα, respectively. When F =
␣

A1, A2, ¨ ¨ ¨ , AN
(

, the union and the intersection of sets in

F can also be written as
N
Ť

i=1

Ai and
N
Ş

i=1

Ai, respectively.

Example 0.3. Let F be the collection of open intervals with length 2 and mid-point in
[0, 1]. Then F =

␣

(α ´ 1, α + 1)
ˇ

ˇα P [0, 1]
(

. Moreover,
ď

APF

A =
ď

αP[0,1]

(α ´ 1, α + 1) = (´1, 2) and
č

APF

A =
č

αP[0,1]

(α ´ 1, α + 1) = (0, 1) .

Definition 0.4. Let S be a given set, and A Ď S, B Ď S. The complement of A relative
to B, denoted BzA, is the set consisting of members of B that are not members of A. When
the universal set S under consideration is fixed, the complement of A relative to S or simply
the complement of A, is denoted by AA, or SzA.

Theorem 0.5. (De Morgan’s Law)

1. Bz
Ť

αPI

Aα =
Ş

αPI

(BzAα) or Bz
Ť

APF

A =
Ş

APF

(BzA).

2. Bz
Ş

αPI

Aα =
Ť

αPI

(BzAα) or Bz
Ş

APF

A =
Ť

APF

(BzA).

Proof. By definition,

x P Bz
ď

αPI

Aα ô x P B and x R
ď

αPI

Aα ô x P B and x R Aα for all α P I

ô x P BzAα for all α P I ô x P
č

αPI

(BzAα)

The proof of the second identity is similar, and is left as an exercise. ˝

Definition 0.6. An ordered pair (a, b) is an object formed from two objects a and b,
where a is called the first coordinate and b the second coordinate. Two ordered pairs
are equal whenever their corresponding coordinates are the same. An ordered n-tuples
(a1, a2, ¨ ¨ ¨ , an) is an object formed from n objects a1, a2, ¨ ¨ ¨ , an, where for each j, aj is
called the j-th coordinate. Two n-tuples (a1, a2, ¨ ¨ ¨ , an), (c1, c2, ¨ ¨ ¨ , cn) are equal if aj = cj

for all j P t1, ¨ ¨ ¨ , nu.

Definition 0.7. Given sets A and B, the Cartesian product A ˆ B of A and B is the
set of all ordered pairs (a, b) with a P A and b P B, AˆB =

␣

(a, b)
ˇ

ˇ a P A and b P B
(

. The
Cartesian of three or more sets are defined similarly.
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0.2 Functions
Definition 0.8. Let S and T be given sets. A function f : S Ñ T consists of two sets
S and T together with a “rule” that assigns to each x P S a special element of T denoted
by f(x). One writes x ÞÑ f(x) to denote that x is mapped to the element f(x). S is called
the domain (定義域) of f , and T is called the target or co-domain (對應域) of f . The
range (值域) of f or the image of f , is the subset of T defined by f(S) =

␣

f(x)
ˇ

ˇx P S
(

.

S

x

T

f(S)

f(x)

f

Definition 0.9. A function f : S Ñ T is called one-to-one (一對一), injective or an
injection if x1 ‰ x2 ñ f(x1) ‰ f(x2) (which is equivalent to that f(x1) = f(x2) ñ

x1 = x2). A function f : S Ñ T is called onto (映成), surjective or an surjection if
@ y P T, D x P S, Q f(x) = y (that is, f(S) = T ). A function f : S Ñ T is called an
bijection if it is one-to-one and onto.

Definition 0.10. For f : S Ñ T , A Ď S, we call f(A) =
␣

f(x)
ˇ

ˇx P A
(

the image of A
under f . For B Ď T , we call f´1(B) =

␣

x P S
ˇ

ˇ f(x) P B
(

the pre-image of B under f .

Proposition 0.11. Let f : S Ñ T be a function, C1 ,C2 Ď T and D1, D2 Ď S.

(a) f´1(C1 Y C2) = f´1(C1) Y f´1(C2).
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(b) f(D1 Y D2) = f(D1) Y f(D2).

(c) f´1(C1 X C2) = f´1(C1) X f´1(C2).

(d) f(D1 X D2) Ď f(D1) X f(D2).

(e) f´1(f(D1)) Ě D1 (“=” if f is one-to-one).

(f) f(f´1(C1)) Ď C1 (“=” if C1 Ď f(S)).

Proof. We only prove (c) and (d), and the proof of the other statements are left as an
exercise.

(c) We first show that f´1(C1 XC2) Ď f´1(C1)Xf´1(C2). Suppose that x P f´1(C1 XC2).
Then f(x) P C1XC2. Therefore, f(x) P C1 and f(x) P C2, or equivalently, x P f´1(C1)

and x P f´1(C2); thus x P f´1(C1) X f´1(C2).

Next, we show that f´1(C1) X f´1(C2) Ď f´1(C1 X C2). Suppose that x P f´1(C1) X

f´1(C2). Then x P f´1(C1) and x P f´1(C2) which implies that f(x) P C1 and
f(x) P C2; thus f(x) P C1 X C2 or equivalently, x P f´1(C1 X C2).

(d) Suppose that y P f(D1 XD2). Then there exists x P D1 XD2 such that y = f(x). As
a consequence, y P f(D1) and y P f(D2) which implies that y P f(D1) X f(D2). ˝

0.3 Countability of Sets
Definition 0.12. A set S is called denumerable or countably infinite (無窮可數的) if
S can be put into one-to-one correspondence with N; that is, S is denumerable if and only
if there exists f : N Ñ S which is one-to-one and onto. A set is called countable (可數的)
if it is either finite or denumerable, and is called uncountable if it is not countable.

Remark 0.13. If f : N 1´1
ÝÝÑ
onto

S, then f´1 : S
1´1

ÝÝÑ
onto

N. Therefore,

S is denumerable ô D f : N 1´1
ÝÝÑ
onto

S ô D g = f´1 : S
1´1

ÝÝÑ
onto

N.

f can be thought as a rule of counting/labeling elements in S since S =
␣

f(1), f(2), ¨ ¨ ¨
(

.

Example 0.14. N is countable since f : N 1´1
ÝÝÑ
onto

N with f(x) = x, @n P N.
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Example 0.15. Z is countable. f : Z Ñ N with f(x) =

$

&

%

1 if x = 0
2x if x ą 0

´2x+ 1 if x ă 0
.

−3 −2 −1 10 2
2 4 6

3k

1357f(k)

Figure 1: An illustration of how elements in Z are labeled

Example 0.16. The set N ˆ N =
␣

(a, b)
ˇ

ˇ a, b P N
(

is countable. In fact, two ways of
mapping are shown in the figures below.

y

x

1
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5

Figure 2: The illustration of two ways of labeling elements in N ˆ N

Proposition 0.17. Let S be a non-empty set. The following three statements are equivalent:

(a) S is countable;

(b) there exists a surjection f : N Ñ S;

(c) there exists an injection f : S Ñ N.

Proof. “(a) ñ (b)” First suppose that S = tx1, ¨ ¨ ¨ , xnu is finite. Define f : N Ñ S by

f(k) =

"

xk if k ă n ,
xn if k ě n .

Then f : N Ñ S is a surjection. Now suppose that S is denumerable. Then by
definition of countability, there exists f : N 1´1

ÝÝÑ
onto

S.
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“(a) ð (b)” W.L.O.G. (without loss of generality, 不失一般性) we assume that S is an
infinite set. Let k1 = 1. Since #(S) = 8, S1 ” Sztf(k1)u ‰ H; thus N1 ” f´1(S1)

is a non-empty subset of N. By the well-ordered property of N (that is, non-empty
subset of N has least element), N1 has a smallest element denoted by k2. Since
#(S) = 8, S2 = Sztf(k1), f(k2)u ‰ H; thus N2 ” f´1(S2) is a non-empty subset
of N and possesses a smallest element denoted by k3. We continue this process and
obtain a set tk1, k2, ¨ ¨ ¨ u Ď N, where k1 ă k2 ă ¨ ¨ ¨ , and kj is the smallest element of
Nj´1 ” f´1(Sztf(k1), f(k2), ¨ ¨ ¨ , f(kj´1)u).

Claim: f : tk1, k2, ¨ ¨ ¨ u Ñ S is one-to-one and onto.

Proof of claim: The injectivity of f is due to that f(kj) R
␣

f(k1), f(k2), ¨ ¨ ¨ , f(kj´1)
(

for all j ě 2. For surjectivity, assume that there is s P S such that s R f(tk1, k2, ¨ ¨ ¨ u).
Since f : N Ñ S is onto, f´1(tsu) is a non-empty subset of N; thus possesses a smallest
element k. Since s R f(tk1, k2, ¨ ¨ ¨ u), there exists ℓ P N such that kℓ ă k ă kℓ+1. As a
consequence, there exists k P Nℓ such that k ă kℓ+1 which contradicts to the fact that
kℓ+1 is the smallest element of Nℓ.

Define g : N Ñ tk1, k2, ¨ ¨ ¨ u by g(j) = kj. Then g : N Ñ tk1, k2, ¨ ¨ ¨ u is one-to-one and
onto; thus h = g ˝ f : N 1´1

ÝÝÑ
onto

S.

“(a) ñ (c)” If S = tx1, ¨ ¨ ¨ , xnu is finite, we simply let f : S Ñ N be f(xn) = n. Then f is
clearly an injection. If S is denumerable, by definition there exists g : N 1´1

ÝÝÑ
onto

S which
shows that f = g´1 : S Ñ N is an injection.

“(a) ð (c)” Let f : S Ñ N be an injection. If f is also surjective, then f : S
1´1

ÝÝÑ
onto

N which
implies that S is denumerable. Now suppose that f(S) Ĺ N. Since S is non-empty,
there exists s P S. Let g : N Ñ S be defined by

g(n) =

"

f´1(n) if n P f(S) ,

s if n R f(S) .

Then clearly g : N Ñ S is surjective; thus the equivalence between (a) and (b) implies
that S is countable. ˝

Example 0.18. The set N ˆ N is countable since the map f : N ˆ N Ñ N defined by
f
(
(m,n)

)
= 2m3n is an injection.

Theorem 0.19. Any non-empty subset of a countable set is countable.
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Proof. Let S be a countable set, and A be a non-empty subset of S. Since S is countable,
by by Proposition 0.17 there exists a surjection f : N Ñ S. On the other hand, since A is a
non-empty subset of S, there exists a P A. Define

g(x) =

"

x if x P A ,
a if x R A .

Then h = g ˝ f : N Ñ A is a surjection, and Proposition 0.17 implies that A is countable. ˝

Theorem 0.20. The union of countable countable sets is countable. (可數個可數集的聯集
是可數的)

Proof. Let Ai be countable, and define A =
8
Ť

i=1

Ai. Write Ai = txi1, xi2, xi3, ¨ ¨ ¨ u. Then

A =
␣

xij
ˇ

ˇ i = 1, 2, ¨ ¨ ¨ , j ă #(Ai) + 1
(

, where #(Ai) = 8 if Ai is countably infinite. Let
S =

␣

(i, j)
ˇ

ˇ i = 1, 2, ¨ ¨ ¨ , j ă #(Ai) + 1
(

, and define f : S Ñ A by f
(
(i, j)

)
= xij. Then

f : S Ñ A is a surjection. On the other hand, since S is a subset of N ˆ N, Theorem 0.19
implies that S is countable; thus Proposition 0.17 guarantees the existence of a surjection
g : N Ñ S. Then h = f ˝g : N Ñ A is a surjection which, by Proposition 0.17 again, implies
that A is countable. ˝

Example 0.21. Z ˆ Z is countable.

Proof. For i P Z, let Ai =
␣

(i, j)
ˇ

ˇ j P Z
(

. By Example 0.15, Ai is countable for all i P Z.
Since Z ˆ Z =

Ť

iPZAi which is countable union of countable sets, Theorem 0.20 implies
that Z ˆ Z is countable. ˝

Theorem 0.22. Q is countable.

Proof. Define

f(x) =

$

’

’

&

’

’

%

(p, q), if x ą 0, x =
q

p
, gcd(p, q) = 1, p ą 0.

(0, 0), if x = 0.

(p,´q), if x ă 0, x = ´
q

p
, gcd(p, q) = 1, p ą 0.

Then f : Q Ñ Z ˆ Z is one-to-one; thus f : Q 1´1
ÝÝÑ
onto

f(Q). Since Z ˆ Z is countable, its

non-empty subset f(Q) is also countable. As a consequence, there exists g : f(Q)
1´1

ÝÝÑ
onto

N;

thus h = g ˝ f : Q 1´1
ÝÝÑ
onto

N. ˝
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Theorem 0.23. The open interval (0, 1) is uncountable.

Proof. Assume the contrary that there exists f : N Ñ (0, 1) which is one-to-one and onto.
Write f(k) in decimal expansion (十進位展開); that is,

f(1) = 0.d11d21d31 ¨ ¨ ¨

f(2) = 0.d12d22d32 ¨ ¨ ¨

... ...
f(k) = 0.d1kd2kd3k ¨ ¨ ¨

... ...

Here we note that repeated 9’s are chosen by preference over terminating decimals; that is,
for example, we write 1

4
= 0.249999 ¨ ¨ ¨ instead of 1

4
= 0.250000 ¨ ¨ ¨ .

Let x P (0, 1) be such that x = 0.d1d2 ¨ ¨ ¨ , where

dk =

"

5 if dkk ‰ 5 ,

3 if dkk = 5 .

（建構一個 x使其小數點下第 k 位數與 f(k)的小數點下第 k 位數不相等）. Then x ‰ f(k)

for all k P N, a contradiction; thus (0, 1) is uncountable. ˝

Corollary 0.24. The collection of real numbers is uncountable.



Chapter 1

The Real Number System and
Completeness

1.1 Ordered Fields
Definition 1.1. A set F is said to be a field (體) if there are two operations + and ¨ such
that

1. x+ y P F, x ¨ y P F if x, y P F. (封閉性)

2. x+ y = y + x for all x, y P F. (commutativity, 加法的交換性)

3. (x+ y) + z = x+ (y + z) for all x, y, z P F. (associativity, 加法的結合性)

4. There exists 0 P F, called the additive identity (加法單位元素), such that x + 0 = x

for all x P F. (the existence of zero)

5. For every x P F, there exists y P F (usually y is denoted by ´x and is called the
additive inverse (加法反元素) of x) such that x+ y = 0. One writes x´ y ” x+(´y).

6. x ¨ y = y ¨ x for all x, y P F. (乘法的交換性)

7. (x ¨ y) ¨ z = x ¨ (y ¨ z) for all x, y, z P F. (乘法的結合性)

8. There exists 1 P F, called the multiplicative identity (乘法單位元素), such that
x ¨ 1 = x for all x P F. (the existence of unity)

9. For every x P F, x ‰ 0, there exists y P F (usually y is denoted by x´1, and is

1
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called the multiplicative inverse (乘法反元素) of x) such that x ¨ y = 1. One writes
x ¨ y ” x ¨ x´1 = 1.

10. x ¨ (y + z) = x ¨ y + x ¨ z for all x, y, z P F. (distributive law, 分配律)

11. 0 ‰ 1.

Remark 1.2. Let x and y be both multiplicative inverse（乘法反元素）of a number a in
(F,+, ¨). Then

x ¨ a = 1 ñ (x ¨ a) ¨ y = 1 ¨ y = y ñ x ¨ 1 = x ¨ (a ¨ y) = y ;

thus x = y. In other words, the multiplicative inverse of a number is unique. Similarly, the
additive inverse of a number is also unique.

Remark 1.3. A set F satisfying properties 1 to 10 with 0 = 1 consists of only one member:
By distributive law, x¨0 = x¨(0+0) = x¨0+x¨0; thus ´(x¨0)+(x¨0) = ´(x¨0)+(x¨0)+(x¨0)

which implies that x ¨ 0 = 0. Therefore, if 0 = 1, then x = x ¨ 1 = x ¨ 0 = 0 for all x P F.
Hence, the set F consists only one element 0.

Remark 1.4. If x P F, then
(
(1 + (´1)

)
¨ x = 0 which implies that x + (´1) ¨ x = 0.

Therefore, (´1) ¨ x = ´x+ x+ (´1) ¨ x = ´x+ 0 = ´x.

Example 1.5. Let F = ta, b, cu with the operations + and ¨ defined by
+ a b c
a a b c
b b c a
c c a b

¨ a b c
a a a a
b a b c
c a c b

.

Then F is a field because of the following: Properties 1, 2, 3, 6, 7 are obvious.
Property 4: D “0” Q x+ “0” = x for all x P F. In fact, “0” = a.
Property 5: @x P F, D y P F Q x+ y = 0, here b = ´c, c = ´b.
Property 8: D “1” Q x ¨ “1” = x for all x P F. In fact, “1” = b (so Property 11 holds since
a ‰ b).
Property 9: @x ‰ 0, P F, D z P F Q x ¨ z = 1, here z = x.
The validity of Property 10 is left as an exercise.

Example 1.6. Let (F,+, ¨) be a field. Consider the set F = F ˆ F =
␣

(a, b)
ˇ

ˇ a, b P Fu.
Define

(a, b) ‘ (c, d) = (a+ c, b+ d) and (a, b) d (c, d) = (a ¨ c ´ b ¨ d, a ¨ d+ b ¨ c) .

Then (F ,‘,d) is also a field. The ordered pair (a, b) in F is sometimes denoted by a+ bi.
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Example 1.7. Let (F,+, ¨) be a field. Then (x ´ y)(x + y) = x2 ´ y2 for all x, y P F. In
fact,

(x ´ y)(x+ y) = (x ´ y) ¨ x+ (x ´ y) ¨ y (by 分配律)
= x ¨ (x ´ y) + y ¨ (x ´ y) (by 乘法交換律)
= x ¨ x+ x ¨ (´y) + y ¨ x+ y ¨ (´y) (by 分配律)
= x2 ´ x ¨ y + x ¨ y ´ y2 (by Remark 1.4 and 乘法交換律)
= x2 + 0 ´ y2 (by Property 5)
= x2 ´ y2 (by Property 4).

Definition 1.8. An ordered field (有序體) is a field (F,+, ¨) equipped with a relation ď

on F satisfying that

1. x ď x for all x P F (reflexivity).

2. If x, y P F satisfies that x ď y and y ď x, then x = y (anti-symmetry).

3. If x, y P F satisfies that x ď y and y ď z, then x ď z (transitivity).

4. For each x, y P F, either x ď y or y ď x.

5. If x ď y, then x+ z ď y + z for all z P F (compatibility of ď and +).

6. If 0 ď x and 0 ď y, then 0 ď x ¨ y (compatibility of ď and ¨).

Remark 1.9. A relation ď on a field F satisfying only 1-3 in the definition above is called a
partial order. If in addition ď also satisfies 4, it is called a total order or linear order. Note
that ě is a relation on Q satisfying 1-5 but not 6.

Remark 1.10. In an ordered field, the multiplicative inverse of x ‰ 0 is sometimes denoted
by 1

x
.

Definition 1.11. In an ordered field (F,+, ¨,ď), the binary relations ă, ě and ă are defined
by:

1. x ă y if x ď y and x ‰ y.

2. x ě y if y ď x.

3. x ą y if y ă x.
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From now on, the total order ď of an ordered field will be denoted by ď, and
the symbols ă, ě and ą will be denoted by ă, ě and ą, respectively.

Adopting the definition above, it is not immediately clear that x ď y ô x ą y. However,
this is indeed the case, and to be more precise we have the following

Proposition 1.12. (Law of Trichotomy, 三一律) If x and y are elements of an ordered
field (F,+, ¨,ď), then exactly one of the relations x ă y, x = y or y ă x holds.

Proof. Since F is a totally ordered field, x and y are comparable. Therefore, either x ď y

or y ď x. Assume that x ď y.

1. If x = y, then x ă y and x ą y.

2. If x ‰ y, then x ă y. If it also holds that x ą y, then x ě y; thus by the property
of anit-symmetry of an order, we must have x = y, a contradiction. Therefore, it can
only be that x ă y.

The proof for the case y ď x is similar, and is left as an exercise. ˝

Proposition 1.13. Let (F,+, ¨,ď) be an ordered field, and a, b, x, y, z P F.

1. If a+ x = a, then x = 0.
If a ¨ x = a and a ‰ 0, then x = 1.

2. If a+ x = 0, then x = ´a.
If a ¨ x = 1 and a ‰ 0, then x = a´1.

3. If x ¨ y = 0, then x = 0 or y = 0.

4. If x ď y ă z or x ă y ď z, then x ă z (the transitivity of ă).

5. If a ă b, then a+ x ă b+ x (the compatibility of ă and +).
If 0 ă a and 0 ă b, then 0 ă a ¨ b (the compatibility of ă and ¨).

6. If a+ x = b+ x, then a = b.
If a+ x ď (ă) b+ x, then a ď (ă) b.
If a ¨ x = b ¨ x and x ‰ 0, then a = b.
If a ¨ x ď (ă) b ¨ x and x ą 0, then a ď (ă) b.
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7. 0 ¨ x = 0.

8. ´(´x) = x.

9. ´x = (´1) ¨ x.

10. If x ‰ 0, then x´1 ‰ 0 and (x´1)´1 = x.

11. If x ‰ 0 and y ‰ 0, then x ¨ y ‰ 0 and (x ¨ y)´1 = x´1 ¨ y´1.

12. If x ď (ă) y and 0 ď (ă) z, then x ¨ z ď (ă) y ¨ z.
If x ď (ă) y and 0 ě (ą) z, then x ¨ z ě (ą) y ¨ z.

13. If x ď (ă) 0 and y ď (ă) 0, then x ¨ y ě (ą) 0.
If x ď (ă) 0 and y ě (ą) 0, then x ¨ y ď (ă) 0.

14. 0 ă 1 and ´1 ă 0.

15. x ¨ x ” x2 ě 0.

16. If x ą 0, then x´1 ą 0. If x ă 0, then x´1 ă 0.

Proof. 1. (´a) + a+ x = (´a) + a = 0 ñ x = 0.
(a´1) ¨ a ¨ x = (a´1) ¨ a = 1 ñ x = 1.

2. (´a) + a+ x = (´a) + 0 = ´a ñ x = ´a.
(a´1) ¨ a ¨ x = (a´1) ¨ 1 = a´1 ñ x = a´1.

3. Assume that x ‰ 0, then x´1 ¨ x ¨ y = x´1 ¨ 0 = 0 ñ y = 0.
Assume that y ‰ 0, then x ¨ y ¨ y´1 = 0 ¨ y´1 = 0 ñ x = 0.

4 and 5 are Left as an exercise.

6. a+ 0 = a+ x+ (´x) = b+ x+ (´x) = b+ 0 ñ a = b.
a+ 0 = a+ x+ (´x) ď b+ x+ (´x) = b+ 0 ñ a ď b (compatibility of ď and +).
a ¨ x ¨ x´1 = b ¨ x ¨ x´1 ñ a = b.
Suppose the contrary that b ă a. Then 0 = b+ (´b) ď a+ (´b). Since x ą 0, x ě 0;
thus

0 ď
(
a+ (´b)

)
¨ x = a ¨ x+ (´b) ¨ x .

As a consequence, b ¨ x = 0+ b ¨ x ď a ¨ x+ (´b) ¨ x+ b ¨ x = a ¨ x. By assumption, we
must have a ¨ x = b ¨ x or (a´ b) ¨ x = 0. Using 3, x = 0 (since a ‰ b), a contradiction.
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7. See Remark 1.3.

8. (´x) + (´(´x)) = 0 = (´x) + x ñ x = ´(´x).

9. See Remark 1.4.

10. Assume x´1 = 0, 1 = x ¨ x´1 = x ¨ 0 = 0, a contradiction. Therefore, x´1 ‰ 0; thus
(x´1)´1 ¨ x´1 = 1 = x ¨ x´1 ñ (x´1)´1 = x (by 4).

11. That x ¨ y = 0 cannot be true since it is against Property 3, so x ¨ y ‰ 0. Moreover,

(x ¨ y)´1(x ¨ y) = 1 = 1 ¨ 1 = (x ¨ x´1) ¨ (y ¨ y´1) = (x´1 ¨ y´1) ¨ (x ¨ y) ;

thus (x ¨ y)´1 = x´1 ¨ y´1 (by 4).

12. If x ď (ă) y, then 0 = x+(´x) ď (ă) y+(´x). Since 0 ď (ă) z, by the compatibility
of ď (ă) and ¨ we must have 0 ď (ă) (y + (´x)) ¨ z = y ¨ z + (´x) ¨ z. Therefore, by
the compatibility of ď (ă) and +, x ¨ z = 0+ x ¨ z ď (ă) y ¨ z + (´x) ¨ z + x ¨ z = y ¨ z.
The second statement can be proved in a similar fashion.

13. Left as an exercise.

14. If 1 ď 0, then compatibility of ď and + implies that 0 ď ´1. By the compatibility of
ď and ¨, using 8 and 9 we find that 0 ď (´1) ¨ (´1) = ´(´1) = 1; thus we conclude
that 1 = 0, a contradiction. As a consequence, 0 ă 1; thus the compatibility of ă and
+ implies that ´1 ă 0.

15. Left as an exercise.

16. If x ą 0 but x´1 ď 0, then 1 = x ¨ x´1 ď x ¨ 0 = 0, a contradiction. ˝

Proposition 1.14. Let (F,+, ¨,ď) be an ordered field, and x, y P F.

1. If 0 ď x ă y, then x2 ă y2.

2. If 0 ď x, y and x2 ă y2, then x ă y.

Proof. 1. By definition of “<”, 0 ď x ď y and x ‰ y. Using 12 of Proposition 1.13,

x2 ď y ¨ x ă y ¨ y = y2 .

By the transitivity of ă, we conclude that x2 ă y2.
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2. Note that x ‰ y, for if not, then x2 ´ y2 = 0 which contradicts to the assumption
x2 ă y2. Assume that y ă x, then 1 implies that y2 ă x2, a contradiction. ˝

Remark 1.15. Proposition 1.14 can be summarized as follows: if x, y ě 0, then

x ă y ô x2 ă y2 .

Moreover, Example 1.7, Proposition 1.13 and Proposition 1.14 together imply that if x, y ě 0,
then x ď y if and only if x2 ď y2.

Definition 1.16. The magnitude or the absolute value of x, denoted |x|, is defined as

|x| =

"

x if x ě 0 ,
´x if x ă 0 .

Proposition 1.17. Let (F,+, ¨,ď) be an ordered field. Then

1. |x| ě 0 for all x P F.

2. |x| = 0 if and only if x = 0.

3. ´|x| ď x ď |x| for all x P F.

4. |x ¨ y| = |x| ¨ |y| for all x, y P F.

5. |x+ y| ď |x| + |y| for all x, y P F (triangle inequality, 三角不等式).

6.
ˇ

ˇ|x| ´ |y|
ˇ

ˇ ď |x ´ y| for all x, y P F.

Proof. Left as an exercise. ˝

Definition 1.18. Let (F,+, ¨,ď) be an ordered field. The natural number system,
denoted by N, is the collection of all the numbers 1, 1+ 1, 1+ 1+ 1, 1+ 1+ ¨ ¨ ¨+1 and etc.
in F. We write 2 ” 1+1, 3 ” 2+1, and n ” 1 + 1 + ¨ ¨ ¨ + 1

looooooomooooooon

(n times)

. In other words, N = t1, 2, 3, ¨ ¨ ¨ u.

The integer number system, denoted by Z, is the set Z = t¨ ¨ ¨ ,´3,´2,´1, 0, 1, 2, 3, ¨ ¨ ¨ u.
The rational number system, denoted by Q, is the collection of all numbers of the form
q

p
” q ¨ p´1 with p, q P Z and p ‰ 0; that is,

Q =
!

x P F
ˇ

ˇ

ˇ
x =

q

p
, p, q P Z, p ‰ 0

)

.
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Theorem 1.19. Let (F,+, ¨,ď) be an ordered field. Then Q is an order field.

‚ Peano’s Axiom for natural numbers:

1. 1 is a natural number.

2. Every natural number has a unique successor which is a natural number (+1 is defined
on natural numbers).

3. No two natural numbers have the same successor (n+ 1 = m+ 1 implies n = m).

4. 1 is not a successor for any natural number (1 is the “smallest” natural number).

5. If a property is possessed by 1 and is possessed by the successor of every natural
number that possesses it, then the property is possessed by all natural numbers.（如
果某個被自然數 1 所擁有的性質，也被其它擁有這個性質的自然數的下一個自然數

所擁有，那麼所有的自然數都會擁有這個性質）

‚ Principle of Mathematical Induction (PMI): If S Ď N has the property that

(1) 1 P S, and (2) n+ 1 P S whenever n P S ,

then S = N.

‚ Principle of Complete Induction (PCI): If S Ď N has the property that

@n P N, n P S whenever t1, 2, ¨ ¨ ¨ , n ´ 1u Ď S ,

then S = N.

‚ Well-Ordering Principle (WOP): Every nonempty subset of N has a smallest element.

Theorem 1.20. PMI, PCI and WOP are equivalent.

Definition 1.21. An order field (F,+, ¨,ď) is said to satisfy Archimedean Property
(AP) if for all x P F there exists n P Z such that x ă n.

Example 1.22. The rational number system Q satisfies Archimedean Property. To see this,
let x P Q be given. If x ď 0, we take n = 1. Otherwise if 0 ă x =

q

p
with p, q P N, we take

n = q + 1 and it is obvious that q

p
ď q ă q + 1 = n.
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1.2 Sequences in Ordered Fields
Definition 1.23. A sequence in a set S is a function f : N Ñ S (not necessary one-to-one
or onto). The values of f are called the terms of the sequence, and f(n) is called the n-th
terms of the sequence.

Remark 1.24. A sequence in S is a countable list of elements in S arranged in a particular
order, and is usually denoted by

␣

f(n)
(8

n=1
or txnu8

n=1 with xn = f(n).

Definition 1.25. Let (F,+, ¨,ď) be an ordered field. An “open” interval in F is a set of
the form (a, b) which consists of all x P F satisfying a ă x ă b. A “closed” interval in F
is a set of the form [a, b] which consists of all x P F satisfying a ď x ď b.

Definition 1.26. Let (F,+, ¨,ď) be an ordered field. A sequence txnu8
n=1 Ď F is said to be

convergent if there exists x P F such that for every ε ą 0 (and ε P F),

#
␣

n P N
ˇ

ˇxn R (x ´ ε, x+ ε)
(

ă 8 .

Such an x is called a limit of the sequence. In logic notation,

txnu8
n=1 Ď F is convergent ô (D x P F)(@ ε ą 0)

(
#tn P N |xn R (x ´ ε, x+ ε)u ă 8

)
.

If x is a limit of txnu8
n=1, we say txnu8

n=1 converges to x and write xn Ñ x as n Ñ 8. If no
such x exists we say that txnu8

n=1 diverges (or the limit of txnu8
n=1 does not exist).

Remark 1.27. The number N may depend on ε, and smaller ε usually requires larger N .

In the definition above, it could happen that there are two different limits of a convergent
sequence. In fact, this is never the case because of the following

Proposition 1.28. If txnu8
n=1 is a sequence in an ordered field F, and xn Ñ x and xn Ñ y

as n Ñ 8, then x = y. (The uniqueness of the limit).

Proof. Assume the contrary that x ‰ y. W.L.O.G. we may assume that x ă y, and let
ε =

y ´ x

2
ą 0. Define

A1 =
␣

n P N
ˇ

ˇxn R (x ´ ε, x+ ε)
(

and A2 =
␣

n P N
ˇ

ˇxn R (y ´ ε, y + ε)
(

.

Then by the definition of the convergence of sequences, #A1 ă 8 and #A2 ă 8. Let
N1 = maxA1, N2 = maxA2 and N = maxtN1, N2u. Since A1, A2 are finite, N ă 8. On the
other hand, N + 1 R A1 Y A2 which implies that x

N+1
P (x ´ ε, x + ε) X (y ´ ε, y + ε) = H,

a contradiction. ˝
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Notation: Since the limit of a convergent sequence is unique, if txnu8
n=1 is a convergent

sequence, we use lim
nÑ8

xn, where n is a dummy index and can be change to other letters, to
denote the limit of txnu8

n=1.

Example 1.29. A permutation of a non-empty set A is a one-to-one function from A

onto A. Let π : N Ñ N be a permutation of N, and txnu8
n=1 be a convergent sequence in

an ordered field F. Then
␣

xπ(n)
(8

n=1
is also convergent since if x is the limit of txnu8

n=1 and
ε ą 0,

#
␣

n P N
ˇ

ˇxπ(n) R (x ´ ε, x+ ε)
(

= #
␣

n P N
ˇ

ˇxn R (x ´ ε, x+ ε)
(

ă 8 .

Proposition 1.30. Let (F,+, ¨,ď) be an ordered field, txnu8
n=1 Ď F be a sequence, and x P F.

Then lim
nÑ8

xn = x if and only if for every ε ą 0, there exists N ą 0 such that |xn ´ x| ă ε

whenever n ě N . In logic notation,

lim
nÑ8

xn = x ô (@ ε ą 0)(DN ą 0)(n ě N ñ |xn ´ x| ă ε) .

Proof. “ñ” Let ε ą 0 be given. Since lim
nÑ8

xn = x, #
␣

n P N
ˇ

ˇxn R (x ´ ε, x + ε)
(

ă 8. If

#
␣

n P N
ˇ

ˇxn R (x ´ ε, x + ε)
(

ą 0, define N = max
␣

n P N
ˇ

ˇxn R (x ´ ε, x + ε)
(

+ 1,
otherwise define N = 1. Then if n ě N , xn P (x ´ ε, x+ ε) or equivalently,

|xn ´ x| ă ε whenever n ě N .

x1 x4 x2x3x5xN0

xn for n ≥ N = N0 + 1

ε ε

x
( )

Figure 1.1: Let N0 be the largest index of those xn’s outside (x ´ ε, x + ε). Then xn P

(x ´ ε, x+ ε) whenever n ě N = N0 + 1.

“ð” Let ε ą 0 be given. Then for some N ą 0, if n ě N , we have |xn ´ x| ă ε or
equivalently, if n ě N , xn P (x ´ ε, x+ ε). This implies that

#
␣

n P N
ˇ

ˇxn R (x ´ ε, x+ ε)
(

ă N ă 8 . ˝

Remark 1.31. By the proposition above, xn Ñ x as n Ñ 8 if and only if the sequence
␣

|xn ´ x|
(8

n=1
converges to 0; that is,

lim
nÑ8

xn = x if and only if lim
nÑ8

|xn ´ x| = 0 .
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Remark 1.32. A sequence txnu8
n=1 Ď F diverges if (and only if)

@x P F, D ε ą 0 Q #tn P N |xn R (x ´ ε, x+ ε)u = 8

which is equivalent to that

@x P F, D ε ą 0 Q tn P N |xn R (x ´ ε, x+ ε)u = tn1 ă n2 ă ¨ ¨ ¨ ă nj ă ¨ ¨ ¨ u .

Therefore, txnu8
n=1 diverges if (and only if)

@x P F, D ε ą 0 Q @N ą 0, Dn ě N such that |xn ´ x| ě ε .

Example 1.33. Now we use the ε-N argument as the definition of the convergence of
sequences to re-establish the convergence of the sequence in Example 1.29.

Suppose that txnu8
n=1 is a convergent sequence with limit x, and ε ą 0 be given. Then

there exists N1 ą 0 such that if n ě N1, we have |xn ´ x| ă ε. Let

N = max
␣

π´1(1), π´1(2), ¨ ¨ ¨ , π´1(N1)
(

+ 1 .

Then if n ě N , π(n) ě N1 which implies that
ˇ

ˇxπ(n) ´ x
ˇ

ˇ ă ε whenever n ě N .

Therefore, lim
nÑ8

xπ(n) = x.

From the example above, we notice that proving the convergence using the ε-N argument
seems more complicated; however, it is a necessary evil so we encourage the readers to major
it.

Lemma 1.34 (Sandwich). If lim
nÑ8

xn = L, lim
nÑ8

yn = L, tznu8
n=1 is a sequence such that

xn ď zn ď yn, then lim
nÑ8

zn = L.

Proof. Let ε ą 0 be given. Since lim
nÑ8

xn = L and lim
nÑ8

yn = L, by definition

DN1 ą 0 Q L ´ ε ă xn ă L+ ε whenever n ě N1

and
DN2 ą 0 Q L ´ ε ă yn ă L+ ε whenever n ě N2 .

Let N = maxtN1, N2u. Then for n ě N , L´ ε ă xn ď zn ď yn ă L+ ε; thus lim
nÑ8

zn = L. ˝

Proposition 1.35. If xn ď yn for all n P N and lim
nÑ8

xn = x, lim
nÑ8

yn = y, then x ď y.
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Proof. Assume the contrary that x ą y. Let ε =
x ´ y

2
. By the fact that xn Ñ x and

yn Ñ y as n Ñ 8, there exists N1, N2 ą 0 such that

|xn ´ x| ă
x ´ y

2
whenever n ě N1 and |yn ´ y| ă

x ´ y

2
whenever n ě N2 .

Let N = maxtN1, N2u. Then for n ě N ,

yn ă y +
x ´ y

2
=

x+ y

2
= x ´

x ´ y

2
ă xn ,

a contradiction. ˝

Corollary 1.36. 1. If a ď xn (or xn ď b) and lim
nÑ8

xn = x, then a ď x (or x ď b).

2. If a ă xn (or xn ă b) and lim
nÑ8

xn = x, then a ď x (or x ď b).

Definition 1.37. Let (F,+, ¨,ď) be an ordered field, and txnu8
n=1 be a sequence in F.

1. txnu8
n=1 is said to be bounded from above（有上界）if there exists B P F, called

an upper bound of the sequence, such that xn ď B for all n P N.

2. txnu8
n=1 is said to be bounded from below（有下界）if there exists A P F, called a

lower bound of the sequence, such that A ď xn for all n P N.

3. txnu8
n=1 is said to be bounded（有界的）if it is bounded from above and from below.

Remark 1.38. An equivalent definition of bounded sequences is stated as follows: txnu8
n=1

is said to be bounded if there exists M ą 0 such that |xn| ď M for all n P N.

Proposition 1.39. A convergent sequence is bounded（數列收斂必有界）.

Proof. Let txnu8
n=1 be a convergent sequence with limit x. Then there exists N ą 0 such

that
xn P (x ´ 1, x+ 1) @n ě N .

Let M = max
␣

|x1|, |x2|, ¨ ¨ ¨ , |x
N´1

|, |x| + 1
(

. Then |xn| ď M for all n P N. ˝

Theorem 1.40. Suppose that xn Ñ x and yn Ñ y as n Ñ 8. Then

1. xn ˘ yn Ñ x ˘ y as n Ñ 8.

2. xn ¨ yn Ñ x ¨ y as n Ñ 8.

3. If yn, y ‰ 0, then xn
yn

Ñ
x

y
as n Ñ 8.
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Proof. 1. Let ε ą 0 be given. Since xn Ñ x and yn Ñ y as n Ñ 8, there exist N1, N2 P N

such that |xn ´ x| ă
ε

2
for all n ě N1 and |yn ´ x| ă

ε

2
whenever n ě N2. Define

N = maxtN1, N2u. Then N P N and if n ě N ,

|(xn ˘ yn) ´ (x ˘ y)| ď |xn ´ x | + |yn ´ y | ă ε ;

thus xn ˘ yn Ñ x ˘ y as n Ñ 8.

2. Since xn Ñ x and yn Ñ y as n Ñ 8, by Proposition 1.39 there exists M ą 0 such
that |xn| ď M and |yn| ď M . Let ε ą 0 be given. Then

(DN1 P N)
(
n ě N1 ñ |xn ´ x | ă

ε

2M

)
,

and
(DN2 P N)

(
n ě N2 ñ |yn ´ y | ă

ε

2M

)
.

Define N = maxtN1, N2u. Then N P N, and if n ě N ,

|xn ¨ yn ´ x ¨ y| = |xn ¨ yn ´ xn ¨ y + xn ¨ y ´ x ¨ y| ď |xn ¨ (yn ´ y)| + |y ¨ (xn ´ x)|

ď M ¨ |yn ´ y| +M ¨ |xn ´ x| ă M ¨
ε

2M
+M ¨

ε

2M
= ε.

3. It suffices to show that lim
nÑ8

1

yn
=

1

y
if yn, y ‰ 0 (because of 2). Since lim

nÑ8
yn = y, there

exists N1 P N such that |yn ´ y| ă
|y|

2
whenever n ě N1. Therefore, |y| ´ |yn| ă

|y|

2

for all n ě N1 which further implies that |yn| ą
|y|

2
for all n ě N1.

Let ε ą 0 be given. Since lim
nÑ8

yn = y, there exists N2 P N such that |yn ´ y| ă
|y|2

2
ε

whenever n ě N2. Define N = maxtN1, N2u. Then N P N and if n ě N ,
ˇ

ˇ

ˇ

1

yn
´

1

y

ˇ

ˇ

ˇ
=

|yn ´ y|

|yn||y|
ă

|y|2

2
ε ¨

1

|y|

2

|y|
= ε . ˝

Theorem 1.41. An ordered field (F,+, ¨,ď) has Archimedean Property if and only if the
sequence

!

1

n

)8

n=1
converges to 0.

Proof. “ñ” Let ε ą 0 be given. Define x =
1

ε
. Then x ą 0 by Proposition 1.13. Moreover,

Archimedean Property of F implies that there exists N such that x ă N . Then N ą 0

and if n ě N ,
ˇ

ˇ

ˇ

1

n
´ 0

ˇ

ˇ

ˇ
=

1

n
ď

1

N
ă

1

x
= ε .
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“ð” Let x P F be given. If x ď 0, we choose n = 1 so that x ă 1. If x ą 0, let ε = 1

x
. Then

ε ą 0 by Proposition 1.13. Since 1

n
Ñ 0 as n Ñ 8, there exists N ą 0 such that

1

n
=
ˇ

ˇ

ˇ

1

n
´ 0

ˇ

ˇ

ˇ
ă ε =

1

x
whenever n ě N .

In particular, 1

N
ă

1

x
which implies that x ă N . ˝

Remark 1.42. There are ordered fields that do not have Archimedean Property, and
these fields are called non-Archimedean ordered fields (while an ordered field satisfying
Archimedean Property is called Archimedean ordered fields - AP 有序體). In a non-
Archimedean ordered field, the sequence

!

1

n

)8

n=1
does not converge to 0.

1.3 Monotone Sequence Property
Definition 1.43. Let (F,+, ¨,ď) be an ordered field, and txnu8

n=1 be a sequence in F.

1. txnu8
n=1 is said to be increasing/non-decreasing if xn ď xn+1 for all n P N.

2. txnu8
n=1 is said to be decreasing/non-increasing if xn ě xn+1 for all n P N.

3. txnu8
n=1 is said to be strictly increasing if xn ă xn+1 for all n P N.

4. txnu8
n=1 is said to be strictly decreasing if xn ą xn+1 for all n P N.

A sequence is called (strictly) monotone if it is either (strictly) increasing or (strictly)
decreasing.

Definition 1.44. An ordered field F is said to satisfy the monotone sequence property
(MSP) if every bounded monotone sequence converges to a limit in F.

Remark 1.45. An equivalent definition of the monotone sequence property is that every
monotone increasing sequence bounded from above converges; that is, if each sequence
txnu8

n=1 Ď F satisfying

(i) xn ď xn+1 for all n P N,

(ii) there exists M P F such that xn ď M for all n P N,

is convergent, then we say F satisfies the monotone sequence property.
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Example 1.46. Consider the sequence tynu8
n=1 in Q defined by

y1 =
1

2
, yn+1 =

1

2 +
1

2 + yn

.

1. tynu8
n=1 is bounded from below by zero.

2. tynu8
n=1 is a decreasing sequence in Q (which can be proved by induction).

If lim
nÑ8

yn = y, then Theorem 1.40 implies that y =
1

2 +
1

2 + y

from which we conclude that

y = ´1 +
?
2. Since y R Q, tynu8

n=1 does not converge (to a limit) in Q. In other words, Q
does not satisfy the monotone sequence property.

Proposition 1.47. An ordered field satisfying the monotone sequence property satisfies
Archimedean Property; that is, if F is an ordered field satisfying the monotone sequence
property, then for all x P F, there exists n P N such that x ă n.

Proof. Assume the contrary that there exists x P F such that n ď x for all n P N. Let
xn = n. Then txnu8

n=1 is increasing and bounded from above. By the monotone sequence
property of F, there exists px P F such that xn Ñ px as n Ñ 8; thus there exists N ą 0 such
that

|xn ´ px| ă
1

4
whenever n ě N .

In particular, |N ´ px| ă
1

4
, |N + 1 ´ px| ă

1

4
; thus

1 = |N + 1 ´ N | ď |N + 1 ´ px| + |px ´ N | ă
1

4
+

1

4
=

1

2
,

a contradiction. ˝

Example 1.48. Let (F,+, ¨,ď) be an ordered field satisfying the monotone sequence prop-
erty, and y P F be a given positive number (that is, y ą 0). Define xn =

Nn

2n
, where Nn is

the largest integer such that x2n ď y; that is,
(Nn

2n

)2
ď y but

(Nn + 1

2n

)2
ą y (for example, if

y = 2, then x1 =
2

21
, x2 =

5

22
, x3 =

11

23
, ¨ ¨ ¨ ). Then

1. xn is bounded from above: since x2n ď y ď 2y+y2+1 = (y+1)2, by the non-negativity
of xn and y and Remark 1.15 we must have 0 ď xn ď y + 1.
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2. xn is increasing: by the definition of Nn,

N2
n ď 22n ¨ y ñ 4 ¨ N2

n ď 22n+2 ¨ y = 22(n+1) ¨ y ñ
( 2Nn

2n+1

)2
ď y ñ 2Nn ď Nn+1 .

Therefore, xn =
Nn

2n
=

2Nn

2n+1
ď

Nn+1

2n+1
= xn+1. Since F satisfies the monotone sequence

property, there exists x P F such that xn Ñ x as n Ñ 8. By Theorem 1.40, x2n Ñ x2,
and by Proposition 1.35, x2 ď y.

Now we show x2 = y. To this end observe that(
xn +

1

2n

)2
=

(Nn

2n
+

1

2n

)
=

(Nn + 1

2n

)2
ą y;

thus x2n ď y ď
(
xn +

1

2n

)2. By Archimedean propery of F (Proposition 1.47), lim
nÑ8

1

2n
= 0;

thus Theorem 1.40 implies that x2 = lim
nÑ8

x2n = lim
nÑ8

(
xn +

1

2n

)2
= y. Note that Proposition

1.14 implies that such an x is unique if x ą 0.
In general, one can define the n-th root of non-negative number y in an ordered field

satisfying the monotone sequence property. The construction of the n-th root of y P F is
left as an exercise.

Definition 1.49. For n P N, the n-th root of a non-negative number y in an ordered field
satisfying the monotone sequence property is the unique non-negative number x satisfying
xn = y. One writes y1/n or n

?
y to denote n-th root of y.

1.4 Least Upper Bound Property
Definition 1.50. Let (F,+, ¨,ď) be an ordered field, and H ‰ A Ď F. A number M P F is
called an upper bound (上界) for A if x ď M for all x P A, and a number m P F is called
a lower bound (下界) for A if x ě m for all x P A. If there is an upper bound for A, then
A is said to be bounded from above, while if there is a lower bound for A, then A is said
to be bounded from below. A number b P F is called a least upper bound (最小上界)
of A if

1. b is an upper bound for A, and

2. if M is an upper bound for A, then M ě b.

A number a is called a greatest lower bound (最大下界) of A if
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1. a is a lower bound for A, and

2. if m is a lower bound for A, then m ď a.

( )
A

• •
m M

a lower bound for A an upper bound for A

If A is not bounded from above, the least upper bound of A is set to be 8, while if A is not
bounded from below, the greatest lower bound of A is set to be ´8. The least upper bound
of A is also called the supremum of A and is usually denoted by lubA or supA, and “the”
greatest lower bound of A is also called the infimum of A, and is usually denoted by glbA
or infA. If A = H, then supA = ´8, infA = 8.

We emphasize that “supA = 8” is purely a notation denoting that A is not bounded
from above; however, 8 R F and supA does not exist.

Remark 1.51. Let (F,+, ¨,ď) be an ordered field.

1. If b1, b2 P F are least upper bounds for a set A Ď F, then b1 = b2 (since b1 ď b2 and
b2 ď b1 for b1, b2 are also upper bounds for A). Therefore, supA is a well-defined
concept. Similarly, infA is a well-defined concept.

2. Since the sentence “x P H ñ x ď M” is true for all M P F, we conclude that
sup H = ´8. Similarly, inf H = 8.

Example 1.52. In the ordered field R (pretended that you know what R is),

1. sup(0, 3) = 3 and inf(0, 3) = 0.

2. supN does not exist, but infN = 1.

3. Let A = t2´k | k P Nu. Then infA = 0 and supA =
1

2
.

4. Let B = tx P Q |x2 ă 2u. Then infB = ´
?
2 and supB =

?
2.

How about considering the supremum and infimum for the sets above in the ordered field
Q?

Proposition 1.53. Let (F,+, ¨,ď) be an ordered field, and A be a non-empty subset of F.
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1. b = supA P F if and only if

(i) b is an upper bound for A. (ii) (@ ε ą 0)(D x P A)(x ą b ´ ε).

2. a = infA P F if and only if

(i) a is a lower bound for A. (ii) (@ ε ą 0)(D x P A)(x ă a+ ε).

Proof. It suffices to prove 1.

“ñ” (i) is part of the definition of being a least upper bound.

(ii) If M is an upper bound for A, then we must have M ě b; thus b ´ ε is not an
upper bound for A. Therefore, there exists x P A such that x ą b ´ ε.

“ð” We show that if M is an upper bound of A, then M ě b. Assume the contrary that
there exists an upper bound M for A satisfying M ă b. Let ε = b´M . Then ε ą 0

and there is no x P A satisfying x ą b ´ ε, a contradiction. ˝

Corollary 1.54. Let (F,+, ¨,ď) be an ordered field, and A be a non-empty subset of F.

1. b = supA P F if and only if

(i) (@ ε ą 0)(@x P A)(x ă b+ ε). (ii) (@ ε ą 0)(D x P A)(x ą b ´ ε).

2. a = infA P F if and only if

(i) (@ ε ą 0)(@x P A)(x ą a ´ ε). (ii) (@ ε ą 0)(D x P A)(x ă a+ ε).

Proof. By Proposition 1.53, it suffices to show that

condition 1(i) ô b is an upper bound for A.

Since the direction “ð” is trivial, we only need to prove the direction “ñ”. Suppose the
contrary that b is not an upper bound for A. Then there exists x P A such that b ă x. Let
ε = x ´ s. Then ε ą 0 and we do not have 1(i) since x P A but x ă s+ ε. ˝

Proposition 1.55. Let (F,+, ¨,ď) be an order field, and H ‰ A Ď B Ď F. Then infB ď

infA ď supA ď supB whenever those numbers exist in F or are ˘8.

Proof. We proceed as follows.
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1. supA ď supB: Let b = supB, then for all x P B, x ď b. Since A Ď B, then for all
x P A, x ď b; hence b is also an upper bound for A. Since supA is the least upper
bound of A and b is an upper bound for A, then supA ď b = supB.

2. It is similar to prove infB ď infA.

3. It is trivially true that infA ď supA. ˝

Definition 1.56 (Least Upper Bound Property). Let (F,+, ¨,ď) be an ordered field. F is
said to satisfy the least upper bound property (LUBP) if every non-empty subset of F
that has an upper bound in F has a supremum that is an element of F（非空有上界的集
合必有最小上界）. The greatest lower bound property (GLBP) for ordered fields is
defined similarly.

Proposition 1.57. Every ordered field satisfying the least upper bound property satisfies
Archimedean Property; that is, if F is an ordered field satisfying the least upper bound
property, then for all x P F, there exists n P N such that x ă n.

Proof. Let (F,+, ¨,ď) be an ordered field with the least upper bound property, and x P F
be given. If x ă 1, then the choice n = 1 validates n ą x. Suppose x ě 1. Define
A =

␣

n P N
ˇ

ˇn ď x
(

. Then 1 P A and x is an upper bound for A. By the least upper bound
property of F, s ” supA P F exists. Since s is the least upper bound of A, s ´ 1 is not
an upper bound for A; thus there exists m P A such that m ą s ´ 1 or s ă m + 1. Then
m+ 1 R A which implies that m+ 1 ď x. The choice n = m+ 1 then satisfies n ą x. ˝

1.5 Bolzano-Weierstrass Property
Definition 1.58. A sequence tyju

8
j=1 is called a subsequence (子數列) of a sequence

txnu8
n=1 if there exists a strictly increasing function ϕ : N Ñ N such that yj = xϕ(j). In this

case, we often write ϕ(j) = nj and yj = xnj
.

In other words, a subsequence is a sequence that can be derived from another sequence
by deleting some elements without changing the order of remaining elements. Let f : N Ñ F
be a sequence and xn = f(n). A subsequence txnj

u8
j=1 of txnu8

n=1 is the image of an infinite
subset tn1, n2, ¨ ¨ ¨ u of N under the map f (or simply the sequence f ˝ ϕ : N Ñ F).

x2x3x1 x4 x7x6

x
n4

xn3

x5 x8

x
n5

x
n1
x
n2
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Example 1.59. Consider the sequence txnu8
n=1 defined recursively by

x1 =
1

2
, x2 =

1

2 +
1

2

, ¨ ¨ ¨ , xn+1 =
1

2 + xn
.

Then the sequence tynu8
n=1 given in Example 1.46 is a subsequence of txnu8

n=1. In fact,

yn = x2n´1 @n P N (with the choice of ϕ(n) = 2n ´ 1) .

The following proposition concerns equivalent conditions for the convergence of se-
quences.

Proposition 1.60. Let (F,+, ¨,ď) be an ordered field, txnu8
n=1 be a sequence in F, and

x P F. Then

1. xn Ñ x as n Ñ 8 if and only if every proper subsequence of txnu8
n=1 converges to x.

2. xn Ñ x as n Ñ 8 if and only if every proper subsequence of txnu8
n=1 has a further

subsequence that converges to x.

Proof. 1. “ñ” Let txnj
u8
j=1 be a subsequence of a convergent sequence txnu8

n=1 with limit
x, and ε ą 0 be given. Then there exists N ą 0 such that |xn ´ x| ă ε whenever
n ě N . Since nj ě j for all j P N, we find that |xnj

´ x| ă ε whenever j ě N .

“ð” Let ε ą 0 be given. Since every proper subsequence of txnu8
n=1 converges to x,

the subsequence txn+1u8
n=1 converges to x. Therefore, there exists N1 ą 0 such that

|xn+1 ´ x| ă ε whenever n ě N1 .

Let N = N1 + 1. Then |xn ´ x| ă ε whenever n ě N .

2. The direction “ñ” follows from 1. For the direction “ð”, assume the contrary that
xn Ñ̂x as n Ñ 8. Then

(D ε ą 0)
(
#
␣

n P N
ˇ

ˇ |xn ´ x| ě ε
(

= 8
)
.

Let
␣

n P N
ˇ

ˇ |xn ´ x| ě ε
(

=
␣

nj P N
ˇ

ˇnj ă nj+1 for all j P N
(

. The subsequence
txnj

u8
j=1 clearly does not have any subsequence

␣

xnjk

(8

k=1
which converge to x, a

contradiction. ˝
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Remark 1.61. 1 of Proposition 1.60 indeed can be rephrased as “txnu8
n=1 converges if and

only if every proper subsequence of txnu8
n=1 converges”. This fact is left as an exercise.

Recall that sequence txnu8
n=1 converges to x if and only if

@ ε ą 0, #
␣

n P N
ˇ

ˇxn R (x ´ ε, x+ ε)
(

ă 8 .

The statement above implies that

@ ε ą 0, #
␣

n P N
ˇ

ˇxn P (x ´ ε, x+ ε)
(

= 8 ; (1.5.1)

however, if x satisfies (1.5.1), x might not be the limit of the sequence. Nevertheless, a
candidate for the limit of a sequence must satisfy (1.5.1), and we call such a point a cluster
point of txnu8

n=1. To be more precise, we have the following

Definition 1.62. A point x is called a cluster point of a sequence txnu8
n=1 if (1.5.1) holds.

We note that (1.5.1) is equivalent to that

@ ε ą 0, #
␣

n P N
ˇ

ˇ |xn ´ x| ă ε
(

= 8 .

Example 1.63. Let xn = (´1)n. Then 1 and ´1 are the only two cluster points of txnu8
n=1.

Example 1.64. Let xn = (´1)n +
1

n
.

Claim: 1 and ´1 are cluster points of txnu8
n=1.

Let ε ą 0 be given. We observe that
␣

n P N
ˇ

ˇxn P (1 ´ ε, 1 + ε)
(

Ě

!

n P N
ˇ

ˇ

ˇ
n is even, 1

n
ă ε

)

;

thus #
␣

n P N
ˇ

ˇxn P (1 ´ ε, 1 + ε)
(

= 8. Similarly, ´1 is a cluster point. Moreover, if
a ‰ ˘1, a is not a cluster point of txnu8

n=1.

Example 1.65. Let S = Q X [0, 1]. Then S is countable since it is a subset of a countable
set Q. Therefore, there exists f : N 1´1

ÝÝÑ
onto

S or equivalently S = tq1, q2, ¨ ¨ ¨ , qn, ¨ ¨ ¨ u. The
collection of all cluster points of tqnu8

n=1 is [0, 1] since every open interval (with mid-point
in [0, 1]) contains infinitely many rational numbers in S.

Definition 1.66 (Bolzano-Weierstrass Property). Let (F,+, ¨,ď) be an ordered field. F is
said to satisfy the Bolzano-Weierstrass property (BWP) if every bounded sequence
in F has a convergent subsequence; that is, every bounded sequence in F has a subsequence
that converges to a limit in F.
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Remark 1.67. Q does not satisfy the Bolzano-Weierstrass property. Example 1.46 provides
an counterexample of a bounded divergent sequence in Q.

Proposition 1.68. Let (F,+, ¨,ď) be an ordered field satisfying the Bolzano-Weierstrass
Property, txnu8

n=1 be a sequence in F, and x P F. Then xn Ñ x as n Ñ 8 if and only if
txnu8

n=1 is bounded and x is the only cluster point of txnu8
n=1.

Proof. “ñ” The boundedness is concluded by Proposition 1.39. For uniqueness, suppose

the contrary that there is another cluster point y ‰ x. Let ε = |x ´ y|

2
. Then

#
␣

n P N
ˇ

ˇ |xn ´ y| ă ε
(

= 8 .

Since
␣

n P N
ˇ

ˇ |xn ´ x| ą ε
(

Ě
␣

n P N
ˇ

ˇ |xn ´ y| ă ε
(

(this inclusion is left as an
exercise), we find that

#
␣

n P N
ˇ

ˇ |xn ´ x| ą ε
(

= 8 ,

a contradiction to that xn Ñ x as n Ñ 8.

“ð” Suppose that txnun=1 is a bounded sequence in F and has x as the only cluster
point but txnu8

n=1 does not converge to x. Then

D ε ą 0 Q #
␣

n P N
ˇ

ˇxn R (x ´ ε, x+ ε)
(

= 8 .

Write
␣

n P N
ˇ

ˇxn R (x ´ ε, x + ε)
(

= tn1, n2, ¨ ¨ ¨ , nk, ¨ ¨ ¨ u. Then we find a subse-
quence

␣

xnk

(8

k=1
lying outside (x´ ε, x+ ε). Since

␣

xnk

(8

k=1
is bounded, the Bolzano-

Weierstrass Property implies that there exists a convergent subsequence
␣

xnkj

(8

j=1

with limit y. Since xnkj
R (x ´ ε, x + ε), y R (x ´ ε, x + ε) by Proposition 1.35; thus

y ‰ x. On the other hand, the limit lim
jÑ8

xnkj
= y implies that for every ε ą 0,

␣

j P N
ˇ

ˇ

ˇ

ˇxnkj
´ y

ˇ

ˇ ă ε
(

Ě
␣

j P N
ˇ

ˇ j ě J
(

for some J ą 0; thus #
␣

j P N
ˇ

ˇ

ˇ

ˇxnkj
´ y

ˇ

ˇ ă ε
(

= 8 which shows that y is also a
cluster point of txnu8

n=1, a contradiction to the assumption that x is the only cluster
point of txnu8

n=1. ˝

Example 1.69. Consider the sequence txnu8
n=1 defined by

xn =

"

n if n is odd ,
1 if n is even .

Then 1 is the only cluster point of txnu8
n=1, but txnu8

n=1 does not converge to 1 (since xn is
not bounded).
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1.6 Cauchy Sequences
If a sequence txnu8

n=1 in an ordered field F converges, then

D! x P F Q @ ε ą 0,#
␣

n P N
ˇ

ˇxn R (x ´ ε, x+ ε)
(

ă 8 .

We note that the statement above implies that if txnu8
n=1 converges, then

(@ ε ą 0)(D an interval I of length 2ε)
(
#
␣

n P N
ˇ

ˇxn R I
(

ă 8
)
. (‹)

The statement above motivates the following

Definition 1.70. A sequence txnu8
n=1 in an ordered field is said to be Cauchy if

(@ ε ą 0)(DN ą 0)
(
n,m ě N ñ |xn ´ xm| ă ε

)
.

Remark 1.71. (‹) 這個敘述的中心思想是：給定任一正數 ε, 我們都能找到一個長度是
2ε 的區間使得落在此區間外的 xn 只有有限個。因為當對每個長度我們都能找到這樣的區

間時，才有機會找到 txnu8
n=1 的極限（而這個極限一定落在所有這樣的區間之內）。

Example 1.72. In Q, x1 = 3, x2 = 3.1, x3 = 3.14, x4 = 3.141, ¨ ¨ ¨ . Then txnu8
n=1 is a

Cauchy sequence, but is not convergent. Therefore, a Cauchy sequence in an ordered field
may not converge.

Example 1.73. Let (F,+, ¨,ď) be an Archimedean ordered field, and txnu8
n=1 Ď F be a

sequence satisfying |xn ´ xn+1| ă
1

2n+1
for all n P N.

Claim: txnu8
n=1 is Cauchy. Given ε ą 0, choose N ą 0 such that 1

2N
ă ε (such an N exists

because of Theorem 1.41 and the fact that 2N ą N for all N P N). Then if N ď n ă m,

|xn ´ xm| ď |xn ´ xn+1| + |xn+1 ´ xm|

ď ¨ ¨ ¨

ď |xn ´ xn+1| + |xn+1 ´ xn+2| + ¨ ¨ ¨ + |xm´1 ´ xm|

ď
1

2n+1
+

1

2n+2
+ ¨ ¨ ¨ +

1

2m

ď
1

2n
ď

1

2N
ă ε ;

thus txnu8
n=1 is Cauchy in F.

Proposition 1.74. Every convergent sequence is Cauchy.
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Proof. Let txnu8
n=1 be a convergent sequence with limit x, and ε ą 0 be given. By the

definition of the convergence of sequences, there exists N ą 0 such that |xn ´ x| ă
ε

2
whenever n ě N . Then by triangle inequality, if n,m ě N ,

|xn ´ xm| ď |xn ´ x| + |x ´ xm| ă
ε

2
+
ε

2
= ε ;

thus txnu8
n=1 is Cauchy. ˝

Lemma 1.75. Every Cauchy sequence is bounded.

Proof. Let txnu8
n=1 be Cauchy. There exists N ą 0 such that |xn´xm| ă 1 for all n,m ě N .

In particular, |xn ´ x
N

| ă 1 if n ě N or equivalently,

x
N

´ 1 ă xn ă x
N
+ 1 @n ě N .

Let M = max
␣

|x1|, |x2|, ¨ ¨ ¨ , |x
N´1

|, |x
N

| + 1
(

. Then |xn| ď M for all n P N. ˝

Lemma 1.76. If a subsequence of a Cauchy sequence is convergent, then this Cauchy
sequence also converges.

Proof. Let txnu8
n=1 be a Cauchy sequence with a convergent subsequence txnj

u8
j=1 whose

limit is x, and ε ą 0 be given. Then there exist K,N ą 0 such that

|xnj
´ x| ă

ε

2
whenever j ě K, and |xn ´ xm| ă

ε

2
whenever n,m ě N .

Choose j ě maxtK,Nu. Then nj ě N ; thus if n ě N ,

|xn ´ x| ď |xn ´ xnj
| + |xnj

´ x| ă
ε

2
+
ε

2
= ε . ˝

Remark 1.77. Combining Proposition 1.60 and Lemma 1.76, we conclude that a Cauchy
sequence converges if and only if a subsequence converges.

1.7 Completeness
In this section, we establish the equivalency between those properties introduced in the pre-
vious sections. These equivalent properties lead to an important concept, the completeness
of ordered fields. There is exactly one ordered field satisfying all these properties, and this
ordered field will be the real number system R.
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Theorem 1.78. An ordered field satisfies the monotone sequence property if and only if it
satisfies the least upper bound property（有序體中 MSP 與 LUBP 為等價性質）.

Proof. Let (F,+, ¨,ď) be an ordered field.

“ð” Suppose that F satisfies the least upper bound property, and let txnu8
n=1 Ď F be an

increasing sequence bounded from above. By the least upper bound property of F,
the set tx1, x2, ¨ ¨ ¨ , xn, ¨ ¨ ¨ u has a least upper bound x P F. We next show that x is
the limit of txnu8

n=1.

Let ε ą 0 be given. By Corollary 1.54, there exists x
N

such that x
N

ą x ´ ε.
Therefore, the fact that txnu8

n=1 is increasing and bounded from above by x imply
that

x ´ ε ă xn ď x ă x+ ε @n ě N .

This shows that |xn ´ x| ă ε whenever n ě N ; thus xn Ñ x as n Ñ 8.

“ñ Suppose that F satisfies the monotone sequence property, and let A be a non-empty
subset of F bounded from above. Let Nn is the largest integer satisfying that Nn

2n
is

not an upper bound for A but Nn + 1

2n
is an upper bound for A, and define xn =

Nn

2n
.

If M is an upper bound for A, xn ď M for all n P N; thus txnu8
n=1 is bounded from

above. Moreover, by the fact that Nn+1 is the largest integer satisfying Nn+1

2n+1
is not

an upper bound for A, we must have

xn =
Nn

2n
=

2Nn

2n+1
ď
Nn+1

2n+1
= xn+1 ;

thus txnu8
n=1 is an increasing sequence. Therefore, the monotone sequence property

implies that txnu8
n=1 converges to a limit x P F. Next we show that x is the least

upper bound of A.

Let ε ą 0 be given. Then x + ε must be an upper bound for A for otherwise
if ε ą

1

2k
for some k P N, then Nk is not the largest integer satisfying the required

property. On the other hand, since xn Ñ x as n Ñ 8, there exists N ą 0 such that
|xn´x| ă ε whenever n ě N . Therefore, x

N
ą x´ε which shows that x´ε cannot be

an upper bound for A; thus there exists y P A such that y ą x ´ ε. By Corollary
1.54, we conclude that x = supA. ˝

Theorem 1.79. An ordered field satisfying the monotone sequence property satisfies the
Bolzano-Weierstrass property（具 MSP 的有序體亦有 BWP）.
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Proof. Let (F,+, ¨,ď) be an ordered field satisfying the monotone sequence property, and
txnu8

n=1 be a bounded sequence satisfying |xn| ď M for all n P N. Divide [´M,M ] into
two intervals [´M, 0], [0,M ], and denote one of the two intervals containing infinitely many
xn as [a1, b1]; that is, #

␣

n P N
ˇ

ˇxn P [a1, b1]
(

= 8. Divide [a1, b1] into two intervals[
a1,

a1 + b1
2

]
,
[a1 + b1

2
, b1

]
, and denote one of the two intervals containing infinitely many xn

as [a2, b2]. We continue this process, and obtain a sequence of intervals [ak, bk] such that
[ak+1, bk+1] Ď [ak, bk], |bk ´ ak| =

M

2k´1
and #tn P N |xn P [ak, bk]u = 8 for all k P N.

Since [ak, bk] Ě [ak+1, bk+1] for all k P N, we find that taku8
k=1 is increasing and tbku8

k=1

is decreasing. Moreover, ak ď M , bk ě ´M . Therefore, the monotone sequence property
implies that ak converges to a P F and bk converges to b P F. On the other hand,

b ´ a = lim
kÑ8

(bk ´ ak) = lim
kÑ8

M

2k´1
= 0 ,

where we have used Proposition 1.47 along with Theorem 1.41 (and Theorem 1.40) to
conclude the limit. Therefore, a = b.

Finally, we construct a convergent subsequence of txnu8
n=1. Let xn1 be an element be-

longing to [a1, b1]. Since #tn P N |xn P [a1, b1]u = 8, we can choose n2 ą n1 such that
xn2 P [a2, b2], and for the same reason we can choose n3 ą n2 such that xn3 P [a3, b3]. We
continue this process and obtain a subsequence xnk

P [ak, bk] with nk ą nk´1.

−M O

a1

a2

M

b1

b2

]
]
b3a3

[

xn2

xn1

xn3

][[

Since ak ď xnk
ď bk for all k P N, by Sandwich Lemma lim

kÑ8
xnk

= a = b. ˝

Theorem 1.80. Every Cauchy sequence in an ordered field satisfying the Bolzano-Weierstrass
property converges（具 BWP 的有序體中的柯西數列必收斂）.

Proof. Let txnu8
n=1 be a Cauchy sequence in an ordered field satisfying the Bolzano-Weierstrass

property. By Lemma 1.75, txnu8
n=1 is bounded; thus the Bolzano-Weierstrass property pro-

vides a convergent subsequence
␣

xnj

(8

j=1
of txnu8

n=1. The convergence of txnu8
n=1 is then

guaranteed by Lemma 1.76. ˝



§1.7 Completeness 27

Theorem 1.81. An Archimedean ordered field satisfying the property that every Cauchy
sequence converges satisfies the monotone sequence property（滿足柯西數列必收斂的 AP
有序體也有 MSP）.

Proof. Let (F,+, ¨,ď) be an Archimedean ordered field. Suppose the contrary that there
is a bounded increasing sequence txnu8

n=1 that does not converge to a limit in F. By the
assumption that every Cauchy sequence converges, txnu8

n=1 cannot be Cauchy; thus

(D ε ą 0)(@N ą 0)(Dn,m ě N)(|xn ´ xm| ě ε) .

Let N = 1, there exists n2 ą n1 ě 1 such that |xn1 ´ xn2 | ě ε. Let N = n2 + 1, there exists
n4 ą n3 ě n2 +1 such that |xn3 ´ xn4 | ě ε. We continue this process and obtain a sequence
txnj

u8
j=1 satisfying

ˇ

ˇxn2k´1
´ xn2k

ˇ

ˇ ě ε for all k P N.

x
n1

x
n2
x
n3

x
n4

x
n5

x
n8

≥ ε

x
n6

x
n7

≥ ε ≥ ε ≥ ε

Suppose that txnu8
n=1 is bounded from above by M ; that is, xn ď M for all n P N. Then

for each k P N,
M ě xn2k

= xn2k
´ xn2k´1

+ xn2k´1
ě ε+ xn2k´2

= ε+ xn2k´2
´ xn2k´3

+ xn2k´3

ě ε+ ε+ xn2k´4
= 2ε+ xn2k´4

´ xn2k´5
+ xn2k´5

ě ¨ ¨ ¨ ě (k ´ 1)ε+ xn1 ;

thus
k ď 1 +

M ´ xn1

ε
@ k P N ,

a contradiction to Archimedean Property. ˝

Summary: In an Archimedean ordered field, the following four properties are equivalent:

1. the monotone sequence property (單調有界數列必收斂),

2. the least upper bound property (非空集合有上界必有最小上界),

3. the Bolzano-Weierstrass property (有界數列必有收斂子數列),

4. the property that every Cauchy sequence converges (柯西數列必收斂).

Such property is called the completeness（完備性）, and we have the following

Definition 1.82. An ordered field F is said to be complete (完備) (or have the complete-
ness property, 具備完備性) if it satisfies the monotone sequence property.
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Theorem 1.83. There is a complete ordered field. Moreover, if (F,+, ¨,ď) and (F ,‘,d,ď)

are complete ordered fields, there exists a bijection ϕ : F Ñ F such that

1. ϕ(x+ y) = ϕ(x) ‘ ϕ(y) and ϕ(x ¨ y) = ϕ(x) d ϕ(y) for all x, y P F.

2. The order ď and ď is consistent under the map ϕ; that is, if x ď y, then ϕ(x) ď ϕ(y).

In other words, two complete order fields are isomorphic (so that there is one and only one
complete ordered field).

Axiom of the completeness of real number system R: The real number system R is
complete.

Theorem 1.84. Every Cauchy sequence in R is convergent.

Remark 1.85. Let f : A Ñ R be a real-valued function. Then the supremum of the image
of A under f is denoted by sup

A
f or sup

xPA
f(x). In other words,

sup
A
f = sup

xPA
f(x) = sup

␣

f(x)
ˇ

ˇx P A
(

.

Similarly, the infimum of the image of A under f is denoted by inf
A
f or inf

xPA
f(x).

1.8 Limit Inferior and Limit Superior
Definition 1.86. A sequence txnu8

n=1 is said to diverge to infinity if for all M ą 0, there
exists N ą 0 such that xn ą M whenever n ě N . It is said to diverge to negative
infinity if t´xnu8

n=1 diverge to infinity. We use lim
nÑ8

xn = 8 or ´8 to denote that txnu8
n=1

diverges to infinity or negative infinity.

Remark 1.87. By Definition 1.26, the limit of a sequence txnu8
n=1 does not exist if lim

nÑ8
xn =

8 or ´8; however, we sometimes also call 8 or ´8 the limit of txnu8
n=1.

Definition 1.88. The extended real number system, denoted by R˚, is the number
system R Y t8,´8u, where 8 and ´8 are two symbols satisfying ´8 ă x ă 8 for all
x P R.

Remark 1.89. 1. R˚ is not a field since 8 and ´8 do not have multiplicative inverse.
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2. The definition of the least upper bound of a set can be simplified as follows: Let
S Ď R˚ be a set (not necessary non-empty set). A number b P R˚ is said to be the
least upper bound of S if

(a) b is an upper bound for S (that is, s ď b for all s P S);

(b) If M P R˚ is an upper bound for S, then b ď M .

No further discussion (such as S = H or S is not bounded from above) has to be
made. The greatest lower bound can be defined in a similar fashion.

3. Any sets in R˚ has a least upper bound and a greatest lower bound in R˚, even the
empty set and unbounded set.

4. Proposition 1.53 for the case F = R can be rephrased as follows: Let S Ď R˚. Then
b = supS P R if and only if

(a) b is an upper bound for S;

(b) for all ε ą 0, there exists s P S such that s ą b ´ ε.

Note that b P R is crucial since there is no s P R˚ such that s ą 8 ´ ε = 8. The
greatest lower bound counterpart can be made in a similar fashion.

5. In light of Definition 1.86, we can redefine cluster points of a real sequence as follows:
A number x P R˚ is said to be a cluster point of a sequence txnu8

n=1 Ď R if there exists
a subsequence txnj

u8
j=1 such that lim

jÑ8
xnj

= x. Note that now we can talk about if 8

or ´8 is a cluster points of a real sequence.
In the rest of the section, one is allowed to find the least upper bound and the greatest

lower bound of a subset in R˚.

Definition 1.90. Let txnu8
n=1 be a sequence in R.

1. The limit superior of txnu8
n=1, denoted by lim sup

nÑ8

xn or lim
nÑ8

xn, is the infimum of

the set
!

sup
␣

xn
ˇ

ˇn ě k
(

ˇ

ˇ

ˇ
k P N

)

.

2. The limit inferior of txnu8
n=1, denoted by lim inf

nÑ8
xn or lim

nÑ8

xn, is the supremum of

the set
!

inf
␣

xn
ˇ

ˇn ě k
(

ˇ

ˇ

ˇ
k P N

)

.
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Remark 1.91. Let sup
něk

xn denote the number sup
␣

xn
ˇ

ˇn ě k
(

and inf
něk

xn denote the number

inf
␣

xn
ˇ

ˇn ě k
(

. Then the limit superior and the limit inferior can be written as

lim sup
nÑ8

xn = inf
kě1

sup
něk

xn and lim inf
nÑ8

xn = sup
kě1

inf
něk

xn .

Remark 1.92. Let txnu8
n=1 be a sequence in R, and yk = sup

něk
xn and zk = inf

něk
xn. Then

tyku8
k=1 is a decreasing sequence, and tzku8

k=1 is an increasing sequence. Therefore, the limit
of tyku8

k=1 and the limit of tzku8
k=1 both “exist” in the sense of Definition 1.26 and Remark

1.87. In fact, the limit of tyku8
k=1 is the infimum of tyku8

k=1, and the limit of tzku8
k=1 is the

supremum of tzku8
k=1. In other words,

lim
kÑ8

sup
něk

xn = inf
kě1

sup
něk

xn and lim
kÑ8

inf
něk

xn = sup
kě1

inf
něk

xn ;

thus
lim sup
nÑ8

xn = lim
kÑ8

sup
něk

xn and lim inf
nÑ8

xn = lim
kÑ8

inf
něk

xn .

Example 1.93. Let txnu8
n=1 be the sequence given by xn = (´1)n. Then

yk = sup
něk

xn = 1 and zk = inf
něk

xn = ´1 .

Therefore, lim sup
nÑ8

xn = limkÑ8 yk = 1 and lim inf
nÑ8

xn = lim
kÑ8

zk = ´1.

Example 1.94. Let txnu8
n=1 be a real sequence given by xn =

1

n
. Then

yk = sup
něk

xn =
1

k
and zk = inf

něk
xn = 0 .

Therefore, lim sup
nÑ8

xn = lim
kÑ8

yk = 0 and lim inf
nÑ8

xn = lim
kÑ8

zk = 0.

Example 1.95. Let xn =

"

0 if n is even
n if n is odd ; that is, txnu8

n=1 = t1, 0, 3, 0, 5, ¨ ¨ ¨ u. Then

yk = sup
něk

xn and zk = inf
něk

xn = 0 .

Therefore, lim sup
nÑ8

xn = lim
kÑ8

yk = 8 and lim inf
nÑ8

xn = lim
kÑ8

zk = 0.

Example 1.96. Let txnu8
n=1 be a real sequence defined by xn = (´1)n +

1

n
or

txnu8
n=1 =

!

´1 +
1

1
, 1 +

1

2
,´1 +

1

3
, 1 +

1

4
,´1 +

1

5
, 1 +

1

6
, ¨ ¨ ¨

)

.
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Then for each k P N,

sup
něk

xn = 1 +
1

2[(k + 1)/2]
and inf

něk
xn = ´1 .

Therefore, lim sup
nÑ8

xn = 1 and lim inf
nÑ8

xn = ´1.

Proposition 1.97. Let txnu8
n=1 be a sequence in R. Then

lim sup
nÑ8

´xn = ´ lim inf
nÑ8

xn and lim inf
nÑ8

´xn = ´ lim sup
nÑ8

xn .

Proof. By the fact that sup
něk

´xn = ´ inf
něk

xn,

lim sup
nÑ8

´xn = lim
kÑ8

sup
něk

(´xn) = lim
kÑ8

(
´ inf

něk
xn

)
= ´ lim

kÑ8
inf
něk

xn = ´ lim inf
nÑ8

xn .

The second identity holds simply by replacing xn by ´xn in the first identity. ˝

Proposition 1.98. Let txnu8
n=1 be a sequence in R. Then

1. a = lim inf
nÑ8

xn P R if and only if the following two statements hold

(a) for all ε ą 0, there exists N ą 0 such that a ´ ε ă xn whenever n ě N ; that is,

@ ε ą 0, #
␣

n P N
ˇ

ˇxn ď a ´ ε
(

ă 8 ;

(b) for all ε ą 0 and N ą 0, there exists n ě N such that xn ă a+ ε; that is,

@ ε ą 0, #
␣

n P N
ˇ

ˇxn ă a+ ε
(

= 8 .

2. b = lim sup
nÑ8

xn P R if and only if the following two statements hold

(a) for all ε ą 0, there exists N ą 0 such that b+ ε ą xn whenever n ě N ; that is,

@ ε ą 0, #
␣

n P N
ˇ

ˇxn ě b+ ε
(

ă 8 ;

(b) for all ε ą 0 and N ą 0, there exists n ě N such that xn ą b ´ ε; that is,

@ ε ą 0, #
␣

n P N
ˇ

ˇxn ą b ´ ε
(

= 8 .

Proof. We only prove 1 since the proof of 2 is similar. Let zk = inf
něk

xn, and

sup
kě1

zk = lim
kÑ8

zk = a P R˚ .

We show that a P R if and only if 1-(a) and 1-(b) both hold. Nevertheless, by Proposition
1.53 (or Remark 1.89), a P R if and only if
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(i) a is an upper bound for tzku8
k=1.

(ii) @ ε ą 0, DN P N Q zN ą a ´ ε.

We justify the equivalency between 1-(a) and (ii), as well as the equivalency between 1-(b)
and (i) as follows:

(i) a is an upper bound for tzku8
k=1 ô a ě zk for all k P N ô @ ε ą 0, a + ε ą zk for all

k P N ô @ ε ą 0 and k P N, a+ ε ą inf
něk

xn ô @ ε ą 0 and k P N, a+ ε is not a lower
bound for txnu8

něk ô @ ε ą 0 and k P N, Dn ě k Q a+ ε ą xn ô 1-(b).

(ii) @ ε ą 0, DN P N Q zN ą a ´ ε ô @ ε ą 0, DN ą 0 Q inf
něN

xn ą a ´ ε ô @ ε ą 0,
DN ą 0 such that a ´ ε is a lower bound for tx

N
, x

N+1
, ¨ ¨ ¨ u ô @ ε ą 0, DN ą 0 such

that a ´ ε ď xn for all n ě N ô @ ε ą 0, DN ą 0 such that a ´ ε ă xn for all n ě N

ô 1-(a). ˝

Remark 1.99. By Proposition 1.98, if a = lim inf
nÑ8

xn P R, then

@ ε ą 0, #
␣

n P N
ˇ

ˇxn P (a ´ ε, a+ ε)
(

= 8

which implies that a is a cluster point of txnu8
n=1. Moreover, 1-(a) of Proposition 1.98 implies

that no other cluster points can be smaller than a. In other words, if a = lim inf
nÑ8

xn P R,
then a is the smallest cluster point of txnu8

n=1. Similarly, b is the largest cluster point of
txnu8

n=1 if b = lim sup
nÑ8

xn P R.

Theorem 1.100. Let txnu8
n=1 be a sequence in R. Then

1. lim inf
nÑ8

xn ď lim sup
nÑ8

xn.

2. If txnu8
n=1 is bounded from above by M , then lim sup

nÑ8

xn ď M .

3. If txnu8
n=1 is bounded from below by m, then lim inf

nÑ8
xn ě m.

4. lim sup
nÑ8

xn = 8 if and only if txnu8
n=1 is not bounded from above.

5. lim inf
nÑ8

xn = ´8 if and only if txnu8
n=1 is not bounded from below.

6. If x is a cluster point of txnu8
n=1, then lim inf

nÑ8
xn ď x ď lim sup

nÑ8

xn.

7. If a = lim inf
nÑ8

xn is finite, then a is a cluster point.
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8. If b = lim sup
nÑ8

xn is finite, then b is a cluster point.

9. If txnu8
n=1 converges to x in R if and only if lim inf

nÑ8
xn = lim sup

nÑ8

xn = x P R.

Proof. Left as an exercise. ˝

Remark 1.101. Using the definition of cluster points of a sequence in Remark 1.89, Remark
1.99 and Theorem 1.100 together imply that the limit superior/inferior of a sequence is the
largest/smallest cluster point of that sequence.

Example 1.102. Let QX [0, 1] = tq1, q2, ¨ ¨ ¨ , qn, ¨ ¨ ¨ u. Then tqnu8
n=1 does not converge since

lim sup
nÑ8

qn = 1 while lim inf
nÑ8

qn = 0 by Example 1.65.



Chapter 2

Normed Vector Spaces and Metric
Spaces

2.1 Euclidean Spaces and Vector Spaces
Definition 2.1. Euclidean n-space, denoted by Rn, consists of all ordered n-tuples of
real numbers. Symbolically,

Rn =
␣

x
ˇ

ˇx = (x1, x2, ¨ ¨ ¨ , xn), xi P R
(

.

Elements of Rn are generally denoted by single letters that stand for n-tuples such as
x = (x1, x2, ¨ ¨ ¨ , xn), and speak of x as a “point” in Rn.

Remark 2.2. Let C denote the collection of ordered pairs C =
␣

(a, b)
ˇ

ˇ a, b P R
(

on which
+ and ¨ are given by Example 1.6. Then C is a field, and is called the complex number
system. The ordered pair (a, b) in C is usually denoted by a+ bi, where i2 = ´1 according
to the definition of the multiplication. The space Cn can be defined similarly by

Cn =
␣

z
ˇ

ˇ z = (z1, z2, ¨ ¨ ¨ , zn), zi P C
(

.

Definition 2.3. A vector space V over a scalar field F is a set of elements called vectors,
with given operations of vector addition + : VˆV Ñ V and scalar multiplication ¨ : FˆV Ñ

V such that

1. v + w = w + v for all v,w P V .

2. (v + w) + u = v + (u + w) for all u, v,w P V .

3. there exists 0, the zero vector, such that v + 0 = v for all v P V .

34
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4. for each v P V there exists w P V such that v + w = 0.

5. λ ¨ (v + w) = λ ¨ v + λ ¨ w for all λ P F and v,w P V .

6. (λ+ µ) ¨ v = λ ¨ v + µ ¨ v for all λ, µ P F and v P V .

7. (λ ¨ µ) ¨ v = λ ¨ (µ ¨ v) for all λ, µ P F and v P V .

8. 1 ¨ v = v for all v P V .

Remark 2.4. In general the scalar field F can be the rational number system Q, the real
number system R, or even the complex number system C. In this lecture note, F is taken
as either the real number system R or the complex number system C (and mostly R if not
specified).

Example 2.5. Let the vector addition and scalar multiplication on Fn, where F = R or C,
be defined by

x + y = (x1 + y1, ¨ ¨ ¨ , xn + yn) if x = (x1, ¨ ¨ ¨ , xn),y = (y1, ¨ ¨ ¨ , yn)

and
λ ¨ x = (λx1, ¨ ¨ ¨ , λxn) if λ P F,x = (x1, ¨ ¨ ¨ , xn) P Fn .

Then Fn is a vector space over F if F = R or C. Moreover, Cn is a vector space over R;
however, Rn is not a vector space over C.

Example 2.6. Let Mnˆm be the collection of all n ˆ m real matrices; that is, Mnˆm ”
␣

n ˆ m matrix with entries in R
(

. Define

A+B ” [aij + bij], λ ¨ A ” [λ ¨ aij] if λ P R, A = [aij], B = [bij] P M .

Then Mnˆm is a vector space over R.

Definition 2.7. W is called a subspace of a vector space V over a scalar field F if

1. W is a subset of V .

2. (W ,+, ¨), with vector addition and scalar multiplication in V , is a vector space over
F.

Example 2.8. V = R3, W = R2 ˆ t0u ”
␣

(x, y, 0)
ˇ

ˇx, y P R
(

. W is a subspace of V .

Lemma 2.9. If W is a subset of a vector space V over a scalar field F, then W is a subspace
if and only if λ ¨ v + µ ¨ w P W for all λ, µ P F, v,w P W.
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Remark 2.10. “n” is called the dimension of Rn.
There are n linearly independent vectors e1 = (1, 0, ¨ ¨ ¨ , 0), e2 = (0, 1, 0, ¨ ¨ ¨ , 0), ¨ ¨ ¨ , en =

(0, 0, ¨ ¨ ¨ , 0, 1), but if v1, v2, ¨ ¨ ¨ , vn+1 are (n+1) vectors in Rn, there exists λ1, ¨ ¨ ¨ , λn+1 P R
such that (λ1, ¨ ¨ ¨ , λn+1) ‰ (0, ¨ ¨ ¨ , 0) and λ1v1 + ¨ ¨ ¨ + λn+1vn+1 = 0.

On the other hand, the dimension of Cn depends on the scalar field F.
1. If F = R, then the dimension of Cn is 2n since e1, ¨ ¨ ¨ , en, ie1, ¨ ¨ ¨ , ien are 2n linearly

independent vectors in Cn, and any (2n+ 1) non-zeros vectors in Cn are not linearly
independent; thus the dimension of Cn over R is 2n. When F = R, we usually identify
Cn as R2n.

2. If F = C, e1, ¨ ¨ ¨ , en are linearly independent in Cn and any (n+ 1) non-zeros vectors
in Cn are not linearly independent; thus the dimension of Cn over C is n.

Definition 2.11. Let V be a vector space (over a scalar field F), and A,B be subsets of V .
The sum of A and B, denoted by A + B, is the set ta + b | a P A, b P Bu. If A consists of
only one single vector a, A+B is usually denoted by a +B instead of tau +B.

The following theorem should be clear to the readers, and is left as an exercise.

Theorem 2.12. Let V be a vector space (over a field F), and A,B be subsets of V. Then

A+B =
ď

a PA

(
a +B

)
=

ď

b PB

(
b + A

)
.

Definition 2.13. A subset H Ď Rn is called a hyperplane or hyperspace if H is (n´ 1)-
dimensional subspace of Rn. An affine hyperplane is a set x + H for some x P Rn and
hyperplane H.

Example 2.14. A straight line on the plane is a hyperplane, and a plane on the (3-
dimensional) space is also a hyperplane. However, a straight line on the (3-dimensional)
space is not a hyperplane.

2.2 Normed Vector Spaces, Inner Product Spaces and
Metric Spaces

Definition 2.15. A normed vector space (or simply normed space) (V , }¨}) is a vector
space V over a scalar field F, where F = R or C, associated with a function } ¨ } : V Ñ R
such that
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(a) }x} ě 0 for all x P V .

(b) }x} = 0 if and only if x = 0.

(c) }λ ¨ x} = |λ| ¨ }x} for all λ P F and x P V .

(d) }x + y} ď }x} + }y} for all x,y P V .

A function } ¨ } satisfying (a)-(d) is called a norm on V .

Remark 2.16. Let (V , } ¨ }) be a normed vector space. Treating a vector in V as a point
in V , the number }x ´ y} can be viewed as the distance (induced by the norm) between x
and y, and (d) implies that

}x ´ y} ď }x ´ z} + }z ´ y} @ x,y, z P V .

The inequality above states that the distance between x and y is not greater than the sum
of the distance between x and z and the distance between y and z; thus the inequality in
(d) is called the triangle inequality.

Example 2.17. Let V = Rn, and define

}x}p ”

$

’

&

’

%

( n
ÿ

i=1

|xi|
p
) 1

p if 1 ď p ă 8,

max
␣

|x1|, ¨ ¨ ¨ , |xn|
(

if p = 8,
for all x = (x1, x2, ¨ ¨ ¨ , xn) P Rn.

Then } ¨ }p is a norm, called p-norm, on Rn. Property (d) in Definition 2.15; that is,
}x + y}p ď }x}p + }y}p (so-called the Minkowski inequality), is left as an exercise.

Example 2.18. Let V = C and the norm }¨} is the usual absolute value of complex numbers;
that is, }a+ ib} ” |a+ ib| =

?
a2 + b2. Then (C, } ¨ }) is a normed vector space.

Example 2.19. Let Mnˆm ”
␣

n ˆ m matrix with entries in R
(

, and te1, e2, ¨ ¨ ¨ , emu be
standard basis of Rm. For A =

[
aij

]
P Mnˆm and x = x1e1 + x2e2 + ¨ ¨ ¨+ xmem, we use Ax

to denote the n-vector 
a11 a12 ¨ ¨ ¨ a1m
a21 a22 ¨ ¨ ¨ a2m
... ...
an1 an2 ¨ ¨ ¨ anm



x1
x2
...
xm

 .
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Define
}A}p = sup

}x}p=1

}Ax}p = sup
x‰0

}Ax}p

}x}p
@A P Mnˆm ;

that is, }A}p is the least upper bound of the set
!

}Ax}p

}x}p

ˇ

ˇ

ˇ
x ‰ 0,x P Rm

)

. Then }¨}p satisfies
the triangle inequality for the following reason: Suppose that A,B P Mnˆm. If }x}p = 1,

}(A+B)x}p = }Ax +Bx}p ď }Ax}p + }Bx}p

ď sup
}x}p=1

}Ax}p + sup
}x}p=1

}Bx}p = }A}p + }B}p ;

thus
}A+B}p = sup

}x}p=1

}(A+B)x}p ď }A}p + }B}p .

Since property (a), (b), (c) in Definition 2.15 are obvious, we conclude that } ¨ }p is a norm

on Mnˆm. Moreover, by the definition of the p-norm we have }Ax}p

}x}p
ď }A}p for all x ‰ 0;

thus
}Ax}p ď }A}p}x}p @ x P Rm .

Consider the case p = 1, p = 2 and p = 8 respectively.

1. p = 2: Let (¨, ¨)Rk denote the inner product in Euclidean space Rk. Then

}Ax}22 = (Ax, Ax)Rn = (x, ATAx)Rm = (x, PΛPTx)Rm = (PTx,ΛPTx)Rn ,

in which we use the fact that ATA is symmetric; thus diagonalizable by an orthonormal
matrix P (that is, ATA = PΛPT, PTP = I, Λ is a diagonal matrix with non-negative
entries since ATA is positive semi-definite). Let y = PTx. Since P is orthonormal,
}x}2 = 1 if and only if }y}2 = 1; thus

sup
}x}2=1

}Ax}22 = sup
}x}2=1

(PTx,ΛPTx) = sup
}y}2=1

(y,Λy)

= sup
}y}2=1

(λ1y
2
1 + λ2y

2
2 + ¨ ¨ ¨ + λmy

2
m)

= max
␣

λ1, ¨ ¨ ¨ , λm
(

= maximum eigenvalue of ATA

which implies that }A}2 =
a

maximum eigenvalue of ATA.
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2. p = 8: In this case we will show that

}A}8 = sup
}x}8=1

}Ax}8 = max
#

m
ÿ

j=1

|a1j|,
m
ÿ

j=1

|a2j|, ¨ ¨ ¨

m
ÿ

j=1

|anj|

+

= max
1ďiďn

m
ÿ

j=1

|aij| .

Reason: Let x = (x1, x2, ¨ ¨ ¨ , xn)
T and A =

[
aij

]
nˆm

(W.L.O.G. we can assume that
A is not zero matrix). Then

Ax =


a11x1 + ¨ ¨ ¨ + a1mxm
a21x1 + ¨ ¨ ¨ + a2mxm

...
an1x1 + ¨ ¨ ¨ + anmxm

 .

If }x}8 = 1, then for each 1 ď i ď n,

|ai1x1 + ai2x2 + ¨ ¨ ¨ aimxm| ď

m
ÿ

j=1

|aij| ď max
1ďiďn

m
ÿ

j=1

|aij| ;

thus the absolute value of each component of Ax, under the constraint }x}8 = 1, has

an upper bound max
1ďiďn

m
ÿ

j=1

|aij|. Therefore,

}A}8 = sup
}x}8=1

}Ax}8 = sup
}x}8=1

max
1ďiďn

|ai1x1+ai2x2+¨ ¨ ¨ aimxm| ď max
1ďiďn

m
ÿ

j=1

|aij| . (2.2.1)

On the other hand, assume max
1ďiďn

m
ÿ

j=1

|aij| =
m
ÿ

j=1

|akj| for some 1 ď k ď n. Let

x =
(
sgn(ak1), sgn(ak2), ¨ ¨ ¨ , sgn(akn)

)
.

Then }x}8 = 1 (since A is not zero matrix), and }Ax}8 =
m
ř

j=1

|akj|; thus

}A}8 = sup
}x}8=1

}Ax}8 ě

m
ÿ

j=1

|akj| = max
1ďiďn

m
ÿ

j=1

|aij| . (2.2.2)

The combination of (2.2.1) and (2.2.2) implies that

}A}8 = max
#

m
ÿ

j=1

|a1j|,
m
ÿ

j=1

|a2j|, ¨ ¨ ¨

m
ÿ

j=1

|anj|

+

. (2.2.3)

In other words, }A}8 is the largest sum of the absolute value of row entries.
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3. p = 1: }A}1 = max
#

n
ÿ

i=1

|ai1|,
n
ÿ

i=1

|ai2|, ¨ ¨ ¨ ,
n
ÿ

i=1

|aim|

+

. This result is left as an exercise.

In general, we can also define

}A}p,q = sup
}x}p=1

}Ax}q = sup
x‰0

}Ax}q

}x}p
.

Then }A}p = }A}p,p.

Example 2.20. For 1 ď p ă 8, let ℓp denote the collection of all sequences txnu8
n=1 in R

satisfying
8
ř

n=1

|xn|p ă 8; that is

ℓp ”

!

txnu8
n=1 Ď R

ˇ

ˇ

ˇ
the series

8
ÿ

n=1

|xn|p converges
)

.

Then ℓp is a vector space over R. The function } ¨ } : ℓp Ñ R defined by
›

›txnu8
n=1

›

› =( 8
ř

n=1

|xn|p
) 1

p is a norm on ℓp.

Example 2.21. Let C ([a, b];R) be the collection of all continuous real-valued functions on
the interval [a, b]; that is,

C ([a, b];R) =
␣

f : [a, b] Ñ R
ˇ

ˇ f is continuous on [a, b]
(

.

For each f P C ([a, b];R), we define

}f}p =

$

’

’

&

’

’

%

[ ż b

a

|f(x)|pdx
] 1

p if 1 ď p ă 8 ,

max
xP[a,b]

|f(x)| if p = 8 .

The function } ¨ }p : C ([a, b];R) Ñ R is a norm on C ([a, b];R) (Minkowski’s inequality).

Definition 2.22. An inner product space
(
V , x¨, ¨y

)
is a vector space V over a scalar field

F, where F = R or C, associated with a function x¨, ¨y : V ˆ V Ñ F such that

(1) xx,xy ě 0, @ x P V .

(2) xx,xy = 0 if and only if x = 0.

(3) xx,y + zy = xx,yy + xx, zy for all x,y, z P V .
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(4) xλx,yy = λxx,yy for all λ P F and x,y P V .

(5) xx,yy = xy,xy for all x,y P V , where c denotes the complex conjugate of c.

A function x¨, ¨y satisfying (1)-(5) is called an inner product on V .

Example 2.23. Let (¨, ¨) : Rn ˆ Rn Ñ R be defined by

(x,y) =
n
ÿ

i=1

xiyi @ x = (x1, ¨ ¨ ¨ , xn),y = (y1, ¨ ¨ ¨ , yn) .

Then (¨, ¨) is an inner product on Rn. Moreover, x¨, ¨y : Cn Ñ C defined by

xx,yy =
n
ÿ

i=1

xiyi @ x = (x1, ¨ ¨ ¨ , xn),y = (y1, ¨ ¨ ¨ , yn)

is an inner product on Cn.

Example 2.24. Let C ([a, b];R) be defined as in Example 2.21. Define

xf, gy =

ż b

a

f(x)g(x) dx .

Then x¨, ¨y : C ([a, b];R) ˆ C ([a, b];R) Ñ R satisfies all the properties that an inner product
has. Note that xf, fy = }f}22.

Similar to the inner product given above, one can also consider an inner product on
C ([a, b];C), where C ([a, b];C) denotes the collection of continuous complex-valued functions
defined on [a, b]. Note that C ([a, b];C) is a vector space over R and over C, and we always
viewed C ([a, b],C) as a vector space over C. On C ([a, b];C), define

xf, gy =

ż b

a

f(x)g(x) dx .

Then x¨, ¨y : C ([a, b];C) ˆ C ([a, b];C) Ñ C satisfies all the properties that an inner product
has.

Proposition 2.25. Let x¨, ¨y be an inner product on a vector space V over a scalar field F.

1. xλv + µw,uy = λxv,uy + µxw,uy for all u, v,w P V and λ, µ P F.

2. xu, λv + µwy = sλxu, vy + sµxu,wy for all u, v,w P V and λ, µ P F.

3. x0,wy = xw, 0y = 0 for all w P V.
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Theorem 2.26. The inner product x¨, ¨y on a vector space V induces a norm } ¨ } given by
}x} =

a

xx,xy and satisfies the Cauchy-Schwarz inequality
ˇ

ˇxx,yy
ˇ

ˇ ď }x} ¨ }y} @ x,y P V . (2.2.4)

Moreover, for non-zero vectors x,y, the equality holds if and only if there exists γ P F such
that x = γy.

Proof. Let x,y P V . Define α = xx,yy. W.L.O.G. we can assume that α ‰ 0 (for otherwise
(2.2.4) holds trivially). Then there exists β P F such that α ¨ β = |α| (so |β| = 1). For any
λ P R,

0 ď xλβx + y, λβx + yy = λ2|β|2}x}2 + xλβx,yy + xy, λβxy + }y}2

= λ2}x}2 + λβxx,yy + λxβx,yy + }y}2

= λ2}x}2 + 2λ
ˇ

ˇxx,yy
ˇ

ˇ+ }y}2 . (2.2.5)

Since the right-hand side in the inequality above is always non-negative for all real λ, we
must have

ˇ

ˇxx,yy
ˇ

ˇ

2
´ }x}2 ¨ }y}2 ď 0

which implies (2.2.4).
It should be clear that (a)-(c) in Definition 2.15 are satisfied. To show that } ¨ } satisfies

the triangle inequality, by (2.2.4) we find that(
}x} + }y}

)2
´ }x + y}2 = }x}2 + 2}x}}y} + }y}2 ´ xx + y,x + yy

= 2
(
}x}}y} ´ Rexx,yy

)
ě 2

(
}x}}y} ´

ˇ

ˇxx,yy
ˇ

ˇ

)
ě 0 ;

thus the triangle inequality is also valid.
Finally, suppose that x,y ‰ 0 and

ˇ

ˇxx,yy
ˇ

ˇ = }x}}y}. Then with λ P R given by

λ = ´
}y}

}x}
, (2.2.5) shows that

0 ď }λβx + y}2 = λ2}x}2 + 2λ}x}}y} + }y}2 = (λ}x} + }y})2 = 0 ;

thus λβx + y = 0. ˝

Corollary 2.27. Let f, g : [a, b] Ñ R be continuous. Then
ˇ

ˇ

ˇ

ˇ

ż b

a

f(x)g(x)dx

ˇ

ˇ

ˇ

ˇ

ď

(
ż b

a

|f(x)|2dx

) 1
2
(
ż b

a

|g(x)|2dx

) 1
2

.
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Example 2.28. Let V be a finite dimensional vector space over F, where F = R or C, and
te1, ¨ ¨ ¨ , enu be a basis of V ; that is, every x P V can be uniquely expressed as

x =
n
ÿ

j=1

xjej = x1e1 + ¨ ¨ ¨ + xnen

for some n-tuple (x1, ¨ ¨ ¨ , xn) P Fn. Define }x}2 =
( n
ř

j=1

|xj|
2
) 1

2 . Then } ¨ }2 is a norm on V .

In fact, } ¨ }2 is induced by the inner product

xx,yy =
n
ÿ

j=1

xiyi if x =
n
ÿ

j=1

xjej and y =
n
ÿ

j=1

yjej.

It is also possible to talk about the notion of distance between points in a general set.
A set with a distance function is called a metric space.

Definition 2.29. A metric space (M,d) is a setM associated with a function d :MˆM Ñ

R such that

(i) d(x, y) ě 0 for all x, y P M .

(ii) d(x, y) = 0 if and only if x = y.

(iii) d(x, y) = d(y, x) for all x, y P M .

(iv) d(x, y) ď d(x, z) + d(z, y) for all x, y, z P M .

A function d satisfying (i)-(iv) is called a metric on M .

Example 2.30 (Discrete metric). Let M be a non-empty set. Define a function d0 by

d0(x, y) =

"

0 if x = y ,
1 if x ‰ y .

Then d0 :M ˆ M Ñ R is a metric on M , and we call d0 the discrete metric.

Example 2.31 (Bounded metric). Let (M,d) be a metric space. Define a function ρ by

ρ(x, y) =
d(x, y)

1 + d(x, y)
.

Then ρ :M ˆ M Ñ R is also a metric on M .
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Proposition 2.32. Let (M,d) be a metric space, and A be a non-empty subset of M . Then
(A, d) is a metric space.

Proposition 2.33. If (V , } ¨ }) is a normed vector space, then the function d : V ˆ V Ñ R
defined by d(x, y) = }x´ y} is a metric on V. In other words, (V , d) is a metric space, and
we usually write (V , } ¨ }) as the metric space.

Definition 2.34. Let (M,d) be a metric space. For each x P M and r ą 0, the set

B(x, r) =
␣

y P M
ˇ

ˇ d(x, y) ă r
(

is called the r-ball about x or the ball centered at x with radius r.

M

•x r

Figure 2.1: The r-ball about x in a metric space

Example 2.35. In R, B(x, r) = (x ´ r, x+ r).

Example 2.36. Consider the 1-ball about the origin in (R2, } ¨ }p) for p = 1, 2,8, respec-
tively.

1. p = 1: }x}1 = |x1| + |x2|, }x ´ y}1 = |x1 ´ y1| + |x2 ´ y2|.

2. p = 2: }x}2 =
a

x21 + x22, }x ´ y}2 =
a

(x1 ´ y1)2 + (x2 ´ y2)2.

3. p = 8: }x}8 = max
␣

|x1|, |x2|
(

, }x ´ y}8 = max
␣

|x1 ´ y1|, |x2 ´ y2|
(

.

1´1

1

´1

p = 2

1´1

1

´1

p = 8

1´1

1

´1

p = 1

Figure 2.2: The 1-ball about 0 in R2 with different p
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Definition 2.37. Let V be a vector space. Two norms } ¨ }1, } ¨ }2 on V are said to be
equivalent if there exist two positive constant C, c such that

c}x}1 ď }x}2 ď C}x}1 @x P V .

Note that the constant c and C must be independent of x.

Example 2.38. For 1 ď p, q ď 8, the p-norm } ¨ }p and q-norm } ¨ }q on Rn are equivalent;
however, the p-norm } ¨ }p and the q-norm } ¨ }p on C ([a, b];R) are NOT equivalent. The
result is left as an exercise.

Theorem 2.39. Let V be a vector space (over field F), and } ¨ }1, } ¨ }2 are equivalent norms
on V. Then every ball in (V , } ¨ }1) contains some balls in (V , } ¨ }2) and is contained in some
balls in (V , } ¨ }2).

Proof. Since } ¨ }1 and } ¨ }2 are equivalent, there exist positive constants c and C such that

c}x}1 ď }x}2 ď C}x}1 @x P V .

Let B1(x, r) =
␣

y P V
ˇ

ˇ }y ´ x}1 ă r
(

be a ball in (V , } ¨ }1). Let δ = cr and R = Cr. Then
with B2(x, r) denoting the set

␣

y P V
ˇ

ˇ }y ´ x}2 ă r
(

, we have

}y ´ x}1 ď
1

c
}y ´ x}2 ă r @ y P B2(x, δ) and }y ´ x}2 ď C}y ´ x}1 ă R

In other words, B2(x, δ) Ď B1(x, r) and B1(x, r) Ď B2(x, R). ˝

2.3 Sequences in Metric Spaces
2.3.1 Sequences

Recall that a sequence in a set S is a function f : N Ñ S, and f(n) is called the n-th
terms of the sequence. A sequence in S is usually denoted by

␣

f(n)
(8

n=1
or txnu8

n=1 with
xn = f(n).

Definition 2.40. Let (M,d) be a metric space. A sequence txnu8
n=1 Ď M is said to be

convergent if there exists x P M such that for every ε ą 0, there exists N ą 0 such that

d(xn, x) ă ε whenever n ě N .
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Such an x is called a limit of the sequence. In notation,

txnu8
n=1 Ď M is convergent ô (D x P M)(@ ε ą 0)(DN ą 0)

(
n ě N ñ d(xn, x) ă ε

)
.

If x is a limit of txnu8
n=1, we say txnu8

n=1 converges to x and write xn Ñ x as n Ñ 8. If no
such x exists we say that txnu8

n=1 diverges or lim
nÑ8

xn does not exist.

Remark 2.41. Similar to Definition 1.26, the convergence of a sequence txnu8
n=1 in a metric

space can be stated as follows: a sequence txnu8
n=1 Ď M is said to be convergent if there

exists x P M such that for every ε ą 0, there exists N ą 0 such that

#
␣

n P N
ˇ

ˇxn R B(x, ε)
(

ă 8 .

Similar to Proposition 1.28, we have the following

Proposition 2.42. Let (M,d) be a metric space. If txnu8
n=1 is a sequence in M , and xn Ñ x

and xn Ñ y as n Ñ 8, then x = y. (The uniqueness of the limit).

Proof. Assume the contrary that x ‰ y. Then ε = d(x, y)

2
ą 0. Then there exist N1, N2 ą 0

such that d(xn, x) ă ε for all n ě N1 and d(xn, y) ă ε for all n ě N2. Let N = maxtN1, N2u.
Then if n ě N ,

d(x, y) ď d(x, xn) + d(xn, y) ă 2ε = d(x, y) ,

a contradiction. ˝

Notation: Similar to the notation used to denote the unique limit of a convergent sequence
in an ordered field, we also use lim

nÑ8
xn to denote the limit of a convergent sequence txnu8

n=1 Ď

M .

Remark 2.43. Similar to Remark 1.31, the proposition above implies that xn Ñ x as
n Ñ 8 if and only if lim

nÑ8
d(xn, x) = 0.

Remark 2.44. Let (M,d) be a metric space. A sequence txnu8
n=1 Ď M diverges if (and

only if)
@x P M, D ε ą 0 Q @N ą 0, Dn ě N such that d(xn, x) ě ε .

Definition 2.45. Let (M,d) be a metric space. A sequence txnu8
n=1 Ď M is said to be

bounded（有界的）if there exist y P M and r ą 0 such that d(xn, y) ă r for all n P N. In
other words, sequence txnu8

n=1 is bounded if it is contained in some r-ball.
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Remark 2.46. In a normed vector space (V , } ¨ }), the boundedness of a sequence txnu8
n=1

is equivalent to that there exists r ą 0 such that }xn} ă r for all n P N. In other words, the
point y in the definition above is the zero vector.

Proposition 2.47. A convergent sequence is bounded（收斂數列必有界）.

Proof. Let txnu8
n=1 be a convergent sequence with limit x. Then there exists N ą 0 such

that xn P B(x, 1) whenever n ě N , or equivalently,

d(xn, x) ă 1 whenever n ě N.

Let r = max
␣

d(x1, x), d(x2, x), ¨ ¨ ¨ , d(xN´1, x)
(

+ 1. Then d(xn, x) ă r for all n P N. ˝

Theorem 2.48. Let (V , } ¨ }) be a normed vector space over a scalar field F (F = R or C),
txnu8

n=1, tynu8
n=1 be sequences in V, and tλnu8

n=1 be a sequence in F. Suppose that xn Ñ x,
yn Ñ y and λn Ñ λ as n Ñ 8. Then

1. xn ˘ yn Ñ x ˘ y as n Ñ 8.

2. λnxn Ñ λx as n Ñ 8.

3. If λn, λ ‰ 0, then xn
λn

Ñ
x

λ
as n Ñ 8.

If in addition that V is an inner product space equipped with inner product x¨, ¨y which induces
the norm } ¨ }, then

4. xxn,yny Ñ xx,yy as n Ñ 8.

Proof. We only prove 3 and 4. The proof of 1 and 2 are left as an exercise.

3. It suffices to show that lim
nÑ8

1

λn
=

1

λ
if λn, λ ‰ 0 (because of 2). Since lim

nÑ8
λn = λ, there

exists N1 ą 0 such that |λn ´ λ| ă
|λ|

2
whenever n ě N1. Therefore, |λ| ´ |λn| ă

|λ|

2

for all n ě N1 which further implies that |λn| ą
|λ|

2
for all n ě N1.

Let ε ą 0 be given. Since lim
nÑ8

λn = λ, there exists N2 ą 0 such that |λn ´ λ| ă

|λ|2

2
ε whenever n ě N2. Define N = maxtN1, N2u. Then if n ě N ,

ˇ

ˇ

ˇ

1

λn
´

1

λ

ˇ

ˇ

ˇ
=

|λn ´ λ|

|λn||λ|
ă

|λ|2

2
ε ¨

1

|λ|

2

|λ|
= ε .
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4. Let ε ą 0 be given. Since xn Ñ x and yn Ñ y as n Ñ 8, by Proposition 2.47 and
Remark 2.46 there exists M ą 0 such that }xn} ď M and }yn} ď M . Moreover,

DN1 ą 0 Q }xn ´ x} ă
ε

2M
whenever n ě N1

and
DN2 ą 0 Q }yn ´ y} ă

ε

2M
whenever n ě N2 .

Define N = maxtN1, N2u. Then if n ě N ,
ˇ

ˇxxn,yny ´ xx,yy
ˇ

ˇ =
ˇ

ˇxxn,yny ´ xxn,yy + xxn,yy ´ xx,yy
ˇ

ˇ

ď
ˇ

ˇxxn,yn ´ yy
ˇ

ˇ+
ˇ

ˇxy,xn ´ xy
ˇ

ˇ

ď M}yn ´ y} +M}xn ´ x} ă M ¨
ε

2M
+M ¨

ε

2M
= ε . ˝

Proposition 2.49. In Rn, a sequence of vectors converges if and only if every component
of the vectors converges. In other words, in Rn

Componentwise convergence ô Convergence.

Proof. Let tvku8
k=1, vk = (v

(1)
k , v

(2)
k , ¨ ¨ ¨ , v

(n)
k ), be a sequence of vectors in Rn.

“ð” Suppose that vk Ñ v = (v(1), ¨ ¨ ¨ , v(n)) as k Ñ 8. Let ε ą 0 be given. There exists
N ą 0 such that

}vk ´ v}2 ă ε whenever k ě N ;

thus if k ě N ,

|v
(i)
k ´ v(i)| ď

b

(v
(1)
k ´ v(1))2 + ¨ ¨ ¨ + (v

(n)
k ´ v(n))2 = }vk ´ v}2 ă ε.

“ñ” Suppose that v(i)k Ñ v(i) as k Ñ 8 for each 1 ď i ď n. Let ε ą 0 be given. For each
1 ď i ď n, there exist Ni ą 0 such that

ˇ

ˇv
(i)
k ´ v(i)

ˇ

ˇ ă
ε

?
n

whenever k ě Ni .

Let v =
(
v(1), v(2), ¨ ¨ ¨ , v(n)

)
and N = maxtN1, N2, ¨ ¨ ¨ , Nnu. Then if k ě N ,

}vk ´ v}2 =

b

(v
(1)
k ´ v(1))2 + ¨ ¨ ¨ + (v

(n)
k ´ v(n))2 ă

c

ε2

n
+ ¨ ¨ ¨ +

ε2

n
= ε. ˝
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Example 2.50. Let vk =
(1
k
,
1

k2

)
P R2. Then vk Ñ (0, 0) as k Ñ 8 since

c

(
1

k
´ 0)2 + (

1

k2
´ 0)2 =

1

k2

?
k2 + 1 Ñ 0 as k Ñ 8 .

On the other hand, since 1

k
Ñ 0 and 1

k2
Ñ 0 as k Ñ 8, Proposition 2.49 implies that

vk Ñ (0, 0) as k Ñ 8.

Theorem 2.51 (Bolzano-Weierstrass). Every bounded sequence in (Rn, } ¨ }2) has a conver-
gent subsequence.

Proof. We prove by induction. Let

S =
!

n P N
ˇ

ˇ

ˇ
every bounded sequence in (Rn, } ¨ }2) has a convergent subsequence

)

.

Then 1 P S because of the Bolzano-Weierstrass Property of R.
Suppose that n P S. Let txku8

k=1 be a bounded sequence in Rn+1. Write xk =(
x
(1)
k , x

(2)
k , ¨ ¨ ¨ , x

(n)
k , x

(n+1)
k

)
, and let yk =

(
x
(1)
k , x

(2)
k , ¨ ¨ ¨ , x

(n)
k

)
. Since txku8

k=1 is bounded,
there exists M ą 0 such that }xk}2 ď M for all k P N; thus

}yk}2 ď M @ k P N and
ˇ

ˇx
(n+1)
k

ˇ

ˇ ď M @ k P N .

that is, tyku8
k=1 is bounded in Rn and

␣

x
(n+1)
k

(n

k=1
is bounded in R. By the assumption

that n P S, tyku8
k=1 has a convergent subsequence tykju8

j=1 of tyku8
k=1 which converges

to y =
(
y(1), y(2), ¨ ¨ ¨ , y(n)

)
. Applying the Bolzano-Weierstrass Property to the sequence

␣

x
(n+1)
kj

(8

j=1
, we obtain a subsequence

␣

x
(n+1)
kjℓ

(8

ℓ=1
of

␣

x
(n+1)
kj

(8

k=1
so that x(n+1)

kjℓ
Ñ y(n+1) as

ℓ Ñ 8. Let zℓ = xkjℓ . Then tzℓu8
ℓ=1 is a subsequence of txku8

k=1 and tzℓu8
ℓ=1 converges to

z =
(
y(1), y(2), ¨ ¨ ¨ , y(n+1)

)
by Proposition 2.49. Therefore, n+ 1 P S.

By induction, S = N; thus the theorem is proved. ˝

Remark 2.52. By identifying Cn as R2n, Theorem 2.51 also implies that every bounded
sequence in Cn has a convergent subsequence.

Definition 2.53. Let (M,d) be a metric space, and txnu8
n=1 be a sequence in M . A point

x P M is called a cluster point of txnu8
n=1 if

@ ε ą 0, #
␣

n P N
ˇ

ˇxn P B(x, ε)
(

= 8 .

Example 2.54. Let xn = (´1)n. Then 1 and ´1 are the only two cluster points of txnu8
n=1.
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Example 2.55. Let xn = (´1)n +
1

n
. Then 1 and ´1 are cluster points of txnu8

n=1: Let
ε ą 0 be given. We observe that

␣

n P N
ˇ

ˇxn P (1 ´ ε, 1 + ε)
(

Ě

!

n P N
ˇ

ˇn is even, 1
n

ă ε
)

;

thus #
␣

n P N
ˇ

ˇxn P (1 ´ ε, 1 + ε)
(

= 8. Similarly, ´1 is a cluster point.
On the other hand, each a ‰ ˘1 is not a cluster point of txnu8

n=1.

Let txnu8
n=1 be a sequence. Recall that a subsequence of txnu8

n=1 is a sequence tyju
8
j=1

satisfying that yj = xf(j) for some strictly increasing function f : N Ñ N. In other words,
each strictly increasing function f : N Ñ N corresponds to a subsequence of txnu8

n=1 and
vice versa.

Similar to Proposition 1.68, we have the following

Proposition 2.56. Let (M,d) be a metric space, txnu8
n=1 be a sequence in M , and x P M .

1. x is a cluster point of txnu8
n=1 if and only if for each ε ą 0 and N ą 0, there exists

n ě N such that d(xn, x) ă ε.

2. x is a cluster point of txnu8
n=1 if and only if there exists a subsequence txnj

u8
j=1 of

txnu8
n=1 converges to x.

3. xn Ñ x as n Ñ 8 if and only if every proper subsequence of txnu8
n=1 converges to x.

4. xn Ñ x as n Ñ 8 if and only if every proper subsequence of txnu8
n=1 has a further

subsequence that converges to x.

Proof. We only prove 1 and 2 since the proof of 3 and 4 are similar to the one given in
Proposition 1.60.

1. “ñ” Let ε ą 0 and N ą 0 be given. Since #
␣

n P N
ˇ

ˇxn P B(x, ε)
(

= 8, there exist
natural numbers n1 ă n2 ă n3 ă ¨ ¨ ¨ such that

␣

n P N
ˇ

ˇxn P B(x, ε)
(

=
␣

n1, n2, n3, ¨ ¨ ¨
(

.

Note that nj ě j; thus nN ě N .

“ð” Let ε ą 0 be given. Pick n1 ě 1 such that d(xn1 , x) ă ε, then pick n2 ě n1 + 1

such that d(xn2 , x) ă ε. We continue this process and obtain a subsequence txnj
u8
j=1

satisfying d(xnj
, x) ă ε for all j P N. Then

␣

n P N
ˇ

ˇxn P B(x, ε)
(

Ě tn1, n2, ¨ ¨ ¨ u which
implies that #

␣

n P N
ˇ

ˇxn P B(x, ε)
(

= 8.
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2. “ñ” By 1, we can pick n1 ě 1 such that d(xn1 , x) ă 1 and then pick n2 ě n1 + 1 such
that d(xn2 , x) ă

1

2
. In general, we can pick nk+1 ě nk + 1 so that

d(xnk
, x) ă

1

k
@ k P N .

Therefore, lim
kÑ8

xnk
= x.

“ð” Let ε ą 0 be given. By assumption there exists J ą 0 such that d(xnj
, x) ă ε

whenever j ě J . Then
␣

n P N
ˇ

ˇxn P B(x, ε)
(

Ě tnJ , nJ+1, ¨ ¨ ¨ u which implies that
#
␣

n P N
ˇ

ˇxn P B(x, ε)
(

= 8. ˝

2.3.2 Cauchy sequences, Banach spaces and Hilbert spaces

Definition 2.57. A sequence txnu8
n=1 in a metric space (M,d) is said to be Cauchy if

(@ ε ą 0)(DN ą 0)
(
n,m ě N ñ d(xn, xm) ă ε

)
.

Similar to Proposition 1.74, Lemma 1.75 and 1.76, we have the following

Proposition 2.58. 1. Every convergent sequence (in a metric space (M,d)) is Cauchy.

2. Every Cauchy sequence (in a metric space (M,d)) is bounded.

3. If a subsequence of Cauchy sequence (in a metric space (M,d)) converges, then this
Cauchy sequence also converges.

Proof. See the proof of Proposition 1.74 and Lemma 1.76 by changing |x´y| to d(x, y) with
appropriate x and y. ˝

Remark 2.59. By 2 of Proposition 2.56 and 3 of Proposition 2.58, we find that if txku8
k=1

is a Cauchy sequence but txku8
k=1 does not converge, then

(@ y)(D r ą 0)
(
#
␣

n P N
ˇ

ˇxn P B(y, r)
(

ă 8
)
.

Theorem 2.60. A sequence in Rn converges if and only if the sequence is Cauchy
(
because

of the inequality max
1ďiďn

ˇ

ˇv
(i)
k ´ v

(i)
ℓ

ˇ

ˇ ď }vk ´ vℓ}2 ď
?
n max

1ďiďn
|v

(i)
k ´ v

(i)
ℓ |

)
.

Now we would like to define the completeness of a normed vector space. Recall that in
an Archimedean ordered field, the following four properties are equivalent:

1. the Bolzano-Weierstrass property (有界數列必有收斂子數列),
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2. the monotone sequence property (單調有界數列必收斂),

3. the least upper bound property (非空集合有上界必有最小上界),

4. the property that every Cauchy sequence converges (柯西數列必收斂).

Since in general a normed vector space cannot be an ordered field, we cannot define the
completeness through the monotone sequence property or the least upper bound property.
For the completeness of normed vector spaces, we use the Cauchy completeness.

Definition 2.61. A metric space (M,d) is said to be complete if every Cauchy sequence in
M converges. A Banach space is a complete normed vector space, and a Hilbert space
is a complete inner product space (that is, a Banach space whose norm is induced by the
inner product).

Example 2.62. The Euclidean n-space Rn, equipped with p-norm, is a Banach space for
all 1 ď p ď 8. To see this, let txku8

k=1 be a Cauchy sequence in Rn. Then the sequence
␣

x
(i)
k

(8

k=1
, consisting of the i-th components of txku8

k=1, is Cauchy for all 1 ď i ď n since
ˇ

ˇx
(i)
k ´ x

(i)
ℓ

ˇ

ˇ ď }xk ´ xℓ}p @ 1 ď i ď n and 1 ď p ď 8 .

By the completeness of R, the real sequence
␣

x
(i)
k

(8

k=1
converges for all 1 ď i ď n; thus each

component of txku8
k=1 converges. Proposition 2.49 implies that txku8

k=1 converges.

2.4 Series of Real Numbers and Vectors
Definition 2.63. Let (V , } ¨ }) be a normed space. A series

8
ř

k=1

xk, where txku8
k=1 Ď V , is

said to converge to S P V if the partial sum Sn =
n
ř

k=1

xk converges to S, and one writes

S =
8
ř

k=1

xk if this is the case. A series in V is said to converge or be convergent if it converges

to some element in V .

The following proposition is a direct consequence of the monotone sequence property of
the real number system R.

Proposition 2.64. Let txku8
k=1 be a sequence of real numbers, and xk ě 0 for all k P N.

Then
8
ř

k=1

xk converges if and only if the sequence of partial sums tSnu8
n=1, where Sn =

n
ř

k=1

xk,

is bounded (from above).
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Theorem 2.65 (Cauchy’s criterion). Let (V , } ¨ }) be a Banach space. A series
8
ř

k=1

xk
converges if and only if

@ ε ą 0, DN ą 0 Q }xk + xk+1 + ¨ ¨ ¨ + xk+p} ă ε whenever k ě N, p ě 0 .

Proof. Let Sn =
n
ř

k=1

xk be partial sum of
8
ř

k=1

xk. Then

tSnu8
n=1 converges in V ô tSnu8

n=1 is Cauchy

ô @ ε ą 0, DN ą 0 Q }Sn ´ Sm} ă ε whenever n,m ě N

ô @ ε ą 0, DN ą 0 Q }xn+1 + xn+2 + ¨ ¨ ¨ + xm} ă ε whenever m ą n ě N

ô @ ε ą 0, DN ą 0 Q }xk + xk+1 + ¨ ¨ ¨ + xk+p} ă ε whenever k ě N + 1, p ě 0. ˝

Corollary 2.66 (n-th term test). If
8
ř

k=1

xk converges, then }xk} Ñ 0 as k Ñ 8, and if

}xk} Ñ̂ 0 as k Ñ 8, then
8
ř

k=1

xk diverges.

Proof. Take p = 0 in Theorem 2.65. ˝

Definition 2.67. A series
8
ř

k=1

xk is said to converge absolutely if
8
ř

k=1

}xk} converges in

R. A series that is convergent but not absolutely convergent is said to be conditionally
convergent.

Example 2.68.
8
ř

k=1

(´1)k

k
is conditionally convergent. See Theorem 2.70 for the reason.

Theorem 2.69. Let (V , } ¨ }) be a Banach space, and txnu8
n=1 be a sequence in V. If

8
ř

k=1

xk

converges absolutely, then
8
ř

k=1

xk converges.

Proof. If
8
ř

k=1

xk converges absolutely, then Sn =
n
ř

k=1

}xk} converges in R. Then

@ ε ą 0, DN ą 0 Q
ˇ

ˇ}xk} + }xk+1} + ¨ ¨ ¨ + }xk+p}
ˇ

ˇ ă ε whenever k ě N, p ě 0 .

Therefore, if k ě N, p ě 0,

}xk + xk+1 + ¨ ¨ ¨ + xk+p} ď }xk} + ¨ ¨ ¨ + }xk+p} ă ε ,

and the convergence of
8
ř

k=1

xk is guaranteed by the Cauchy criterion. ˝
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Theorem 2.70. 1. Geometric series:

(a) If |r| ă 1, then
8
ř

k=1

rk converges absolutely to r

1 ´ r
.

(b) If |r| ě 1, then
8
ř

k=1

rk does not converge (diverge).

2. Comparison test: Let taku8
k=1 and tbku8

k=1 be sequences of real numbers.

(a) If
8
ř

k=1

ak converges, and 0 ď bk ď ak, then
8
ř

k=1

bk converges.

(b) If
8
ř

k=1

ak diverges, and 0 ď ak ď bk, then
8
ř

k=1

bk diverges.

3. Integral test: If f is continuous, non-negative, and monotone decreasing on [1,8),

then
8
ř

k=1

f(k) converges if and only if the improper integral
ż 8

1
f(x)dx ă 8.

4. Root test: Let txku8
k=1 be a sequence of real numbers.

(a) If lim sup
kÑ8

k
a

|xk| ă 1, then
8
ř

k=1

xk converges absolutely.

(b) If lim sup
kÑ8

k
a

|xk| ą 1, then
8
ř

k=1

xk diverges.

5. Ratio and comparison test: Let taku8
k=1 and tbku8

k=1 be sequences of real numbers,
and bk ą 0 for all k P N.

(a) lim sup
kÑ8

|ak|

bk
ă 8,

8
ř

k=1

bk is convergent, then
8
ř

k=1

ak converges absolutely.

(b) lim inf
kÑ8

ak
bk

ą 0,
8
ř

k=1

bk is divergent, then
8
ř

k=1

ak diverges.

6. Dirichlet test: Let taku8
n=1, tpku8

n=1 be sequences of real numbers such that

(a) the sequence of partial sums of the series
8
ř

k=1

ak is bounded; that is, there exists

M P R such that
ˇ

ˇ

ˇ

n
ř

k=1

ak

ˇ

ˇ

ˇ
ď M for all n P N.

(b) tpku8
k=1 is a decreasing sequence, and lim

kÑ8
pk = 0.

Then
8
ř

k=1

akpk converges.
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Proof. Note that 1 follows from the fact that
n
ř

k=1

rk =
r ´ rn+1

1 ´ r
if r ‰ 1, the comparison test

follows from Proposition 2.64, and the integral test follows from the fact that
ż n+1

1

f(x) dx ď Sn ”

n
ÿ

k=1

f(k) ď f(1) +

ż n

1

f(x) dx

with an application of the comparison test, we only prove 4, 5 and 6.

4. Let r = lim sup
kÑ8

k
a

|xk|.

(a) Suppose that 0 ď r ă 1. By Proposition 1.98, there exists N ą 0 such that
k
a

|xk| ă
r + 1

2

(
= r +

1 ´ r

2

)
for all k ě N . This implies that

|xk| ď

(r + 1

2

)k
@ k ě N .

Since
ˇ

ˇ

ˇ

r + 1

2

ˇ

ˇ

ˇ
ă 1, the geometric series

8
ř

k=1

(r + 1

2

)k converges; thus the compari-

son test implies that the series
8
ř

k=1

|xk| converges.

(b) Suppose that r ą 1. By Proposition 1.98 there exist n1 ă n2 ă ¨ ¨ ¨ ă nj ă ¨ ¨ ¨

such that
k
a

|xk| ą
r + 1

2
@ k = n1, n2, ¨ ¨ ¨ ,

The statement above then implies that lim
kÑ8

xk, if exists, cannot be zero; thus the

n-th term test shows that
8
ř

k=1

xk diverges.

5. (a) Suppose that lim sup
kÑ8

|ak|

bk
= c ă 8. By Proposition 1.98 there exists N ą 0

such that |ak|

bk
ă c + 1 for all k ě N . This implies that |ak| ă (c + 1)bk for all

k ě N ; thus the convergence of
8
ř

k=1

bk and the comparison test imply that the

series
8
ř

k=1

|ak| converges.

(b) Suppose that lim inf
kÑ8

ak
bk

= c ą 0. By Proposition 1.98 there exists N ą 0 such

that ak
bk

ą
c

2
for all k ě N . This implies that ak ą

c

2
bk for all k ě N ; thus

the divergence of
8
ř

k=1

bk and the comparison test imply that the series
8
ř

k=1

|ak|

diverges.
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6. Let ε ą 0 be given. Since tpnu8
n=1 is decreasing and lim

nÑ8
pn = 0, there exists N ą 0

such that
0 ď pn ă

ε

2M + 1
whenever n ě N .

Define Sn =
n
ř

k=1

ak. Then if n ě N and ℓ ě 0,

ˇ

ˇ

ˇ

n+ℓ
ÿ

k=n

akpk

ˇ

ˇ

ˇ
=
ˇ

ˇanpn + an+1pn+1 + an+2pn+2 + ¨ ¨ ¨ + an+ℓ´1pn+ℓ´1 + an+ℓpn+ℓ
ˇ

ˇ

=
ˇ

ˇ(Sn ´ Sn´1)pn + (Sn+1 ´ Sn)pn+1 + (Sn+2 ´ Sn+1)pn+2 + ¨ ¨ ¨ ¨ ¨ ¨

+ (Sn+ℓ´1 ´ Sn+ℓ´2)pn+ℓ´1 + (Sn+ℓ ´ Sn+ℓ´1)pn+ℓ
ˇ

ˇ

=
ˇ

ˇ´Sn´1pn + Sn(pn ´ pn+1) + Sn+1(pn+1 ´ pn+2) + ¨ ¨ ¨ ¨ ¨ ¨

+ Sn+ℓ´1(pn+ℓ´1 ´ pn+ℓ) + Sn+ℓpn+ℓ
ˇ

ˇ

ď |Sn´1pn| + |Sn(pn ´ pn+1)| + |Sn+1(pn+1 ´ pn+2)| + ¨ ¨ ¨ ¨ ¨ ¨

+ |Sn+ℓ´1(pn+ℓ´1 ´ pn+ℓ)| + |Sn+ℓpn+ℓ|

ď Mpn +M(pn ´ pn+1) +M(pn+1 ´ pn+2) + ¨ ¨ ¨ ¨ ¨ ¨

+M(pn+ℓ´1 ´ pn+ℓ) +Mpn+ℓ

= 2Mpn ă
2Mε

2M + 1
ă ε .

The convergence of
8
ř

k=1

akpk follows from the Cauchy criterion (Theorem 2.65). ˝

Corollary 2.71. 1. The p-series
8
ř

k=1

1

kp
converges if and only if p ą 1.

2. The alternating series
8
ř

k=1

(´1)kak converges if taku8
k=1 is a decreasing convergent se-

quence with limit 0.

Remark 2.72. It can be shown (and the proof is left as an exercise) that

lim inf
kÑ8

|xk+1|

|xk|
ď lim inf

kÑ8

k
a

|xk| ď lim sup
kÑ8

k
a

|xk| ď lim sup
kÑ8

|xk+1|

|xk|
.

As a consequence, by the root test we obtain

1. if lim sup
kÑ8

|xk+1|

|xk|
ă 1, the series

8
ř

k=1

xk converges absolutely, and

2. if lim inf
kÑ8

|xk+1|

|xk|
ą 1, the series

8
ř

k=1

xk diverges.
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This is called the ratio test.

Example 2.73. The series
8
ř

k=1

sin k

kp
converges for p ą 0 since

1.
n
ř

k=1

sin k =
cos 1

2 ´ cos 2k+1
2

2 sin 1
2

;
(

thus
ˇ

ˇ

ˇ

n
ř

k=1

sin k
ˇ

ˇ

ˇ
ď

1

sin 1
2

)
.

2.
␣ 1

np

(8

n=1
is decreasing and lim

nÑ8

1

np
= 0.

We remark here that
8
ř

k=1

sin k

k
=

π ´ 1

2
. In fact,

8
ř

k=1

sin(kx)
k

is the “Fourier series” of the

function π ´ x

2
.

Example 2.74. Let txku8
k=1 be a real sequence defined by

xk =

"

2´k if k is odd ,
4´k if k is even ,

or xk = (3 + (´1)k)´k. Then k
a

|xk| = (3 + (´1)k)´1 which shows that

lim inf
kÑ8

k
a

|xk| =
1

4
and lim sup

kÑ8

k
a

|xk| =
1

2
.

Therefore, the root test implies that the series
8
ř

k=1

xk converges absolutely.

We can also compute the limit superior and limit inferior of |xk+1|

|xk|
. Define

yk =
|xk+1|

|xk|
=

(3 + (´1)k+1)´k´1

(3 + (´1)k)´k
=

1

3 ´ (´1)k

(3 ´ (´1)k

3 + (´1)k

)´k

and observe that lim
kÑ8

y2k = 8 and lim
kÑ8

y2k+1 = 0. Since yk P [0,8), we conclude that 0 is
the smallest cluster point of tyku8

k=1 and 8 is the largest “cluster point” of tyku8
k=1. This

shows that
lim inf
kÑ8

|xk+1|

|xk|
= 0 and lim sup

kÑ8

|xk+1|

|xk|
= 8 .

We note that in this case even if the series
8
ř

k=1

xk converges absolutely, lim sup
kÑ8

|xk+1|

|xk|
ą 1.

Therefore, the condition lim sup
kÑ8

|xk+1|

|xk|
ą 1 cannot be used to guarantee the divergence of

the series
8
ř

k=1

xk.



Chapter 3

Elementary Point-Set Topology

3.1 Limit Points and Interior Points of Sets
Definition 3.1. Let (M,d) be a metric space, and A be a subset of M .

1. A point x P M is called a limit point of A if there exists a sequence txnu8
n=1 in A

such that txnu8
n=1 converges to x.

2. The closure of A is the collection of all limit points of A is denoted by sA or cl(A).

3. A point x P M is called an interior point of A if there exists r ą 0 such that the
r-ball about x is contained in A; that is, B(x, r) Ď A.

4. The interior of A is the collection of all interior points of A and is denoted by Å or
int(A).

5. A point x P M is called an exterior point of A if x is an interior point of AA, and
the collection of all exterior points of A is called the exterior of A.

Example 3.2. For a, b P R and a ă b, consider the interval I in (R, | ¨ |) with end-points a
and b. Then sI = [a, b] and I̊ = (a, b).

Remark 3.3. By the definition of the convergence of sequences in metric spaces, we have
the following equivalent definition: A point x P M is called a limit point of A if for every
ε ą 0, B(x, ε) contains points in A; that is, @ ε ą 0, B(x, ε) X A ‰ H.

Remark 3.4. 1. If x P A, then x is a limit point of A. In other words, A Ď sA.

2. If x P Å, then x P A; thus Å Ď A.

58
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Theorem 3.5. Let (M,d) be a metric space, and A,B be subsets of M . If A Ď B, then
sA Ď sB and Å Ď B̊.

Proof. 1. Let x P sA. Then there exists a sequence txnu8
n=1 in A with limit x. Since A Ď B,

txnu8
n=1 is a sequence in B with limit x; thus x P sB.

2. Let x P Å. Then there exists r ą 0 such that B(x, r) Ď A. Since A Ď B, B(x, r) Ď B;
thus x P B̊. ˝

Proposition 3.6. Let (M,d) be a metric space, and A be a subset of M . Then

x P sA if and only if d(x,A) ” inf
␣

d(x, y)
ˇ

ˇ y P A
(

= 0.

Proof. “ñ” Suppose that x P sA. Then there exists a sequence txnu8
n=1 in A with limit x.

By the definition of d(x,A),

0 ď d(x,A) = inf
␣

d(x, y)
ˇ

ˇ y P A
(

ď d(x, xn) @n P N ;

thus the Sandwich lemma (Lemma 1.34) and Remark 2.43 imply that d(x,A) = 0.

“ð” Suppose d(x,A) = 0. By the definition of d(x,A), for all n P N there exists xn P A

such that d(x, xn) ă d(x,A) +
1

n
=

1

n
. Therefore, we obtain a sequence txnu8

n=1 in A

such that lim
nÑ8

xn = x; thus x P sA. ˝

Remark 3.7. Let (M,d) be a metric space. The function d(x,A) defined in the example
above does not satisfy that

d(x, y) ď d(x,A) + d(y, A) @x, y P M ,A Ď M .

However, if d(A,B) = inf
␣

d(a, b)
ˇ

ˇ a P A, b P B
(

, then

d(A,B) ď d(x,A) + d(x,B) @x P M .

The proof of the inequality above is left as an exercise.

Definition 3.8. Let (M,d) be a metric space. A subset A of M is said to be dense（稠
密）in another subset B if A Ď B Ď sA.

Remark 3.9. When A is dense in B, it means that every point in B can be the limit of a
sequence in A.
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Example 3.10. The rational numbers Q is dense in the real number system R.

Definition 3.11. Let (M,d) be a metric space, and A be a subset of M . The boundary
of A, denoted by bd(A) or BA, is the intersection of sA and ĎAA (BA = sA X ĎAA).

Remark 3.12. 1. By the definition of limit points of sets, we find that

x P BA ô D txnu8
n=1 Ď A and tynu8

n=1 Ď AA Q xn Ñ x and yn Ñ x as n Ñ 8

ô @ ε ą 0, B(x, ε) X A ‰ H and B(x, ε) X AA ‰ H .

2. BA = B(AA).

Proposition 3.13. Let (M,d) be a metric space, and A be a subset of M . Then BA = sAzÅ.

Proof. If x P BA, then x P sA X ĎAA; thus for all ε ą 0, B(x, ε) X AA ‰ H. Therefore, x R Å

which implies that BA Ď sAzÅ.
On the other hand, if x P sAzÅ, then x R Å; thus for all ε ą 0, B(x, ε) Ę A. As a

consequence, for all ε ą 0, B(x, ε) X AA ‰ H; thus x P ĎAA and this further implies that
x P sA X ĎAA = BA. ˝

Remark 3.14. 1. If A Ď B, then in general BA Ę BB. For example, let A = QX [0, 1] and
B = [0, 1]. Then A Ď B but BA = [0, 1], BB = t0, 1u.

2. It is not always true that BA = B(int(A)). For example, take A = [0, 1] Y t2u. Then
BA = t0, 1, 2u, int(A) = (0, 1), B(int(A)) = t0, 1u, so BA ‰ B(int(A)).

3.2 Closed Sets and Open Sets
3.2.1 Closed sets

Definition 3.15. Let (M,d) be a metric space. A subset F of M is said to be closed (in
M) if F contains all its limit points; that is, F Ě sF . In other words, F is closed if every
convergent sequence txku8

k=1 Ď F converges to a limit in F .

Remark 3.16. Let (M,d) be a metric space, and A be a subset of M .

1. By the definition of the closure of sets, A Ď sA; thus A is closed if and only if A = sA.

2. By Remark 3.3, A is closed if and only if for all x P AA there exists r ą 0 such that
B(x, r) Ď AA.
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3. By the definition of the exterior points and 2 above, A is closed if and only if every
point of AA is an interior point of AA (or equivalently, AA = int(AA)).

4. If B is a closed set and A Ď B, then Theorem 3.5 implies that sA Ď B.

Example 3.17. Let a, b P R. The interval [a, b], (´8, a], [b,8) in R are closed. This is
why [a, b], (´8, a] and [b,8) are called “closed” intervals in R.

The set (0, 1] Ď R is not closed because it does not contain 0, a limit point of (0, 1].

In general, we have the following

Proposition 3.18. Let (M,d) be a metric space, x P M and r ě 0.

1. The set B(x, r)A is closed.

2. The set
␣

y P M
ˇ

ˇ d(x, y) ď r
(

is closed.

Proof. 1. Suppose the contrary that there exists a sequence tynu8
n=1 Ď B(x, r)A which

converges to some y P B(x, r). Note that d(x, y) ă r; thus there exists N ą 0 such
that

d(yn, y) ă ε = r ´ d(x, y) whenever n ě N .

By the triangle inequality, for n ě N we have

d(yn, x) ď d(yn, y) + d(y, x) ă r ´ d(x, y) + d(x, y) = r

which implies that yn P B(x, r) for n ě N , a contradiction.

2. Let A =
␣

y P M
ˇ

ˇ d(x, y) ď r
(

. Suppose the contrary that there exists a sequence
tynu8

n=1 Ď A which converges to some y P AA. Since d(x, y) ą r, there exists N ą 0

such that
d(yn, y) ă ε = d(x, y) ´ r whenever n ě N .

By the triangle inequality, for n ě N we have

d(yn, x) ě d(x, y) ´ d(y, yn) ą d(x, y) ´
(
d(x, y) ´ r

)
= r

which implies that yn R A for n ě N , a contradiction. ˝

Remark 3.19. When r = 0, the set
␣

y P M
ˇ

ˇ d(x, y) ď r
(

contains only one point x; thus
every set consisting of one single point in M is closed.
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Definition 3.20. Let (M,d) be a metric space. For each x P M and r ą 0, the set

B[x, r] ”
␣

y P M
ˇ

ˇ d(x, y) ď r
(

is called the closed r-ball about x or the closed ball centered at x with radius r.

Proposition 3.21. Let (M,d) be a metric space.

1. The union of finitely many closed sets is closed.

2. The intersection of arbitrary family of closed sets is closed.

3. The universal set M and the empty set H are closed.

Proof. 1. Let F1, ¨ ¨ ¨ , Fk be closed sets in M , F =
k
Ť

j=1

Fj, and txnu8
n=1 Ď F be a convergent

sequence with limit x P M . Then there exists 1 ď j0 ď k such that

#
␣

n P N
ˇ

ˇxn P Fj0
(

= 8 ;

thus
␣

n P N
ˇ

ˇxn P Fj0
(

=
␣

n1, n2, ¨ ¨ ¨ , nk, ¨ ¨ ¨
(

, where nk ă nk+1 for all k P N. By
Proposition 2.56, the sequence

␣

xnk

(8

k=1
converges to x. Since Fj0 is closed, x P Fj0 ;

thus x P F . Therefore, every convergent sequence in F converges to a limit in F which
shows that F is closed.

2. Let F =
␣

Fα
ˇ

ˇFα closed in M , α P I
(

be a family of closed sets, F ”
Ş

αPI

Fα, and

txnu8
n=1 Ď F be a convergent sequence with limit x P M . Then for each α P I,

txnu8
n=1 in Fα; thus the closedness of Fα implies that x P Fα for each α P I. Therefore,

x P F which shows that F is closed.

3. Since every consequence in M converges to a limit in M , M must be closed. Since
there is no sequence in H, it holds that H is closed. ˝

Alternative proof of 1 and 2. 1. Let F1, ¨ ¨ ¨ , Fk be closed sets, F =
k
Ť

j=1

Fj, and x P F A. By
De Morgan’s law,

F A =MzF =Mz

k
ď

j=1

Fj =
k
č

j=1

(MzFj) =
k
č

j=1

Fj
A ,

so x P F A
j for all 1 ď j ď k. By Remark 3.16, for each 1 ď j ď k there exists rj ą 0

such that
B(x, rj) Ď F A

j .
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Define r = mintr1, r2, ¨ ¨ ¨ , rju. Then r ą 0 and B(x, r) Ď B(x, rj) Ď F A
j for all

1 ď j ď k; thus

B(x, r) Ď

k
č

j=1

F A
j Ď

( k
ď

j=1

Fj
)A

= F A .

2. Let F =
␣

Fα
ˇ

ˇFα closed in M , α P I
(

be a family of closed sets, F ”
Ş

αPI

Fα, and
x P F . By De Morgan’s law,

F A =Mz
č

αPI

Fα =
ď

αPI

(MzFα) =
ď

αPI

F A
α

so x P F A
β for some β P I. By Remark 3.16, there exists r ą 0 such that

B(x, r) Ď F A
β Ď

ď

αPI

F A
α =

(č
αPI

Fα
)A

= F A . ˝

Corollary 3.22. Every set consisting of finitely many points of a metric space is closed.

Example 3.23. Let (V , } ¨ }) be a normed vector space, A Ď V be closed, and B Ď V be
finite (#(B) ă 8). Then A+B is closed.

Proof. Let txnu8
n=1 be a convergent sequence in A+B with limit x. Then xn = an+ bn for

some an P A and bn P B. Since #(B) ă 8, there exists a point b P B such that

#tn P N | bn = bu = 8 .

Let tn P N | bn = bu = tn1, n2, ¨ ¨ ¨ , nk, ¨ ¨ ¨ u, where nk ă nk+1 for all k P N. Then txnk
u8
k=1

is a subsequence of txnu. By Proposition 2.56, txnk
u8
k=1 converges to x; thus the fact that

ank
= xnk

´ b shows that tank
u8
k=1 converges to a limit a and x = a + b. The closedness of

A further implies that a P A; thus x P A+B.
In fact, A+B =

Ť

b PB

(b + A). It should be clear that b + A is closed if A is closed; thus

we conclude that A+B is open by Proposition 3.21. ˝

Theorem 3.24. Let (M,d) be a metric space, and A be a subset of M . Then sA is closed.

Proof. Let x P sA A be given. Remark 3.3 implies that there exists ε ą 0 such that B(x, ε) X

A = H or equivalently, A Ď B(x, ε)A. By Proposition 3.18, B(x, ε)A is closed; thus 4 of
Remark 3.16 implies that sA Ď B(x, ε)A. Therefore, B(x, ε) Ď sAA; thus we established that
every point in sAA is an interior point of sAA. 4 of Remark 3.16 then shows that sA is closed. ˝
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Remark 3.25. Let (M,d) be a metric space, and A be a subset of M .

1. By the definition of the boundary of sets, Proposition 3.21 and Theorem 3.24 imply
that BA is closed.

2. By 4 of Remark 3.16, every closed set containing A contains sA; thus the closure of A
is the smallest closed set containing A; that is, sA =

Ş

AĎF
F closed

F .

Definition 3.26. Let (M,d) be a metric space. A subset A of M is said to be complete if
the metric space (A, d) is complete. In other words, A is complete if every Cauchy sequence
in A converges to a limit in A.

Theorem 3.27. Let (M,d) be a complete metric space, and A be a subset of M . Then A

is complete if and only if A is closed in M .

Proof. “ñ” Let txku8
k=1 be a convergent sequence in A with limit x. Then Proposition 2.58

implies that txku8
k=1 is a Cauchy sequence in (M,d). Since txku8

k=1 Ď A, we find that
txku8

k=1 is a Cauchy sequence in (A, d); thus the completeness of (A, d) implies that
txku8

k=1 converges to y P A. By Proposition 2.42, the limit is unique; thus x = y which
implies that x P A. Therefore, A is closed.

“ð” Let txku8
k=1 be a Cauchy sequence in A. Then

@ ε ą 0, DN ą 0 Q d(xn, xm) ă ε whenever n,m ě N .

Therefore, txku8
k=1 is a Cauchy in (M,d). Since (M,d) is complete, there exists x P M

such that xk Ñ x as k Ñ 8. By the closedness of A, we must have x P A; thus every
Cauchy sequence in A converges to a limit in A. ˝

3.2.2 Open sets

Definition 3.28. Let (M,d) be a metric space. A set U Ď M is said to be open (in M) if
every point in U is an interior point of U ; that is, U Ď Ů . In other words,

U is open (in M) ô @ x P U, D r ą 0 Q B(x, r) Ď U .

Remark 3.29. Let (M,d) be a metric space, and A be a subset of M .

1. By the definition of the interior of sets, Å Ď A; thus A is open if and only if A = Å.
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2. By 3 of Remark 3.16, A is open if and only if AA is closed and A is closed if and only
if AA is open.

3. The statement above does NOT implies that a set in a metric space is either open or
closed. There are still sets which is neither open nor closed.

4. If B is an open set and B Ď A, then Theorem 3.5 implies that B Ď Å.

Example 3.30. The interval (a, b) in R is open since int((a, b)) = (a, b). This is why (a, b)

is called an open interval in Calculus.

Example 3.31. The set A =
␣

(a, b) P R2
ˇ

ˇ 0 ă a ă 1
(

is open: given x = (a, b) P A, take
r = mint1 ´ a, au, then B(x, r) Ď A.

On the other hand, the set A =
␣

(a, b) P R2
ˇ

ˇ 0 ă a ď 1
(

is not open: let x = (1, 0), then
for each r ą 0, B(x, r) Ę A since the point

(
1 +

r

2
, 0
)

P B(x, r) but
(
1 +

r

2
, 0
)

R A.

The following proposition is a direct consequence of Proposition 3.18 and Remark 3.29.

Proposition 3.32. Every r-ball in a metric space is open.

Alternative proof. Let (M,d) be a metric space, and B(x, r) be an r-ball in M . We would
like to show that for each y P B(x, r), there exists δ ą 0 such that B(y, δ) Ď B(x, r). Let
δ = r ´ d(x, y). Then δ ą 0 and if z P B(y, δ), we have

d(z, x) ď d(z, y) + d(y, x) ă δ + d(y, x) = r ;

thus z P B(x, r). ˝

Proposition 3.33. Let (M,d) be a metric space.

1. The intersection of finitely many open sets is open.

2. The union of arbitrary family of open sets is open.

3. The empty set H and the universal set M are open.

Proof. 1. Let U1, ¨ ¨ ¨ , Uk be open sets, and U =
k
Ş

j=1

Uj. Then by De Morgan’s law,

U A =MzU =Mz

k
č

j=1

Uj =
k
ď

j=1

(MzUj) =
k
ď

j=1

Uj
A .

Since Uj is open, UjA is closed. By Proposition 3.21,
k
Ť

j=1

Uj
A is closed.
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2. Let F =
␣

Uα
ˇ

ˇUα open in M , α P I
(

be a family of open sets, and U ”
Ť

αPI

Uα. Then
by De Morgan’s law,

U A =Mz
ď

αPI

Uα =
č

αPI

(MzUα) =
ď

αPI

U A
α

which implies that U A is the intersection of a family of closed sets
␣

U A
α

(

αPI
. By

Proposition 3.21 we conclude that U A is closed or equivalently, U is open. ˝

Alternative proof of 1 and 2.

1. Let U1, U2, ¨ ¨ ¨ , Uk be open sets in M , and U ”
k
Ş

i=1

Ui. If y P U , then y P Ui for

all 1 ď i ď k. Since Ui is open, there exist δi ą 0 such that B(y, δi) Ď Ui. Let
δ = mintδ1, ¨ ¨ ¨ , δku. Next we show that B(y, δ) Ď U to conclude that U is open.

Let z P B(y, δ). Then d(y, z) ă δ ď δi for all 1 ď i ď k. Therefore, z P B(y, δi) for all

1 ď i ď k which shows that z P Ui for all 1 ď i ď k; thus z P
k
Ş

i=1

Ui ” U .

2. Let F =
␣

Uα
ˇ

ˇUα open in M , α P I
(

be a family of open sets, and U ”
Ť

αPI

Uα. If

y P U , then y P Uβ for some β P I. Since Uβ is open, there exists δ ą 0 such that

B(y, δ) Ď Uβ; thus B(y, δ) Ď
Ť

αPI

Uα ” U . ˝

Remark 3.34. Infinite intersection of open sets need not be open:

1. Take Ak =
(

´
1

k
,
1

k

)
, then

8
Ş

k=1

Ak = t0u which is not open.

2. Let Uk = (´2 ´
1

k
, 2 +

1

k
) Ď R. Then A =

8
Ş

k=1

Uk Ě [´2, 2]. Moreover, if x R [´2, 2],

then D k P N Q x R Uk
(
If x ą 2, 1

k
ă

x ´ 2

2
. If x ă ´2, 1

k
ă

´x ´ 2

2

)
. Therefore,

8
Ş

k=1

Uk = [´2, 2].

Example 3.35. Let (V , } ¨ }) be a normed vector space. If A,B are subsets of V and A is
open, the set A+B is open.

Proof. Let y P A+B. Then y = a + b for some a P A, b P B. Since A is open, there exists
δ ą 0 such that B(a, δ) Ď A.
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We next show that B(y, δ) Ď A + B. Let z P B(y, δ). Then }z ´ y} ă δ. Since
z = b + (z ´ b), if we can show that z ´ b P A, then z P A+B. Nevertheless, we have

}(z ´ b) ´ a} = }z ´ a ´ b} = }z ´ y} ă δ

which implies that z ´ b P B(a, δ) Ď A. ˝

Since A + B =
Ť

b PB

(b + A) and it should be clear that b + A is open if A is open, we

conclude by Proposition 3.33 that A+B is open.

Theorem 3.36. Let (M,d) be a metric space, and A be a subset of M . Then Å is open.

Proof. For each x P Å, let εx ą 0 denote a number such that B(x, εx) Ď A. We would like
to show that Å =

Ť

x PÅ

B(x, εx), and the theorem is then a direct consequence of Proposition

3.33.
1. “Ď”: trivial.

2. “Ě”: Let y P
Ť

x PÅ

B(x, εx). By the definition of the union of family of sets, there exists

x P Å such that y P B(x, εx). Let δ = εx ´ d(x, y). Then δ ą 0 and if z P B(y, δ),

d(z, x) ď d(z, y) + d(y, x) ă δ + d(y, x) = εx

which implies that B(y, δ) Ď B(x, εx) Ď A. Therefore, y P Å. ˝

Remark 3.37. Let (M,d) be a metric space, and A be a subset of M . By 4 of Remark
3.29, every open set contained inside A is contained inside Å; thus the interior of A is the
largest open set contained inside A; that is, Å =

Ť

AĚU
U open

U .

Remark 3.38. In a metric space (M,d), it is NOT always true that int
(
B[x,R]

)
= B(x,R)

or cl(B(x,R)) = B[x,R]. For example, we consider the discrete metric

d0(x, y) =

"

1 if x ‰ y,
0 if x = 0.

Let R = 1, and fix x P M ‰ H. Then B[x, 1] = M and B(x, 1) = txu. Since every set in
(M,d0) is both closed and open, we find that

int(B[x, 1]) =M and cl(B(x, 1)) = txu ;

thus as long as M has more than one point, we have int
(
B[x, 1]

)
‰ B(x, 1) and cl

(
B(x, 1)

)
‰

B[x, 1]. We also note that in (M,d0) the boundary of every set is empty.
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3.3 Compactness（緊緻性）
In this section, we investigate a property similar to the Bolzaon-Weierstrass Property.

Definition 3.39. Let (M,d) be a metric space. A subset K Ď M is called sequentially
compact if every sequence in K has a subsequence that converges to a point in K.

Definition 3.40. Let (M,d) be a metric space. A subset A of M is said to be bounded if
A is contained in some r-ball. In other words, A is bounded if there exists x P M and r ą 0

such that A Ď B(x, r).

Example 3.41. Each closed and bounded set in (Rn, } ¨ }2) is sequentially compact. This is
a direct consequence of the Bolzano-Weierstrass Theorem (Theorem 2.51) and the definition
of the closedness of sets.

Theorem 3.42. Let (M,d) be a metric space, and K Ď M be sequentially compact. Then
K is closed and bounded.

Proof. For closedness, assume that txku8
k=1 Ď K and xk Ñ x as k Ñ 8. By the definition of

sequential compactness, there exists
␣

xkj
(8

j=1
converging to a point y P K. By Proposition

2.56, x = y; thus x P K.
For boundedness, assume the contrary that for all x0 P M and R ą 0, there exists y P K

such that d(x0, y) ě R. Fix x0 P M . There exists x1 P K such that d(x0, x1) ě 1. Having
x1, there exists x2 P K such that d(x2, x0) ě 1 + d(x1, x0). Continuing this process, we
obtain a sequence txku8

k=1 in K such that

d(xk, x0) ě 1 + d(xk´1, x0) @ k P N.

•
x0

•x1

•x2

•x3

1

1

Then any subsequence of txku8
k=1 cannot be Cauchy since d(xk, xℓ) ě |k ´ ℓ| for all k, ℓ P N;

thus txku8
k=1 has no convergent subsequence, a contradiction. ˝
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Remark 3.43. Example 3.41 and Theorem 3.42 together imply that in (Rn, } ¨ }2),

sequentially compact ô closed and bounded .

This result is called the Heine-Borel Theorem.

In fact, if V is a finite dimensional vector space over F, where F = R or C, and
te1, e2, ¨ ¨ ¨ , enu Ď V is a basis for V ; that is, every x P V can be uniquely expressed as

x = x(1)e1 + x(2)e2 + ¨ ¨ ¨ + x(n)en , x(k) P F for 1 ď k ď n .

Define }x}2 =
( n
ř

i=1

ˇ

ˇx(i)
ˇ

ˇ

2
) 1

2 (which is a norm by Example 2.28). Then a subset K of V

is sequentially compact in (V , } ¨ }2) if and only if K is closed and bounded. Note that by
Theorem 3.42 it suffices to show the “if” direction. Let txku8

k=1 be a sequence in K. Write

xk =
n
ř

i=1

x
(i)
k ei, and define vk =

(
x
(1)
k , x

(2)
k , ¨ ¨ ¨ , x

(n)
k

)
. Then tvku8

k=1 is a sequence in Fn. Since

txku8
k=1 is bounded, there exists M ą 0 such that

}xk}2 ď M @ k P N ;

thus }vk}2 ď M (here }vk}2 is the usual norm of vk on Fn) for all k P N. By the Bolzano-
Weierstrass Theorem (Theorem 2.51 and Remark 2.52), there exists a subsequence tvkju8

j=1

such that tvkju8
j=1 converges to some v P Fn. Let v =

(
x(1), x(2), ¨ ¨ ¨ , x(n)

)
and x = x(1)e1 +

¨ ¨ ¨ + x(n)en. Then
›

›xkj ´ x
›

›

2
=

( n
ÿ

i=1

ˇ

ˇx
(i)
kj

´ x(i)
ˇ

ˇ

2
) 1

2
= }vkj ´ v}2 Ñ 0 as j Ñ 8 ,

and the closedness of K implies that x P K, so we establish that K is sequentially compact
in (V , } ¨ }2) if K is closed and bounded.

Example 3.44. Let A = [0, 1]Y(2, 3] Ď (R, | ¨ |). Since A is not closed, A is not sequentially
compact.

Corollary 3.45. If K Ď R is sequentially compact, then infK P K and supK P K.

Proof. By Theorem 3.42, K must be closed and bounded. Therefore, infK P R. Then
for each n P N, there exists xn P K such that infK ď xn ă infK +

1

n
. Since txnu8

n=1 is
a bounded sequence in R, the Bolzano-Weierstrass property of R implies that there is a
subsequence txnk

u8
k=1 and x P R such that lim

kÑ8
xnk

= x. Note that x = infK, and by the
closedness of K, x P K. The proof of supK P K is similar. ˝



70 CHAPTER 3. Elementary Point-Set Topology

Definition 3.46. Let (M,d) be a metric space. A subset A Ď M is called totally bounded
if for each r ą 0, there exists tx1, ¨ ¨ ¨ , x

N
u Ď M such that

A Ď

N
ď

i=1

B(xi, r) .

Remark 3.47. In a general metric space (M,d), a bounded set might not be totally bounded.
For example, consider the metric space (M,d) with the discrete metric, and A Ď M be a
set having infinitely many points. Then A is bounded since A Ď B(x, 2) for any x P M ;
however, A is not totally bounded since A cannot be covered by finitely many balls with
radius 1

2
.

Proposition 3.48. Let (M,d) be a metric space, and A Ď M be totally bounded. Then A

is bounded. In other words, totally bounded sets are bounded.

Proof. By total boundedness, there exists ty1, ¨ ¨ ¨ , y
N

u Ď M such that A Ď
N
Ť

i=1

B(yi, 1). Let

x0 = y1 and R = max
␣

d(x0, y2), ¨ ¨ ¨ , d(x0, yN
)
(

+ 1. Then if z P A, z P B(yj, 1) for some
j = 1, ¨ ¨ ¨ , N , and

d(z, x0) ď d(z, yj) + d(yj, x0) ă 1 + d(x0, yj) ď R

which implies that A Ď B(x0, R). Therefore, A is bounded. ˝

Example 3.49. Every bounded set in (Rn, }¨}2) is totally bounded (Check!). In particular,
the set t1u ˆ [1, 2] in (R2, } ¨ }2) is totally bounded.

On the other hand, let d : R2 ˆ R2 Ñ R be defined by

d(x, y) =

#

|x1 ´ y1| if x2 = y2 ,

|x1 ´ y1| + |x2 ´ y2| + 1 if x2 ‰ y2 ,
where x = (x1, x2) and y = (y1, y2).

Then (R2, d) is also a metric space (exercise). The set t1u ˆ [1, 2] is bounded (Check!) but
not totally bounded. In fact, consider open ball with radius 1

2
:

y P B
(
x,

1

2

)
ô }x ´ y} ă

1

2
ô |x1 ´ y1| ă

1

2
and x2 = y2

ô y1 P
(
x1 ´

1

2
, x1 +

1

2

)
and x2 = y2 .

In other words,
B
(
x,

1

2

)
=

(
x1 ´

1

2
, x1 +

1

2

)
ˆ tx2u ;

thus one cannot cover t1u ˆ [1, 2] by the union of finitely many balls with radius 1

2
.
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Example 3.50. Let ℓ8 denote the collection of all bounded real sequences (cf. Example
2.20); that is,

ℓ8 =
␣

txku8
k=1 Ď R

ˇ

ˇ for some M ą 0, |xk| ď M for all k
(

.

The number sup
kě1

|xk| ” supt|x1|, |x2|, ¨ ¨ ¨ , |xk|, ¨ ¨ ¨ u ă 8 is denoted by
›

›txku8
k=1

›

›

8

(
for

example, if xk =
(´1)k

k
, then

›

›txku8
k=1

›

›

8
= 1

)
. Then (ℓ8, } ¨ }8) is a Banach space (left as

an exercise). Define

A =
!

txku8
k=1 P ℓ8

ˇ

ˇ

ˇ
|xk| ď

1

k

)

,

B =
␣

txku8
k=1 P ℓ8

ˇ

ˇxk Ñ 0 as k Ñ 8
(

,

C =
␣

txku8
k=1 P ℓ8

ˇ

ˇ the sequence txku8
k=1 converges

(

,

D =
!

txku8
k=1 P ℓ8

ˇ

ˇ

ˇ
sup
kě1

|xk| = 1
)

(the unit sphere in (ℓ8, } ¨ })).

The closedness of A (which implies the completeness of (A, } ¨ }8)) is left as an exercise. We
show that A is totally bounded.

Let r ą 0 be given. Then there exists N ą 0 such that 1

N
ă r. Define

E =
!

txku8
k=1

ˇ

ˇ

ˇ
x1 =

i1
N + 1

, x2 =
i2

N + 1
, ¨ ¨ ¨ , x

N´1
=

iN´1

N + 1
for some

i1, ¨ ¨ ¨ , iN´1 = ´N ,´N + 1, ¨ ¨ ¨ ,N ´ 1,N , and xk = 0 if k ě N + 1
)

.

Then

1. #E ă 8. In fact, #E = (2N + 1)N´1 ă 8.

2. A Ď
Ť

txku8
k=1PE

B
(
txku8

k=1,
1

N

)
Ď

Ť

txku8
k=1PE

B
(
txku8

k=1, r
)
.

Therefore, A is totally bounded.
On the other hand, B and C are not bounded; thus not totally bounded by Proposition

3.48. D is bounded but not totally bounded. In fact, D cannot be covered by the union of
finitely many balls with radius 1

2
since each ball with radius 1

2
contains at most one of the

points from the subset
!

␣

x
(k)
j

(8

j=1

)8

k=1
Ď D, where for each k

␣

x
(k)
j

(8

j=1
= t 0, ¨ ¨ ¨ , 0,

looomooon

(k ´ 1) terms

1, 0, ¨ ¨ ¨ u ;

that is, x(k)j = δkj, the kronecker delta.
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Proposition 3.51. Let (M,d) be a metric space, and T Ď M be totally bounded. If S Ď T ,
then S is totally bounded. In other words, subsets of totally bounded sets are totally bounded.

Proof. Let r ą 0 be given. By the total boundedness of T , there exists tx1, ¨ ¨ ¨ , x
N

u Ď M

such that

S Ď T Ď

N
ď

i=1

B(xi, r) . ˝

Proposition 3.52. Let (M,d) be a metric space, and A Ď M . Then A is totally bounded

if and only if for all r ą 0, there exists ty1, ¨ ¨ ¨ , y
N

u Ď A such that A Ď
N
Ť

i=1

B(yi, r).

Proof. It suffices to show the “only if” part. Let r ą 0 be given. Since A is totally bounded,

D ty1, ¨ ¨ ¨ , y
N

u Ď M Q A Ď

N
ď

i=1

B
(
yi,

r

2

)
.

W.L.O.G., we may assume that for each i = 1, ¨ ¨ ¨ , N , B
(
yi,

r

2

)
X A ‰ H. Then for each

i = 1, ¨ ¨ ¨ , N , there exists xi P B
(
yi,

r

2

)
X A which implies that

A Ď

N
ď

i=1

B
(
yi,

r

2

)
Ď

N
ď

i=1

B(xi, r)

since B
(
yi,

r

2

)
Ď B(xi, r) for all i = 1, ¨ ¨ ¨ , N . ˝

Theorem 3.53. Let (M,d) be a metric space, and K be a subset of M . Then K is
sequentially compact if and only if K is totally bounded and complete.

Proof. “ñ” Assume that K is sequentially compact. For the total boundedness, suppose
the contrary that there is an r ą 0 such that any finite set ty1, ¨ ¨ ¨ , ynu Ď K, K Ę
n
Ť

i=1

B(yi, r). This implies that we can choose a sequence txku8
k=1 Ď K such that

xk+1 P K z

k
ď

i=1

B(xi, r) .

Then txku8
k=1 is a sequence in K without convergent subsequence since d(xk, xℓ) ą r

for all k, ℓ P N and k ‰ ℓ.

Next we show that K is complete. Let txku8
k=1 Ď K be a Cauchy sequence. By

sequential compactness of K, there is a subsequence
␣

xkj
(8

j=1
converging to a point

x P K. By Proposition 2.58, txku8
k=1 also converges to x; thus every Cauchy sequence

in K converges to a point in K.
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“ð” The proof of this direction is similar to the proof of Theorem 1.79 and we proceed as
follows. Let txku8

k=1 be a sequence in T0 ” K. Since K is totally bound, there exists
␣

y
(1)
1 , ¨ ¨ ¨ y

(1)
N1

(

Ď K such that

T0 ” K Ď

N1
ď

i=1

B(y
(1)
i , 1) .

One of these B(y
(1)
i , 1)’s must contain infinitely many xk’s; that is, there exists 1 ď

ℓ1 ď N1 such that #
␣

k P N
ˇ

ˇxk P B(y
(1)
ℓ1
, 1)

(

= 8 . Define T1 = K X B(y
(1)
ℓ1
, 1). Then

T1 is also totally bounded by Proposition 3.51, so there exists
␣

y
(2)
1 , ¨ ¨ ¨ , y

(2)
N2

(

Ď T1

such that

T1 Ď

N2
ď

i=1

B
(
y
(2)
i ,

1

2

)
.

Suppose that #
␣

k P N
ˇ

ˇxk P B
(
y
(2)
ℓ2
,
1

2

)(
= 8 for some 1 ď ℓ2 ď N2. Define T2 =

T1 X B
(
y
(2)
ℓ2
,
1

2

)
. We continue this process, and obtain that for all n P N,

(1) there exists
␣

y
(n)
1 , ¨ ¨ ¨ , y

(n)
Nn

(

Ď Tn´1 such that

Tn´1 Ď

Nn
ď

i=1

B
(
y
(n)
i ,

1

n

)
.

(2) Tn = Tn´1 X B(y
(n)
ℓn
,
1

n

)
, where 1 ď ℓn ď Nn is chosen so that

#
!

k P N
ˇ

ˇ

ˇ
xk P B

(
y
(n)
ℓn
,
1

n

))
= 8 . (3.3.1)

Pick an k1 P
␣

k P N
ˇ

ˇxk P B
(
y
(1)
ℓ1
, 1)

(

, and kj P

!

k P N
ˇ

ˇ

ˇ
xk P B

(
y
(j)
ℓj
,
1

j

))
such that

kj+1 ą kj for all j P N. We note such kj always exists because of (3.3.1). Then
␣

xkj
(8

j=1
is a subsequence of txku8

k=1, and xkj P Tj Ď K for all j P N.

Claim:
␣

xkj
(8

j=1
is a Cauchy sequence.

Proof of claim: Let ε ą 0 be given, and N ą 0 be large enough so that 1

N
ă

ε

2
. Then

if j ě N , we must have xkj P B
(
y
(N)
ℓN
,
1

N

)
; thus we conclude that if n,m ě N , the

triangle inequality implies that

d
(
xkn , xkm

)
ď d

(
xkn , y

(N)
ℓN

)
+ d

(
xkm , y

(N)
ℓN

)
ă

1

N
+

1

N
ă ε.

Since (K, d) is complete, the Cauchy sequence
␣

xkj
(8

j=1
converges to a point in K. ˝
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Finally we introduce the concept of compact sets in a metric space in the remaining part
of the section. First we need to talk about open cover of sets.

Definition 3.54. Let (M,d) be a metric space, and A be a subset of M . A cover of A is
a collection of sets tUαuαPI satisfying that A Ď

Ť

αPI

Uα. It is an open cover of A if Uα is

open for all α P I. A subcover of a given cover tUαuαPI is a sub-collection tUαuαPJ , where
J Ď I, satisfying that A Ď

Ť

αPI

Uα. It is a finite subcover if #J ă 8.

Example 3.55. The collection
␣

(´k, k)
ˇ

ˇ k P N
(

is an open cover of R, and
␣

(´2k, 2k)
ˇ

ˇ k P

N
(

is a subcover of
␣

(´k, k)
ˇ

ˇ k P N
(

.

The so-called compact sets is defined in the following

Definition 3.56. Let (M,d) be a metric space. A subset K Ď M is called compact if
every open cover of K possesses a finite subcover; that is, K Ď M is compact if

(
@ open cover tUαuαPI of K

)(
D J Ď I ^ #J ă 8

)(
K Ď

ď

αPJ

Uα

)
.

Example 3.57. Let A = t0u Y

!

1,
1

2
, ¨ ¨ ¨ ,

1

n
, ¨ ¨ ¨

)

, and tUαuαPI be a given open cover of
A. Then 0 P Uβ for all β P I. By the fact that Uβ is open, there exists ε ą 0 such that
B(0, ε) Ď Uβ. Let N P N satisfy 1

N
ă ε. Then

!

1

N
,

1

N + 1
, ¨ ¨ ¨

)

=
!

1

k

ˇ

ˇ

ˇ
k ě N

)

Ď Uβ .

On the other hand, for each 1 ď k ď N´1 there exists αk P I such that 1

k
P Uαk

. Therefore,

A =
(

t0u Y

!

1

N
,

1

N + 1
, ¨ ¨ ¨

))
Y

!

1,
1

2
, ¨ ¨ ¨ ,

1

N ´ 1

)

Ď Uβ Y

N´1
ď

k=1

Uαk
;

thus we obtain a finite subcover for a given open cover. Therefore, A is compact.
In general, if txku8

k=1 is a convergent sequence in a metric space with limit x, then the
set A = tx1, x2, ¨ ¨ ¨ u Y txu is compact.

Theorem 3.58. Let (M,d) be a metric space, and A be a subset of M . Then A is compact
if and only if A is sequentially compact.
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Proof. “ñ” Since a compact set must be totally bounded
(
a finite sub-cover of

␣

B(x, r)
ˇ

ˇx P

K
(

suffices the purpose
)
, it suffices to show the completeness of K. Let txku8

k=1

be a Cauchy sequence in K. Suppose that txku8
k=1 does not converge in K. Then

Proposition 2.56 and 2.58 imply that every point of K is not a cluster point of txku8
k=1;

thus
@ y P K, D δy ą 0 Q #

␣

k P N |xk P B(y, δy)
(

ă 8 . (3.3.2)

The collection
␣

B(y, δy)
(

yPK
then is an open cover of K; thus possesses a finite sub-

cover
␣

B
(
yi, δyi

)(N
i=1

. In particular, txku8
k=1 Ď

N
Ť

i=1

B
(
yi, δxi

)
or

#
!

k P N
ˇ

ˇ

ˇ
xk P

N
ď

i=1

B(yi, δyi)
)

= 8

which contradicts to (3.3.2).

“ð” Let
␣

Uα
(

αPI
be an open cover of K.

Claim: there exists r ą 0 such that for each x P K, B(x, r) Ď Uα for some α P I.

Proof of claim: Suppose the contrary that for each k P N, there exists xk P K such
that B

(
xk,

1

k

)
Ę Uα for all α P I. Then txku8

k=1 is a sequence in K; thus by the
assumption of sequential compactness, there exists a convergent subsequence txkju

8
j=1

with limit x P K. Since tUαuαPI is an open cover of K, x P Uβ for some β P I. Then

(1) there is r ą 0 such that B(x, r) Ď Uβ since Uβ is open.

(2) there exists N ą 0 such that d(xkj , x) ă
r

2
for all j ě N .

Choose j ě N such that 1

kj
ă

r

2
. Then B

(
xkj ,

1

kj

)
Ď B(x, r) Ď Uβ, a contradiction.

Having established the claim, by the fact that K is totally bounded (Theorem 3.53)

there exists ty1, ¨ ¨ ¨ , y
N

u Ď K such that K Ď
N
Ť

i=1

B(yi, r). For each 1 ď i ď N ,

the claim above implies that there exists αi P I such that B(yi, r) Ď Uαi
. Then

N
Ť

i=1

B(yi, r) Ď
N
Ť

i=1

Uαi
which implies that

K Ď

N
ď

i=1

Uαi
. ˝
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Remark 3.59. For a given open cover tUαuαPI of a compact set K, the positive number r
appearing in the claim above is called a Lebesgue number for the open cover. It has the
property that for each x P K there exists α P I such that B(x, r) Ď Uα.

Definition 3.60. Let (M,d) be a metric space. A subset A of M is called pre-compact
if sA is compact. Let U Ď M be an open set, a subset A of U is said to be compactly
embedded in U , denoted by AĂĂU , if A is pre-compact and sA Ď U .

Remark 3.61. Suppose that A is a pre-compact set in (M,d). If txku8
k=1 be a sequence

in A, then txku8
k=1 is a sequence in sA; thus the (sequential) compactness of sA implies that

there exists convergent subsequence txkju
8
j=1 (with limit in sA). Therefore, every sequence

in a pre-compact set has a convergent subsequence.

Example 3.62. Let (M,d) be a complete metric space, and A Ď M be totally bounded.
Then sA is totally bounded (by enlarging the radius of the balls); thus Theorem 3.27 and 3.53
imply that sA is sequentially compact. In other words, in a complete metric space, totally
bounded sets are pre-compact.

Remark 3.63. A generalized version of the Bolzano-Weierstrass property in a general
metric space is the following: a metric space is said to satisfy the Bolzano-Weierstrass
property if every totally bounded sequence has a convergent subsequence. Then a metric
space is complete if and only if it satisfies the Bolzano-Weierstrass property.

3.4 Connectedness（連通性）
Definition 3.64. Let (M,d) be a metric space, and A be a subset of M . Two non-empty
open sets U and V are said to separate A if

1. A X U X V = H ; 2. A X U ‰ H ; 3. A X V ‰ H ; 4. A Ď U Y V .

We say that A is disconnected or separated if such separation exists, and A is connected
if no such separation exists.

Proposition 3.65. Let (M,d) be a metric space. A subset A Ď M is disconnected if and
only if A = A1 Y A2 with A1 X sA2 = sA1 X A2 = H for some non-empty A1 and A2.

Proof. “ñ” Suppose that there exist U , V non-empty open sets such that 1-4 in Definition
3.64 hold. Let A1 = AXU and A2 = AXV . By 1, A1 Ď V A; thus Theorem 3.5 implies
that sA1 Ď V A. This shows that sA1 X A2 = H. Similarly, sA2 X A1 = H.
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“ð” Let U = cl(A2)
A and V = cl(A1)

A be two open sets. Then V XA1 = U XA2 = H; thus

A X U X V = (A1 Y A2) X U X V = (A1 X U) X V = U X (A1 X V ) = H .

Moreover, since A1 X sA2 = A2 X sA1 = H, A1 Ď cl(A2)
A = U and A2 Ď cl(A1)

A = V so
that Property 2 and 3 in Definition 3.64 hold. Finally, since sA1 Ď AA

2 and sA2 Ď AA
1,

we have

(U Y V )A = U A X V A = sA2 X sA1 Ď AA
1 X AA

2 = (A1 Y A2)
A = AA

which implies that A Ď U Y V . Therefore, A is disconnected. ˝

Proposition 3.65 implies the following alternative definition of connected sets (without
defining disconnected sets first):

Definition 3.66. Let (M,d) be a metric space. A subset A of M is said to be connected
if A cannot be represented as the union of two non-empty disjoint sets neither of which
contains a limit point of the other.

Corollary 3.67. Let (M,d) be a metric space. Suppose that a subset A Ď M is connected,
and A = A1 Y A2, where A1 X sA2 = sA1 X A2 = H. Then A1 or A2 is empty.

Theorem 3.68. A subset A of the Euclidean space (R, | ¨ |) is connected if and only if it
has the property that if x, y P A and x ă z ă y, then z P A.

Proof. “ñ” Suppose that there exist x, y P A, x ă z ă y but z R A. Then A = A1 Y A2,
where

A1 = A X (´8, z) and A2 = A X (z,8) .

Since x P A1 and y P A2, A1 and A2 are non-empty. Moreover, sA1XA2 = A1X sA2 = H;
thus by Proposition 3.65, A is disconnected, a contradiction.

“ð” Suppose the contrary that A is not connected (disconnected). Then there exist non-
empty sets A1 and A2 such that A = A1 Y A2 with sA1 X A2 = A1 X sA2 = H. Pick
x P A1 and y P A2. W.L.O.G., we may assume that x ă y. Define z = sup(A1X [x, y]) .

Claim: z P sA1.

Proof of claim: By definition, for any n ą 0 there exists xn P A1 X [x, y] such that
z ´

1

n
ă xn ď z. Therefore, xn Ñ z as n Ñ 8 which implies that z P sA1.

Since z P sA1, z R A2. In particular, x ď z ă y.



78 CHAPTER 3. Elementary Point-Set Topology

(a) If z R A1, then x ă z ă y and z R A, a contradiction.

(b) If z P A1, then z R sA2; thus there exists 0 ă r ă y ´ z such that (z ´ r, z + r) Ď

cl(A2)
A. Then for all z1 P (z, z + r), z ă z1 ă y and z1 R A2. Then x ă z1 ă y

and z1 R A, a contradiction. ˝

Corollary 3.69. Connected sets in (R, | ¨ |) are intervals.

3.5 Subspace Topology
Let (M,d) be a metric space, and N Ď M be a subset. Then (N, d) is a metric space, and
the topology of (N, d) is called the subspace topology of (N, d).

Remark 3.70. The topology of a metric space is the collection of all open sets of that
metric space.

Proposition 3.71. Let (M,d) be a metric space, and N be a subset of M . A subset V Ď N

is open in (N, d) if and only if V = U X N for some open set U in (M,d).

Proof. Let BN(x, r) denote the r-ball about x in (N, d); that is,

BN(x, r) ”
␣

y P N
ˇ

ˇ d(x, y) ă r
(

Ď V .

Note that BN(x, r) = B(x, r) X N , where B(x, r) is the r-ball about x in the metric space
(M,d).

“ñ” Let V Ď N be open in (N, d). Then for all x P M , there exists rx ą 0 such that
BN(x, rx) Ď V . In particular,

V =
ď

xPV

BN(x, rx) =
ď

xPV

B(x, r) X N .

Define U =
Ť

xPV

B(x, rx). Then U is open in (M,d) (by Proposition 3.33), and

V =
ď

xPV

B(x, rx) X N = U X N .

“ð” Suppose that V = U XN for some open set U in (M,d). Let x P V . Then x P U ; thus
there exists r ą 0 such that B(x, r) Ď U . Therefore,

BN(x, r) = B(x, r) X N Ď U X N = V

which implies that x is an interior point of V . This shows that V is open in (N, d). ˝
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Corollary 3.72. Let (M,d) be a metric space, and N be a subset of M . A subset E Ď N

is closed in (N, d) if and only if E = F X N for some closed set F in (M,d).

Proof. Note that if A,B are subsets of N , then A = B if and only if N X AA = N X BA,
where AA denote the set MzA. Then for a subset E of N ,

E is closed in (N, d) ô NzE is open in (N, d) ô N X EA is open in (M,d)

ô N X EA = N X U for some open set U in (M,d)

ô N X (N X EA)A = N X (N X U)A for some open set U in (M,d)

ô N X E = N X U A for some open set U in (M,d)

ô N X E = N X F for some closed set F in (M,d)

ô E = F X N for some closed set F in (M,d). ˝

Remark 3.73. Let (M,d) be a metric space, N be a subset of M , and txnu8
n=1 be a sequence

in N . We note that the convergence of txnu8
n=1 in (N, d) implies the convergence of txnu8

n=1

in (M,d), but not vice versa. For example, the sequence
␣ 1

n

(8

n=1
is convergent in (R, | ¨ |) but

is not convergent in ((0,8), d), where d is the metric induced from the norm | ¨ |. Since the
concept of convergence is different in a subspace, we expect that in a subspace the concept
of closed will be different. In other words, the concept of closedness (and openness as well)
of sets highly depends on the background metric space.

Definition 3.74. Let (M,d) be a metric space, and N be a subset of M . A subset A is

said to be
open
closed

compact
relative to N if A X N is

open
closed

compact
in the metric space (N, d).

Note that base on the definition above, Proposition 3.71 and Corollary 3.72 imply that
if A is closed/open in (M,d), then A is relative closed/open in (N, d). However, we note
that if A Ď N is closed/open in (N, d), A is not necessary closed/open in (M,d).

Example 3.75. Let (M,d) be (R, | ¨ |), and N = Q. Consider the set F = [0, 1] X Q. By
Corollary 3.72 F is closed in (Q, | ¨ |); however, F is not closed in (R, | ¨ |) since it is not
complete (a Cauchy sequence in F might not converge).

Theorem 3.76. Let (M,d) be a metric space, and N be a subset of M . A subset A of M
is closed relative to N if and only if AA is open relative to N .
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Proof. Note that if A,B are subsets of N , then A = B if and only if N X AA = N X BA,
where AA denote the set MzA. Then for a subset A of M ,

A is closed relative to N ô A X N is closed in (N, d)

ô A X N = F X N for some closed set F in (M,d)

ô N X (A X N)A = N X (F X N)A for some closed set F in (M,d)

ô N X AA = N X F A for some closed set F in (M,d)

ô N X AA = N X U for some open set U in (M,d)

which, by Proposition 3.71, implies that AA is open relative to N . ˝

Theorem 3.77. Let (M,d) be a metric space, and K Ď N Ď M . Then K is compact in
(M,d) if and only if K is compact in (N, d).

Proof. “ñ” Let tVαuαPI be an open cover of K in (N, d). By Proposition 3.71 there exists
a collection of open sets tUαuαPI in (M,d) such that Vα = Uα XN for all α P I. Since
tVαuαPI is an open cover of K in (N, d), tUαuαPI is a cover of K in (M,d); thus by the
compactness of K in (M,d), there exists α1, ¨ ¨ ¨ , αN such that

K Ď

N
ď

j=1

Uαj
.

Since K Ď N and Vα = Uα XN , we must have K Ď
N
Ť

j=1

Vαj
which shows that there is

a finite subcover of K for the open cover tVαuαPI . Therefore, K is compact in (N, d).

“ð” Let tUαuαPI be an open cover of K in (M,d). Define Vα = Uα X N . Since K Ď

N , Proposition 3.71 implies that tVαuαPI is an open cover of K in (N, d); thus the
compactness of K in (N, d) implies that there exists α1, ¨ ¨ ¨ , αN such that

K Ď

N
ď

j=1

Vαj
.

Since Vα Ď Uα for all α P I, K Ď
N
Ť

j=1

Uαj
which shows that there is a finite subcover

of K for the open cover tUαuαPI . Therefore,K is compact in (M,d). ˝

Alternative proof - sketch. Let txku8
k=1 Ď K be a sequence. By sequential compactness of

K in either (M,d) or (N, d), there exists txkju
8
j=1 and x P K such that xkj Ñ x as j Ñ 8.
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As long as the metric d used in different space are identical, the concept of convergence of
a sequence are the same; thus (sequential) compactness in (M,d) or (N, d) are the same. ˝

Example 3.78. Let (M,d) be (R, | ¨ |), and N = Q. Then F = [0, 1] XQ is not compact in
(Q, | ¨ |) since F is not complete. We can also apply Theorem 3.77 to see this: if F Ď Q is
compact in (Q, | ¨ |), then F is compact in (R, | ¨ |) which is clearly not the case since F is
not even closed in (R, | ¨ |).

Remark 3.79. Let (M,d) be a metric space. By Proposition 3.65 a subset A Ď M is
disconnected if and only if there exist two subsets U1, U2 of A, open relative to A, such that
A = U1 Y U2 and U1 X U2 = H (one choice of (U1, U2) is U1 = Az sA1 and U2 = Az sA2, where
A1 and A2 are given by Proposition 3.65). Note that U1 and U2 are also closed relative to
A.

Given the observation above, if A is a connected set and E is a subset of A such that E
is closed and open relative to A, then E = H or E = A.

3.6 Exercises
In the exercise section of this chapter, we first introduce the concepts of accumulation points,
isolated points and derived set of a set as follows.

Definition 3.80. Let (M,d) be a normed vector space, and A be a subset of M .

1. A point x P M is called an accumulation point of A if there exists a sequence
txnu8

n=1 in Aztxu such that txnu8
n=1 converges to x.

2. A point x P A is called an isolated point (孤立點) (of A) if there exists no sequence
in Aztxu that converges to x.

3. The derived set of A is the collection of all accumulation points of A, and is denoted
by A1.

§3.1 Limit Points and Interior Points of Sets

Problem 3.1. Let (M,d) be a metric space, and A be a subset of M .

1. Show that the collection of all isolated points of A is AzA1.
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2. Show that A1 = sAz(AzA1). In other words, the derived set consists of all limit points
that are not isolated points. Also show that sAzA1 = AzA1.

Problem 3.2. Let A and B be subsets of a metric space (M,d). Show that

1. cl(cl(A)) = cl(A).

2. cl(A Y B) = cl(A) Y cl(B).

3. cl(A X B) Ď cl(A) X cl(B). Find examples of that cl(A X B) Ĺ cl(A) X cl(B).

Problem 3.3. Let A and B be subsets of a metric space (M,d). Show that

1. int(int(A)) = int(A).

2. int(A X B) = int(A) X int(B).

3. int(A Y B) Ě int(A) Y int(B). Find examples of that int(A Y B) Ľ int(A) Y int(B).

Problem 3.4. Let (M,d) be a metric space, and A be a subset of M . Show that

BA =
(
A X cl(MzA)

)
Y
(
cl(A)zA

)
.

Problem 3.5. Recall that in a metric space (M,d), a subset A is said to be dense in S if
subsets satisfy A Ď S Ď cl(A). For example, Q is dense in R.

1. Show that if A is dense in S and if S is dense in T , then A is dense in T .

2. Show that if A is dense in S and B Ď S is open, then B Ď cl(A X B).

Problem 3.6. Let A and B be subsets of a metric space (M,d). Show that

1. B(BA) Ď B(A). Find examples of that B(BA) Ĺ BA. Also show that B(BA) = BA if A
is closed.

2. B(A Y B) Ď BA Y BB Ď B(A Y B) Y A Y B. Find examples of that equalities do not
hold.

3. If cl(A) X cl(B) = H, then B(A Y B) = BA Y BB.

4. B(A X B) Ď BA Y BB. Find examples of the equalities do not hold.

5. B(B(BA)) = B(BA).
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§3.2 Closed Sets and Open Sets

Problem 3.7. Let (M,d) be a metric space, and A be a subset of M . Show that A Ě A 1

if and only if A is closed.

Problem 3.8. Show that the derived set of a set (in a metric space) is closed.

Problem 3.9. Let A Ď Rn. Define the sequence of sets A(m) as follows: A(0) = A and
A(m+1) = the derived set of A(m) for m P N. Complete the following.

1. Prove that each A(m) for m P N is a closed set; thus A(1) Ě A(2) Ě ¨ ¨ ¨ .

2. Show that if there exists some m P N such that A(m) is a countable set, then A is
countable.

3. For any given m P N, is there a set A such that A(m) ‰ H but A(m+1) = H?

4. Let A be uncountable. Then each A(m) is an uncountable set. Is it possible that
8
Ş

m=1

A(m) = H?

5. Let A =
!

1

m
+

1

k

ˇ

ˇ

ˇ
m ´ 1 ą k(k ´ 1),m, k P N

)

. Find A(1), A(2) and A(3).

Problem 3.10. Recall that a cluster point x of a sequence txnu8
n=1 satisfies that

@ ε ą 0,#
␣

n P N
ˇ

ˇxn P B(x, ε)
(

= 8 .

Show that the collection of cluster points of a sequence (in a metric space) is closed.

Problem 3.11. Determine whether the following sets are open or not.

1.
8
Ť

n=1

[´2 +
1

n
, 2 +

1

n

]
.

2.
8
Ť

n=1

[´2 ´
1

n
, 2 ´

1

n

]
.

3.
8
Ť

n=1

[´2 +
1

n
, 2 ´

1

n

]
.

4.
8
Ť

n=1

[´2 ´
1

n
, 2 +

1

n

]
.
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Problem 3.12. Let (V , } ¨ }) ba a normed vector space, and C be a non-empty convex set
in V .

1. Show that sC is convex.

2. Show that if x P C̊ and y P sC, then (1 ´ λ)x + λy P C̊ for all λ P (0, 1). This result is
sometimes called the line segment principle.

3. Show that C̊ is convex (you may need the conclusion in 2 to prove this).

4. Show that cl(C̊) = cl(C).

5. Show that int( sC) = int(C).

Hint: 2. Prove by contradiction.
3 and 4. Use the line segment principle.
5. Show that x P int( sC) can be written as (1´λ)y+λz for some y P C̊ and z P B(x, ε) Ď sC.

Problem 3.13. Let (V , } ¨ }) be a normed vector space. Show that for all x P V and r ą 0,

int
(
B[x, r]

)
= B(x, r) .

Is the identity above true in general metric space?

Problem 3.14. Let Mnˆn denote the collection of all n ˆ n square real matrices, and
(Mnˆn, } ¨ }p,q) be a normed space with norm } ¨ }p,q given in Problem ??. Show that the set

GL(n) ”
␣

A P Mnˆn

ˇ

ˇ det(A) ‰ 0
(

is an open set in Mnˆn. The set GL(n) is called the general linear group.

Problem 3.15. Show that every open set in R is the union of at most countable collection
of disjoint open intervals; that is, if U Ď R is open, then

U =
ď

kPI
(ak, bk) ,

where I is countable, and (ak, bk) X (aℓ, bℓ) = H if k ‰ ℓ.
Hint: For each point x P U , define Lx =

␣

y P R
ˇ

ˇ (y, x) Ď U
(

and Rx =
␣

y P R
ˇ

ˇ (x, y) Ď U
(

.
Define Ix = (infLx, supRx). Show that Ix = Iy if (x, y) P U and if (x, y) Ę U then
Ix X Iy = H
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Problem 3.16. Let (M,d) be a metric space. A set A Ď M is said to be perfect if
A = A1 (so that there is no isolated points). The Cantor set is constructed by the following
procedure: let E0 = [0, 1]. Remove the segment

(1
3
,
2

3

)
, and let E1 be the union of the

intervals [
0,

1

3

]
,
[2
3
, 1
]
.

Remove the middle thirds of these intervals, and let E2 be the union of the intervals[
0,

1

9

]
,
[2
9
,
3

9

]
,
[6
9
,
7

9

]
,
[8
9
, 1
]
.

Continuing in this way, we obtain a sequence of closed set Ek such that

(a) E1 Ě E2 Ě E2 Ě ¨ ¨ ¨ ;

(b) En is the union of 2n intervals, each of length 3´n.

The set C =
8
Ş

n=1

En is called the Cantor set.

1. Show that C is a perfect set.

2. Show that C is uncountable.

3. Find int(C).

§3.3 Compactness

Problem 3.17. Let V be a vector fields over F, where F = R or C, and te1, e2, ¨ ¨ ¨ , enu Ď V
is a basis for V ; that is, every x P V can be uniquely expressed as

x = x(1)e1 + x(2)e2 + ¨ ¨ ¨ + x(n)en =
n
ÿ

i=1

x(i)ei .

Define }x}2 =
( n
ř

i=1

ˇ

ˇx(i)
ˇ

ˇ

2
) 1

2 .

1. Show that } ¨ }2 is a norm on V .

2. Show that K is compact in (V , } ¨ }2) if and only if K is closed and bounded.

Problem 3.18. Let (M,d) be a metric space.
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1. Show that a closed subset of a compact set is compact.

2. Show that the union of a finite number of sequentially compact subsets of M is com-
pact.

3. Show that the intersection of an arbitrary collection of sequentially compact subsets
of M is sequentially compact.

Problem 3.19. A metric space (M,d) is said to be separable if there is a countable subset
A which is dense in M . Show that every sequentially compact set is separable.

Hint: Consider the total boundedness using balls with radius 1

n
for n P N.

Problem 3.20. Given taku8
k=1 Ď R a bounded sequence, define

A =
␣

x P R
ˇ

ˇ there exists a subsequence
␣

akj
(8

j=1
such that lim

jÑ8
akj = x

(

.

Show that A is a non-empty sequentially compact set in R. Furthermore , lim sup
kÑ8

ak = supA
and lim inf

kÑ8
ak = infA.

Problem 3.21. Let (M,d) be a metric space.

1. Show that if M is complete and A is a totally bounded subset of M , then cl(A) is
sequentially compact.

2. Show thatM is complete if and only if every totally bounded sequence has a convergent
subsequence.

Problem 3.22. Let d : R2 ˆ R2 Ñ R be defined by

d(x, y) =

#

|x1 ´ y1| if x2 = y2 ,

|x1 ´ y1| + |x2 ´ y2| + 1 if x2 ‰ y2 .
where x = (x1, x2) and y = (y1, y2).

Problem ?? shows that d is a metric on R2. Consider the metric space (R2, d).

1. Find B(x, r) with r ă 1, r = 1 and r ą 1.

2. Show that the set tcu ˆ [a, b] Ď (R2, d) is closed and bounded.

3. Examine whether the set tcu ˆ [a, b] Ď (R2, d) is sequentially compact or not.
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Problem 3.23. Let txku8
k=1 be a convergent sequence in a metric space, and xk Ñ x as

k Ñ 8. Show that the set A ” tx1, x2, ¨ ¨ ¨ , u Y txu is sequentially compact.

Problem 3.24. 1. Show the so-called “Finite Intersection Property”:

Let (M,d) be a metric space, and K be a subset of M . Then K is compact if
and if for any family of closed subsets tFαuαPI , we have

K X
č

αPI

Fα ‰ H

whenever K X
č

αPJ

Fα ‰ H for all J Ď I satisfying #J ă 8.

2. Show the so-called “Nested Set Properpty”:

Let (M,d) be a metric space. If tKnu8
n=1 is a sequence of non-empty compact

sets in M such that Kj Ě Kj+1 for all j P N, then there exists at least one point
in

8
Ş

j=1

Kj; that is,
8
č

j=1

Kj ‰ H .

Problem 3.25. Let (M,d) be a metric space, and M itself is a sequentially compact set.
Show that if tFku8

k=1 is a sequence of closed sets such that int(Fk) = H, then Mz
8
Ť

k=1

Fk ‰ H.

Problem 3.26. Let ℓ2 be the collection of all sequences txku8
k=1 Ď R such that

8
ř

k=1

|xk|2 ă 8.
In other words,

ℓ2 =
␣

txku8
k=1

ˇ

ˇxk P R for all k P N,
8
ÿ

k=1

|xk|2 ă 8
(

.

Define } ¨ }2 : ℓ
2 Ñ R by

›

›txku8
k=1

›

›

2
=

( 8
ÿ

k=1

|xk|2
) 1

2
.

1. Show that } ¨ }2 is a norm on ℓ2. The normed space (ℓ2, } ¨ }) usually is denoted by ℓ2.

2. Show that } ¨ }2 is induced by an inner product.
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3. Show that (ℓ2, } ¨ }2) is complete.

4. Let A =
␣

x P ℓ2
ˇ

ˇ }x}2 ď 1
(

. Is A sequentially compact or not?

Problem 3.27. Let A,B be two non-empty subsets in Rn. Define

d(A,B) = inf
␣

}x ´ y}2
ˇ

ˇx P A, y P B
(

to be the distance between A and B. When A = txu is a point, we write d(A,B) as d(x,B)

(which is consistent with the one given in Proposition 3.6).

(1) Prove that d(A,B) = inf
␣

d(x,B)
ˇ

ˇx P A
(

.

(2) Show that
ˇ

ˇd(x1, B) ´ d(x2, B)
ˇ

ˇ ď }x1 ´ x2}2 for all x1, x2 P Rn.

(3) Define Bε =
␣

x P Rn
ˇ

ˇ d(x,B) ă ε
(

be the collection of all points whose distance from
B is less than ε. Show that Bε is open and

Ş

εą0

Bε = cl(B).

(4) If A is sequentially compact, show that there exists x P A such that d(A,B) = d(x,B).

(5) If A is closed and B is sequentially compact, show that there exists x P A and y P B

such that d(A,B) = d(x, y).

(6) If A and B are both closed, does the conclusion of (5) hold?

Problem 3.28. Let K(n) denote the collection of all non-empty sequentially compact sets
in Rn. Define the Hausdorff distance of K1, K2 P K(n) by

dH(K1, K2) = max
!

sup
xPK2

d(x,K1), sup
xPK1

d(x,K2)
)

,

in which d(x,K) is the distance between x and K given in Problem 3.27. Show that
(K(n), dH) is a metric space.

Problem 3.29. Let M =
␣

(x, y) P R2 |x2 + y2 ď 1
(

with the standard metric } ¨ }2. Show
that A Ď M is sequentially compact if and only if A is closed.

Problem 3.30. 1. Let txku8
k=1 Ď R be a sequence in (R, | ¨ |) that converges to x and let

Ak = txk, xk+1, ¨ ¨ ¨ u. Show that txu =
8
Ş

k=1

ĎAk. Is this true in any metric space?
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2. Suppose that tKju
8
j=1 is a sequence of comapct non-empty sets satisfying the nested

set property; that is, Kj Ě Kj+1, and diam(Kj) Ñ 0 as j Ñ 8, where

diam(Kj) = sup
␣

d(x, y)
ˇ

ˇx, y P Kj

(

.

Show that there is exactly one point in
8
Ş

j=1

Kj.

Problem 3.31. Let (M,d) be a metric space, and A be a subset of M satisfying that every
sequence in A has a convergent subsequence (with limit in M). Show that A is pre-compact.
Remark: Together with Remark 3.61, we conclude that a subset A is pre-compact if and
only if A has the property that “every sequence in A has a convergent subsequence”.

§3.4 Connectedness

Problem 3.32. Let (M,d) be a metric space, and A Ď M . Show that A is disconnected
(not connected) if and only if there exist non-empty closed set F1 and F2 such that

1. A X F1 X F2 = H ; 2. A X F1 ‰ H ; 3. A X F2 ‰ H ; 4. A Ď F1 Y F2 .

Problem 3.33. Prove that if A is connected in a metric space (M,d) and A Ď B Ď sA, then
B is connected.

Problem 3.34. Let (M,d) be a metric space, and A Ď M be a subset. Suppose that A is
connected and contain more than one point. Show that A Ď A1.

Problem 3.35. Show that the Cantor set C defined in Problem 3.16 is totally disconnected;
that is, if x, y P C, and x ‰ y, then x P U and y P V for some open sets U , V separate C.

Problem 3.36. Let Fk be a nest of connected compact sets (that is, Fk+1 Ď Fk and Fk

is connected for all k P N). Show that
8
Ş

k=1

Fk is connected. Give an example to show that

compactness is an essential condition and we cannot just assume that Fk is a nest of closed
connected sets.

Problem 3.37. Let tAku8
k=1 be a family of connected subsets of M , and suppose that A

is a connected subset of M such that Ak X A ‰ H for all k P N. Show that the union(
Ť

kPN
Ak

)
Y A is also connected.

Problem 3.38. Let A,B Ď M and A is connected. Suppose that AXB ‰ H and AXBA ‰

H. Show that A X BB ‰ H.
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Problem 3.39. Let (M,d) be a metric space and A be a non-empty subset of M . A
maximal connected subset of A is called a connected component of A.

1. Let a P A. Show that there is a unique connected components of A containing a.

2. Show that any two distinct connected components of A are disjoint. Therefore, A is
the disjoint union of its connected components.

3. Show that every connected component of A is a closed subset of A.

4. If A is open, prove that every connected component of A is also open. Therefore,
when M = Rn, show that A has at most countable infinite connected components.

5. Find the connected components of the set of rational numbers or the set of irrational
numbers in R.

Problem 3.40 (True or False). Determine whether the following statements are true or
false. If it is true, prove it. Otherwise, give a counter-example.

1. Every open set in a metric space is a countable union of closed sets.

2. Let A Ď R be bounded from above, then supA P A1.

3. An infinite union of distinct closed sets cannot be closed.

4. An interior point of a subset A of a metric space (M,d) is an accumulation point of
that set.

5. Let (M,d) be a metric space, and A Ď M . Then (A1)1 = A1.

6. There exists a metric space in which some unbounded Cauchy sequence exists.

7. Every metric defined in Rn is induced from some “norm” in Rn.

8. There exists a non-zero dimensional normed vector space in which some compact non-
zero dimensional linear subspace exists.

9. There exists a set A Ď (0, 1] which is compact in (0, 1] (in the sense of subspace
topology), but A is not compact in R.
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10. Let A Ď Rn be a non-empty set. Then a subset B of A is compact in A if and only if
B is closed and bounded in A.

Problem 3.41. Let (M,d) be a metric space, and A Ď M be a subset. Determine which
of the following statements are true.

1. intA = AzBA.

2. cl(A) =Mzint(MzA).

3. int(cl(A)) = int(A).

4. cl(int(A)) = A.

5. B(cl(A)) = BA.

6. If A is open, then BA Ď MzA.

7. If A is open, then A = cl(A)zBA. How about if A is not open?



Chapter 4

Continuous Maps

4.1 Continuity
Definition 4.1. Let (M,d) be a metric space, and A be a subset of M .

1. A point x P M is called an accumulation point of A if there exists a sequence
txnu8

n=1 in Aztxu such that txnu8
n=1 converges to x.

2. The derived set of A is the collection of all accumulation points of A, and is denoted
by A1.

Remark 4.2. 1. A point x P A1 if and only if (@ ε ą 0)
(
B(x, ε)X(Aztxu) ‰ H

)
. Therefore,

x R A1 if and only if (D ε ą 0)
(
B(x, ε) X A Ď txu

)
.

2. A point x P M is an accumulation point x of A if and only if

(@ ε ą 0)
(
#
␣

y P M
ˇ

ˇ y P B(x, ε) X A
(

= 8
)
.

Therefore, accumulation points of a set can be viewed as a generalization of cluster
points of a sequence.

3. A subset A of M is closed if and only if A Ě A1. In fact, sA = A Y A1.

4. The derived set A1 of a subset A of M is closed.

5. A point x P AzA1 satisfies that there exists ε ą 0 such that B(x, ε) X A = txu. Such
kind of points are called isolated points of A.

Definition 4.3. Let (M,d) and (N, ρ) be metric spaces, A be a subset of M , and f : A Ñ N

be a map. For a given c P A1, we say that the limit of f at c exists if for every sequence
txku8

k=1 Ď Aztcu converging to c, the sequence
␣

f(xk)
(8

k=1
converges（所有在定義域中取

值不是 c 但收斂到 c 的數列，其函數值所形成的數列收斂）.

92
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Similar to Proposition 2.42, the limit of f at x0, if it exists, is unique.

Proposition 4.4. Let (M,d) and (N, ρ) be metric spaces, A be a subset of M , c P A1,
and f : A Ñ N be a map. If the limit of f at c exists, then the limit is unique in the
sense that if txnu8

n=1 and tynu8
n=1 are sequences in Aztcu and lim

nÑ8
xn = lim

nÑ8
yn = c, then

lim
nÑ8

f(xn) = lim
nÑ8

f(yn).

Proof. Let txnu8
n=1 and tynu8

n=1 be sequences in Aztcu so that lim
nÑ8

xn = lim
nÑ8

yn = c. Then
lim
nÑ8

f(xn) = a and lim
nÑ8

f(yn) = b both exist. Define a new sequence

zn =

#

xn+1
2

if n is odd ,
yn

2
if n is even ,

or tznu8
n=1 = tx1, y1, x2, y2, ¨ ¨ ¨ u. Then zn Ñ c as n Ñ 8; thus lim

nÑ8
f(zn) exists. Since

␣

f(xn)
(8

n=1
and

␣

f(yn)
(8

n=1
are both subsequences of

␣

f(zn)
(8

n=1
, by Proposition 2.56 we

conclude that a = b. ˝

Notation: When the limit of f at c exists, we use lim
xÑc

f(x) to denote the common limit of
lim
kÑ8

f(xk) if txku8
k=1Aztcu converges to c.

Proposition 4.5. Let (M,d) and (N, ρ) be metric spaces, A be a subset of M , c P A1, and
f : A Ñ N be a map. Then lim

xÑc
f(x) = b if and only if

(@ ε ą 0)(D δ ą 0)
(
0 ă d(x, c) ă δ and x P A ñ ρ(f(x), b) ă ε

)
.

Proof. “ñ” Assume the contrary that there exists ε ą 0 such that for all δ ą 0, there exists
xδ P A with

0 ă d(xδ, c) ă δ and ρ(f(xδ), b) ě ε .

In particular, for each k P N, we can find xk P Aztcu such that

0 ă d(xk, c) ă
1

k
and ρ(f(xk), b) ě ε .

Then xk Ñ c as k Ñ 8 but f(xk) Ñ̂ b as k Ñ 8, a contradiction.

“ð” Let txku8
k=1 Ď Aztcu be such that xk Ñ c as k Ñ 8, and ε ą 0 be given. By

assumption,

D δ ą 0 Q ρ(f(x), b) ă ε whenever 0 ă d(x, c) ă δ and x P A .
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Since xk Ñ c as k Ñ 8, there exists N ą 0 such that d(xk, c) ă δ if k ě N . Therefore,

ρ(f(xk), b) ă ε @ k ě N

which implies that lim
kÑ8

f(xk) = b. ˝

Remark 4.6. The positive number δ in the proposition above usually depends on ε, as well
as the point c. Therefore, we also write δ = δ(c, ε) to emphasize the dependence of c and ε.

Remark 4.7. Let (M,d) = (N, ρ) = (R, | ¨ |), A = (a, b), and f : A Ñ N . We write
lim
xÑa+

f(x) and lim
xÑb´

f(x) for the limit lim
xÑa

f(x) and lim
xÑb

f(x), respectively, if the later exist.

Definition 4.8. Let (M,d) and (N, ρ) be metric spaces, A be a subset of M , and f : A Ñ N

be a map. For a given c P A, f is said to be continuous at c if either c P AzA1 or lim
xÑc

f(x) =

f(c).

Proposition 4.9. Let (M,d) and (N, ρ) be metric spaces, A be a subset of M , c P A and
f : A Ñ N be a map. Then the following three statements are equivalent.

1. f is continuous at c.

2. For every convergent sequence txnu8
n=1 Ď A with limit c, lim

nÑ8
f(xn) = f(c).

3. For each ε ą 0, there exists δ = δ(c, ε) ą 0 such that

ρ(f(x), f(c)) ă ε whenever x P BM(c, δ) X A .

In logical notation,

(@ ε ą 0)(D δ ą 0)
(
x P BM(c, δ) X A ñ f(x) P BN(f(c), ε)

)
,

where BM(¨, ¨) and BN(¨, ¨) denote balls in (M,d) and (N, ρ), respectively.

Proof. “1 ñ 3” Note that A = (A X A1) Y (AzA1).

Case 1: If c P A X A1, then f is continuous at c if and only if

@ ε ą 0, D δ = δ(c, ε) ą 0 Q ρ(f(x), f(c)) ă ε whenever x P BM(c, δ) X Aztcu .

Since ρ(f(c), f(c)) = 0 ă ε, we find that the statement above is equivalent to
that

@ ε ą 0, D δ = δ(c, ε) ą 0 Q ρ(f(x), f(c)) ă ε whenever x P BM(c, δ) X A .
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Case 2: Let c P AzA1. Then there exists δ ą 0 such that BM(c, δ) X A = tcu.
Therefore,

x P BM(c, δ) X A ñ ρ(f(x), f(c)) ă ε

no matter what ε ą 0 is given.

“3 ñ 2” The proof of this direction is almost identical as the proof of the direction “ð” of
Proposition 4.5. Let txku8

k=1 Ď Az be such that xk Ñ c as k Ñ 8, and ε ą 0 be given.
By assumption,

D δ ą 0 Q ρ(f(x), b) ă ε whenever d(x, c) ă δ and x P A .

Since xk Ñ c as k Ñ 8, there exists N ą 0 such that d(xk, c) ă δ if k ě N . Therefore,

ρ(f(xk), b) ă ε @ k ě N

which implies that lim
kÑ8

f(xk) = f(c).

“2 ñ 1” If c P AzA1, f is continuous at c; thus it suffices to show that f is continuous at c(
or equivalently, lim

xÑc
f(x) = f(c)

)
for c P A X A1 when 2 is true.

Let txku8
k=1 Ď Aztcu be a sequence with limit c. By assumption, lim

kÑ8
f(xk) = f(c);

thus we establish that for every convergent sequence txku8
k=1 Ď Aztcu with limit c,

the sequence tf(xk)u
8
k=1 converges to f(c); thus lim

xÑc
f(x) = f(c). ˝

Remark 4.10. We remark here that Proposition 4.9 implies that f is continuous at c P A

if and only if
@ ε ą 0, D δ ą 0 Q f(B(c, δ) X A) Ď B(f(c), ε) .

Example 4.11. Let X = C ([a, b];R), the collection of all real-valued continuous functions
defined on [a, b], and } ¨ }X be the norm given by }f}X = max

xP[a,b]

ˇ

ˇf(x)
ˇ

ˇ. Note that (X, } ¨ }X)

is a normed vector space (Example 2.21). Define I : X Ñ R by

I(f) =
ż b

a

ˇ

ˇf(x)
ˇ

ˇ

2
dx .

In the following we show that I is continuous at any points on X. Let f P X and ε ą 0

be given. Choose δ = min
!

ε,
ε

2(b ´ a)
(
2}f}X + ε

)). Then 0 ă δ ď ε and if g P X satisfies



96 CHAPTER 4. Continuous Maps

}f ´ g}X ă δ, we must have

(b ´ a)
[
2}f}X + }f ´ g}X

]
}f ´ g}X ď (b ´ a)

(
2}f}X + δ

)
δ

ď (b ´ a)
(
2}f}X + ε

) ε

2(b ´ a)
(
2}f}X + ε

) =
ε

2
ă ε .

Therefore, if g P X and }g ´ f}X ă δ,

ˇ

ˇI(g) ´ I(f)
ˇ

ˇ =
ˇ

ˇ

ˇ

ż b

a

[
|g(x)|2 ´ |f(x)|2

]
dx

ˇ

ˇ

ˇ
ď

ż b

a

ˇ

ˇg(x) ´ f(x)
ˇ

ˇ

ˇ

ˇg(x) + f(x)
ˇ

ˇ dx

ď (b ´ a)
(
}f}X + }g}X

)
}f ´ g}X ď (b ´ a)

(
2}f}X + }f ´ g}X

)
}f ´ g}X ă ε ;

thus I is continuous on X.

Definition 4.12. Let (M,d) and (N, ρ) be metric spaces, and A be a subset of M . A map
f : A Ñ N is said to be continuous on the set B Ď A if f is continuous at each point of B.

Remark 4.13. The Dirichlet function f : [0, 1] Ñ R defined by

f(x) =

"

0 if x P [0, 1] X Q ,

1 if x P [0, 1] X QA .

is not continuous at any point of [0, 1]; however, the restriction of f to B = [0, 1] X Q (or
B = [0, 1] X QA), denoted by fæB, is continuous on B. Therefore, f is continuous on B is
different from that fæB is continuous on B.

Theorem 4.14. Let (M,d) and (N, ρ) be metric spaces, A Ď M , and f : A Ñ N be a map.
Then the following assertions are equivalent:

1. f is continuous on A.

2. For each open set V Ď N , f´1(V ) Ď A is open relative to A; that is, f´1(V ) = U XA

for some U open in M .

3. For each closed set E Ď N , f´1(E) Ď A is closed relative to A; that is, f´1(E) = FXA

for some F closed in M .

Proof. It should be clear that 2 ô 3 (left as an exercise); thus we show that 1 ô 2. Before
proceeding, we recall that B Ď f´1(f(B)) for all B Ď A and f(f´1(B)) Ď B for all B Ď N .
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“1 ñ 2” Let a P f´1(V ). Then f(a) P V . Since V is open in (N, ρ), there exists εf(a) ą 0

such that BN(f(a), εf(a)) Ď V . By continuity of f (and Remark 4.10), there exists
δa ą 0 such that

f(BM(a, δa) X A) Ď BN

(
f(a), εf(a)

)
.

Therefore, by Proposition 0.11, for each a P f´1(V ), there exists δa ą 0 such that

BM(a, δa) X A Ď f´1
(
f(BM(a, δa) X A)

)
Ď f´1

(
BN

(
f(a), εf(a)

))
Ď f´1(V ) . (4.1.1)

Let U =
Ť

aPf´1(V )

BM(a, δa). Then U is open (since it is the union of arbitrarily many

open balls), and

(a) U Ě f´1(V ) since U contains every center of balls whose union forms U ;

(b) U X A Ď f´1(V ) by (4.1.1).

Therefore, U X A = f´1(V ).

“2 ñ 1” Let a P A and ε ą 0 be given. Define V = BN(f(a), ε). By assumption there
exists an open set U in (M,d) such that f´1(V ) = U X A . Since a P f´1(V ), a P U ;
thus by the openness of U , there exists δ ą 0 such that BM(a, δ) Ď U . Therefore, by
Proposition 0.11 we have

f(BM(a, δ) X A) Ď f(U X A) = f(f´1(V )) Ď V = BN(f(a), ε)

which implies that f is continuous at a. Therefore, f is continuous at a for all a P A;

thus f is continuous on A. ˝

Example 4.15. Let f : Rn Ñ Rm be continuous. Then
␣

x P Rn
ˇ

ˇ }f(x)}2 ă 1
(

is open since
␣

x P Rn
ˇ

ˇ }f(x)}2 ă 1
(

= f´1
(
B(0, 1)

)
.

Example 4.16. Let f : Mnˆn Ñ R be defined by f(A) = det(A). Then the set

GL(n) ”
␣

A P Mnˆn

ˇ

ˇ det(A) ‰ 0
(

is open in (Mnˆn, } ¨ }p,q) for all 1 ď p, q ď 8 (if one can show that the determinant function
is continuous).
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Remark 4.17. For a function f of two variables or more, it is important to distinguish the
continuity of f and the continuity in each variable (by holding all other variables fixed). For
example, let f : R2 Ñ R be defined by

f(x, y) =

"

1 if either x = 0 or y = 0,
0 if x ‰ 0 and y ‰ 0.

Observe that f(0, 0) = 1, but f is not continuous at (0, 0). In fact, for any δ ą 0, f(x, y) = 0

for infinitely many values of (x, y) P B((0, 0), δ); that is, |f(x, y) ´ f(0, 0)| = 1 for such
values. However if we consider the function g(x) = f(x, 0) = 1 or the function h(y) =

f(0, y) = 1, then g, h are continuous. Note also that lim
(x,y)Ñ(0,0)

f(x, y) does not exists but

lim
xÑ0

(lim
yÑ0

f(x, y)) = lim
xÑ0

0 = 0.

4.2 Operations on Continuous Maps
Definition 4.18. Let (M,d) be a metric space, (V , } ¨ }) be a normed vector space over field
F, A be a subset of M , and f, g : A Ñ V be maps, h : A Ñ F be a function. The maps
f + g, f ´ g and hf , mapping from A to V , are defined by

(f + g)(x) = f(x) + g(x) @x P A ,

(f ´ g)(x) = f(x) ´ g(x) @x P A ,

(hf)(x) = h(x)f(x) @x P A .

The map f

h
: Aztx P A |h(x) = 0u Ñ V is defined by

(f
h

)
(x) =

f(x)

h(x)
@x P Aztx P A |h(x) = 0u .

Proposition 4.19. Let (M,d) be a metric space, (V , } ¨ }) be a normed vector space over
field F (F = R or C), A be a subset of M , and f, g : A Ñ V be maps, h : A Ñ F be a
function. Suppose that x0 P A1, and lim

xÑx0
f(x) = a, lim

xÑx0
g(x) = b, lim

xÑx0
h(x) = c. Then

lim
xÑx0

(f + g)(x) = a+ b ,

lim
xÑx0

(f ´ g)(x) = a ´ b ,

lim
xÑx0

(hf)(x) = ca ,

lim
xÑx0

(f
h

)
=
a

c
if c ‰ 0 .
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Corollary 4.20. Let (M,d) be a metric space, (V , } ¨ }) be a normed vector space over field
F (F = R or C), A be a subset of M , and f, g : A Ñ V be maps, h : A Ñ F be a function.
Suppose that f, g, h are continuous at x0 P A. Then the maps f + g, f ´ g and hf are
continuous at x0, and f

h
is continuous at x0 if h(x0) ‰ 0.

Corollary 4.21. Let (M,d) be a metric space, (V , } ¨ }) be a normed vector space over field
F (F = R or C), A Ď M , and f, g : A Ñ V be continuous maps, h : A Ñ F be a continuous
function. Then the maps f + g, f ´ g and hf are continuous on A, and f

h
is continuous on

Aztx P A |h(x) = 0u.

Definition 4.22. Let (M,d), (N, ρ) and (P, δ) be metric spaces, A be a subset of M , B be
a subset of N , and f : A Ñ N , g : B Ñ P be maps such that f(A) Ď B. The composite
function g ˝ f : A Ñ P is the map defined by

(g ˝ f)(x) = g
(
f(x)

)
@x P A .

Figure 4.1: The composition of functions

Theorem 4.23. Let (M,d), (N, ρ) and (P, δ) be metric spaces, A be a subset of M , B be
a subset of N , and f : A Ñ N , g : B Ñ P be maps such that f(A) Ď B. Suppose that
a P A X A1 and lim

xÑa
f(x) = b, and g is continuous at b. Then lim

xÑa
(g ˝ f)(x) = g(b).

Proof. Let txnu8
n=1 Ď Aztau be a convergent sequence with limit a. Then tf(xnu8

n=1 is a
convergent sequence with limit b; thus the continuity of g at b implies that

␣

g(f(xn))
(8

n=1

converges to g(b). ˝

Corollary 4.24. Let (M,d), (N, ρ) and (P, δ) be metric spaces, A be a subset of M , B be
a subset of N , and f : A Ñ N , g : B Ñ P be maps such that f(A) Ď B.
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1. If f is continuous at a and g is continuous at f(a), then g ˝ f : A Ñ P is continuous
at a.

2. If f is continuous on A and g is continuous on B, then g ˝ f : A Ñ P is continuous
on A.

Alternative Proof of 2 in Corollary 4.24. Let W be an open set in (P, r). By Theorem 4.14,
there exists V open in (N, ρ) such that g´1(W) = V X B. Since V is open in (N, ρ), by
Theorem 4.14 again there exists U open in (M,d) such that f´1(V) = U X A. Then

(g ˝ f)´1(W) = f´1
(
g´1(W)

)
= f´1(V X B) = f´1(V) X f´1(B) = U X A X f´1(B) ,

while the fact that f(A) Ď B further implies that

(g ˝ f)´1(W) = U X A .

Therefore, by Theorem 4.14 we find that (g ˝ f) is continuous on A. ˝

4.3 Images under Continuous Maps
4.3.1 Image of compact sets

Theorem 4.25. Let (M,d) and (N, ρ) be metric spaces, A be a subset of M , and f : A Ñ N

be a continuous map.

1. If K Ď A is compact, then f(K) is compact in (N, ρ).

2. Moreover, if (N, ρ) = (R, | ¨ |), then there exist x0, x1 P K such that

f(x0) = inf f(K) = inf
␣

f(x)
ˇ

ˇx P K
(

and f(x1) = sup f(K) = sup
␣

f(x)
ˇ

ˇx P K
(

.

Proof. 1. Let tynu8
n=1 be a sequence in f(K). Then there exists txnu8

n=1 Ď K such that
yn = f(xn). Since K is sequentially compact, there exists a convergent subsequence
txnk

u8
k=1 with limit x P K. Let y = f(x) P f(K). By the continuity of f ,

lim
kÑ8

ρ(ynk
, y) = lim

kÑ8
ρ
(
f(xnk

), f(x)
)
= 0

which implies that the sequence tynk
u8
k=1 converges to y P f(K). Therefore, f(K) is

sequentially compact.
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2. By 1, f(K) is sequentially compact. Corollary 3.45 then implies that inf f(K) P f(K)

and sup f(K) P f(K). ˝

Alternative Proof of Part 1. Let tVαuαPI be an open cover of f(K). Since Vα is open, by
Theorem 4.14 there exists Uα open in (M,d) such that f´1(Vα) = Uα X A. Since f(K) Ď
Ť

αPI

Vα,

K Ď f´1(f(K)) Ď
ď

αPI

f´1(Vα) = A X
ď

αPI

Uα

which implies that tUαuαPI is an open cover of K. Therefore,

D J Ď I,#J ă 8 Q K Ď A X
ď

αPJ

Uα =
ď

αPJ

f´1(Vα) ;

thus f(K) Ď
Ť

αPJ

f(f´1(Vα)) Ď
Ť

αPJ

Vα. ˝

Corollary 4.26 (Extreme Value Theorem). Let f : [a, b] Ñ R be continuous. Then f

attains its maximum and minimum in [a, b]; that is, there are x0 P [a, b] and x1 P [a, b] such
that

f(x0) = inf
␣

f(x)
ˇ

ˇx P [a, b]
(

and f(x1) = sup
␣

f(x)
ˇ

ˇx P [a, b]
(

. (4.3.1)

Proof. The Heine-Borel Theorem shows that [a, b] is a compact set in R; thus Theorem 4.25
implies that f([a, b]) must be compact in R. By Corollary 3.45,

inf f([a, b]) P f([a, b]) and sup f([a, b]) P f([a, b])

that further imply (4.3.1). ˝

Remark 4.27. If f attains its maximum (or minimum) on a set B, we use max
␣

f(x)
ˇ

ˇx P

B
( (

or min
␣

f(x)
ˇ

ˇx P B
()

to denote sup
␣

f(x)
ˇ

ˇx P B
( (

or inf
␣

f(x)
ˇ

ˇx P B
()

. Therefore,
(4.3.1) can be rewritten as

f(x0) = min
␣

f(x)
ˇ

ˇx P [a, b]
(

and f(x1) = max
␣

f(x)
ˇ

ˇx P [a, b]
(

.

Remark 4.28. Let f : R Ñ R be defined by f(x) = 0. Then f is continuous. Note that
t0u Ď R is compact, but f´1(t0u) = R is not compact. In other words, the pre-image of a
compact set under a continuous map might not be compact.
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Example 4.29. Recall that two norms }¨} and ~ ¨ ~ on a vector space V are called equivalent
if there are positive constants c and C such that

c}x} ď ~x~ ď C}x} @ x P V .

We note that equivalent norms on a vector space V induce the same topology; that is, if } ¨ }

and ~ ¨ ~ are equivalent norms on V , then U is open in the normed space (V , } ¨ }) if and
only if U is open in the normed space (V ,~ ¨ ~). In fact, let U be an open set in (V , } ¨ }).
Then for any x P U , there exists r ą 0 such that

B}¨}(x, r) ”
␣

y P V
ˇ

ˇ }x ´ y} ă r
(

Ď U ,

here we use the norm in the subscript to indicate that the distance in this ball is measured
by this norm. As in the proof of Theorem 2.39, the ball B~¨~(x, cr) Ď B}¨}(x, r). Therefore,
U is open in (V ,~ ¨ ~). Similarly, if U is open in (V ,~ ¨ ~), then the inequality ~x~ ď C2}x}

implies that U is open in (V , } ¨ }).

In fact, for a vector space V with two equivalent norms } ¨ } and ~ ¨ ~, we have

1. txku8
k=1 converges in (V , } ¨ }) if and only if txku8

k=1 converges in (V ,~ ¨ ~).

2. F is (totally) bounded in (V , } ¨ }) if and only if F is a (totally) bounded subset in
(V ,~ ¨ ~).

3. F is closed in (V , } ¨ }) if and only if F is closed in (V ,~ ¨ ~).

4. U is open in (V , } ¨ }) if and only if U is open in (V ,~ ¨ ~).

5. K is compact in (V , } ¨ }) if and only if K is compact in (V ,~ ¨ ~).

In the following, we prove the following

Claim: Any two norms on a finite dimensional vector space V over field R (or C) are
equivalent.
Proof of claim: Let te1, e2, ¨ ¨ ¨ , enu be a basis of V . Then each x P V can be uniquely
expressed as x =

n
ř

i=1

x(i)ei for some x(i) P F, where F = R or C. Define the norm

}x}2 =

d

n
ÿ

i=1

|x(i)|2
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as given in Example 2.28. It suffices to show that any norm } ¨ } on V is equivalent to } ¨ }2.
In fact, if C1}x} ď }x}2 ď C2}x} and C3~x~ ď }x}2 ď C4~x~ for all x P V , then

C1

C4

}x} ď ~x~ ď
C2

C3

}x} @ x P V .

Before proceeding, we first recall that a subset K is (sequentially) compact in (V , } ¨ }2)

if and only if K is closed and bounded (see Remark 3.43). By the triangle inequality and
the Cauchy-Schwarz inequality,

}x} ď

n
ÿ

i=1

|x(i)|}ei} ď }x}2

d

n
ÿ

i=1

}ei}2 ; (4.3.2)

thus letting C =

c

n
ř

i=1

}ei}2 we have }x} ď C}x}2.

On the other hand, define f : V Ñ R by

f(x) = }x} =
›

›

›

n
ÿ

i=1

x(i)ei
›

›

›
.

Because of (4.3.2), f is continuous on (V , } ¨ }2). In fact, for x,y P V ,
ˇ

ˇf(x) ´ f(y)
ˇ

ˇ =
ˇ

ˇ}x} ´ }y}
ˇ

ˇ ď }x ´ y} ď C}x ´ y}2

which guarantees the continuity of f on (V , } ¨ }2). Let K =
␣

x P V
ˇ

ˇ }x}2 = 1
(

. Then K

is sequentially compact in (V , } ¨ }2) since K is closed and bounded in (V , } ¨ }2); thus by
Theorem 4.25 f attains its minimum on K at some point a P K. Moreover, f(a) ą 0 (since
if f(a) = 0, a = 0 R K). Then for all x P Vzt0u, x

}x}2
P K; thus

f
( x

}x}2

)
ě f(a) @ x P Vzt0u .

The inequality above further implies that f(a)}x}2 ď f(x) = }x} for all x P V ; thus letting
c = f(a) we have c}x}2 ď }x}.

Having established that every two norms on a finite dimensional vector space over R (or
C), for a finite dimensional normed vector space (V , }¨}) over R (or C) we have the following
results:

1. A subset K of V is compact if and only if K is closed and bounded (because of Remark
3.43).
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2. Every bounded sequence in (V , }¨}) has a convergent subsequence (for a given bounded
sequence, consider the bounded and closed ball B[0, R] for R " 1 and make use of the
sequentially compactness of B[0, R]).

3. (V , } ¨ }) is a Banach space; that is, (V , } ¨ }) is complete (every Cauchy sequence is
bounded; thus possessing a convergent subsequence so that the convergence of the
Cauchy sequence is guaranteed by Proposition 2.58).

Example 4.30. The determinant function f : Mnˆn Ñ R defined by f(A) = det(A) is
continuous on (Mnˆn, } ¨ }) for any norm } ¨ } (thus the set GL(n) defined in Example 4.16
is open). To see this, we note that Mnˆn is finite dimensional vector space over R; thus the
norm } ¨ } is equivalent to the norm

~[aij]~ =
n
ÿ

i,j=1

|aij| .

Clearly f is continuous on (Mnˆn,~ ¨ ~) since f(A) is the sum of product of entries of A
and ~B ´ A~ Ñ 0 if and only if bij Ñ aij for all 1 ď i, j ď n. Since ~B ´ A~ Ñ 0 if and
only if }B ´ A} Ñ 0, we conclude that f is continuous on (Mnˆn, } ¨ }).

Corollary 4.31. Let (M,d) be a metric space, K be a compact subset of M , and f : K Ñ R
be continuous. Then the set

␣

x P K
ˇ

ˇ f(x) is the maximum of f on K
(

is a non-empty compact set.

Proof. Note that f(K) is compact in (R, | ¨ |); hence f(K) is closed and bounded so that
M = sup f(K) exists and M P f(K). Then the set defined above is f´1(tMu). Moreover,

1. f´1(tMu) is non-empty by Theorem 4.25;

2. f´1(tMu) is a subset of K; thus By Proposition 3.51 implies that f´1(tMu) is totally
bounded;

3. By Theorem 4.14, f´1(tMu) is closed since tMu is a closed set in (R, |¨|); thus Theorem
3.27 implies that f´1(tMu) is complete.

Therefore, Theorem 3.53 shows that f´1(tMu) is compact. ˝
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4.3.2 Image of connected sets

Theorem 4.32. Let (M,d) and (N, ρ) be metric spaces, A be a subset of M , and f : A Ñ N

be a continuous map. If C Ď A is connected, then f(C) is connected in (N, ρ).

Proof. Suppose that there are two open sets V1 and V2 in (N, ρ) such that

(a) f(C) X V1 X V2 = H; (b) f(C) X V1 ‰ H; (c) f(C) X V2 ‰ H; (d) f(C) Ď V1 Y V2.

By Theorem 4.14, there are U1 and U2 open in (M,d) such that f´1(V1) = U1 X A and
f´1(V2) = U2 X A. By (d),

C Ď f´1(f(C)) Ď f´1(V1) Y f´1(V2) = (U1 Y U2) X A Ď U1 Y U2 .

Moreover, by (a) we find that

C X U1 X U2 = C X (U1 X A) X (U2 X A) = C X f´1(V1) X f´1(V2)

Ď f´1(f(C) X V1 X V2) = H

which implies C X U1 X U2 = H. Finally, (b) implies that for some x P C, f(x) P V1.
Therefore, x P f´1(V1) = U1 X A which shows that x P U1; thus C X U1 ‰ H. Similarly,
C X U2 ‰ H. Therefore, C is disconnected which is a contradiction. ˝

Corollary 4.33 (Intermediate Value Theorem). Let f : [a, b] Ñ R be continuous. If
f(a) ‰ f(b), then for all d in between f(a) and f(b), there exists c P (a, b) such that
f(c) = d.

Proof. The closed interval [a, b] is connected by Theorem 3.68, so Theorem 4.32 implies that
f([a, b]) must be connected in R. By Theorem 3.68 again, if d is in between f(a) and f(b),
then d belongs to f([a, b]). Therefore, for some c P (a, b) we have f(c) = d. ˝

Remark 4.34. Let f : R Ñ R be defined by f(x) = x2. Then f is continuous. Note that
C = t1u is connected, but f´1(C) = t1,´1u is not connected. In other words, the pre-image
of a connected set under a continuous map might not be connected.

Example 4.35. Let f : [0, 1] Ñ [0, 1] be continuous. Then there exists x0 P [0, 1] such that
f(x0) = x0.

Proof. Let g(x) = x ´ f(x).
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Case 1: g(0) = 0 or g(1) = 0. Then x0 = 0 or x0 = 1 satisfies f(x0) = x0.

Case 2: g(0) ‰ 0 and g(1) ‰ 0. Then g(0) ă 0 and g(1) ą 0; thus by the continuity of
g : [0, 1] Ñ R, there exists x0 P [0, 1] such that g(x0) = 0 which implies the existence

of x0 P (0, 1) satisfying f(x0) = x0. ˝

Remark 4.36. Such an x0 in Example 4.35 is called a fixed-point of f .

4.4 Uniform Continuity（均勻連續）
Definition 4.37. Let (M,d) and (N, ρ) be metric spaces, A be a subset of M , and f :

A Ñ N be a map. For a set B Ď A, f is said to be uniformly continuous on B if for
any two sequences txnu8

n=1, tynu8
n=1 Ď B with the property that lim

nÑ8
d(xn, yn) = 0, one has

lim
nÑ8

ρ
(
f(xn), f(yn)

)
= 0. In logic notation, f is uniformly continuous on B if(

@ txnu8
n=1, tynu8

n=1 Ď B
)(

lim
nÑ8

d(xn, yn) = 0 ñ lim
nÑ8

ρ
(
f(xn), f(yn)

)
= 0

)
.

Proposition 4.38. Let (M,d) and (N, ρ) be metric spaces, A be a subset of M , and
f : A Ñ N be a map. If f is uniformly continuous on A, then f is continuous on A.

Proof. Let a P A X A1, and txku8
k=1 Ď A be a sequence such that xk Ñ a as k Ñ 8. Let

tyku8
k=1 be a constant sequence with value a; that is, yk = a for all k P N. Then tyku8

k=1 Ď A

and d(xk, yk) Ñ 0 as k Ñ 8. By the uniform continuity of f on A,

lim
kÑ8

ρ
(
f(xk), f(a)

)
= lim

kÑ8
ρ
(
f(xk), f(yk)

)
= 0

which implies that f is continuous on a. ˝

Example 4.39. Let f : [0, 1] Ñ R be the Dirichlet function; that is,

f(x) =

"

0 if x P Q ,

1 if x P QA.

and B = Q X [0, 1]. Then f is continuous nowhere in [0, 1], but f is uniformly continuous
on B. However, the proposition above guarantees that if f is uniformly continuous on [0, 1],
then f must be continuous on [0, 1] (Check why the proof of Proposition 4.38 does not go
through if B is a proper subset of [0, 1]).
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Example 4.40. The function f(x) = |x| is uniformly continuous on R. In fact, by the
triangle inequality,

ˇ

ˇf(x) ´ f(y)
ˇ

ˇ =
ˇ

ˇ|x| ´ |y|
ˇ

ˇ ď |x ´ y| ;

thus if txnu8
n=1 and tynu8

n=1 are sequences in R and lim
nÑ8

|xn ´ yn| = 0, by the Sandwich
lemma we must have lim

nÑ8

ˇ

ˇf(xn) ´ f(yn)
ˇ

ˇ = 0.

Example 4.41. The function f : (0,8) Ñ R defined by f(x) = 1

x
is uniformly continuous

on [a,8) for all a ą 0. To see this, let txnu8
n=1 and tynu8

n=1 be sequences in [a,8) such that
lim
nÑ8

|xn ´ yn| = 0. Then

|f(xn) ´ f(yn)| =
ˇ

ˇ

ˇ

1

xn
´

1

yn

ˇ

ˇ

ˇ
=

|xn ´ yn|

|xnyn|
ď

|xn ´ yn|

a2
Ñ 0 as n Ñ 8

which implies that f is uniformly continuous on [a,8) if a ą 0.
However, f is not uniformly continuous on (0,8). Let xn =

1

n
and yn =

1

2n
. Then

|xn ´ yn| =
1

2n
Ñ 0 as n Ñ 8 but |f(xn) ´ f(yn)| = n ě 1 .

Example 4.42. Let f : R Ñ R defined by f(x) = x2. Then f is continuous in R but not
uniformly continuous on R. Let xn = n and yn = n+

1

2n
. Then

ˇ

ˇf(xn) ´ f(yn)
ˇ

ˇ =
ˇ

ˇ

ˇ
n2 ´ (n+

1

2n
)2
ˇ

ˇ

ˇ
=
ˇ

ˇ

ˇ
n2 ´ n2 ´ 1 ´

1

4n2

ˇ

ˇ

ˇ
= 1 +

1

4n2
Ñ̂ 0 as n Ñ 8 .

Example 4.43. The function f(x) = sin(x2) is not uniform continuous on R. Define

xn = 2n
?
π +

?
π

8n
and yn = 2n

?
π ´

?
π

8n
. Then lim

nÑ8
|xn ´ yn| = 0 while

ˇ

ˇ sin(x2n) ´ sin(y2n)
ˇ

ˇ =
ˇ

ˇ

ˇ
sin

(
4n2π +

π

2
+

π

64n2

)
´ sin

(
4n2π ´

π

2
+

π

64n2

)ˇ
ˇ

ˇ
= 2 cos π

64n2
;

thus lim
nÑ8

ˇ

ˇ sin(x2n) ´ sin(y2n)
ˇ

ˇ = 1 ‰ 0.

Example 4.44. The function f : (0, 1) Ñ R defined by f(x) = sin 1

x
is not uniformly

continuous on (0, 1).
Let xn =

(
2nπ +

π

2

)´1 and yn =
(
2nπ ´

π

2

)´1. Then
ˇ

ˇ

ˇ
sin 1

xn
´ sin 1

yn

ˇ

ˇ

ˇ
= 2 ,

while |xn ´ yn| =
π

4n2π2 ´ π2

4

=
1

(4n2 ´ 1
4)π

Ñ 0 as n Ñ 8.
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Theorem 4.45. Let (M,d) and (N, ρ) be metric spaces, A be a subset of M , and f : A Ñ N

be a map. For a set B Ď A, f is uniformly continuous on B if and only if

@ ε ą 0, D δ ą 0 Q ρ
(
f(x), f(y)

)
ă ε whenever d(x, y) ă δ and x, y P B .

Proof. “ð” Let txnu8
n=1, tynu8

n=1 be sequences in B such that lim
nÑ8

d(xn, yn) = 0, and ε ą 0

be given. By assumption, there exists δ ą 0 such that

ρ
(
f(x), f(y)

)
ă ε whenever d(x, y) ă δ and x, y P B .

Since lim
nÑ8

d(xn, yn) = 0, there exists N ą 0 such that

d(xn, yn) ă δ whenever n ě N ;

thus
ρ
(
f(xn), f(yn)

)
ă ε whenever n ě N .

“ñ” Suppose the contrary that there exists ε ą 0 such that for all δ = 1

n
ą 0, there exist

two points xn and yn P B such that

d(xn, yn) ă
1

n
but ρ

(
f(xn), f(yn)

)
ě ε .

These points form two sequences txnu8
n=1, tynu8

n=1 in B such that lim
nÑ8

d(xn, yn) = 0,
while the limit of ρ

(
f(xn), f(yn)

)
, if exists, does not converges to zero as n Ñ 8. As

a consequence, f is not uniformly continuous on B, a contradiction. ˝

Remark 4.46. The theorem above provides another way (the blue color part) of defining
the uniform continuity of a function over a subset of its domain. Moreover, according to
this alternative definition, f : A Ñ N is uniformly continuous on B Ď A if

(@ ε ą 0)(D δ ą 0)
(

diam
(
f
(
BM

(
b,

δ

2

)
X B

))
ă ε

)
;

that is, the diameter of the image, under f , of subsets of B whose diameter is not greater
than δ is not greater than ε（在 B 中直徑不超過 δ 的子集合被函數 f 映過去之後，在對

應域中的直徑不會超過 ε）. The statement above is the same as

(@ ε ą 0)(D δ ą 0)(@ b P M)(D c P M)
(
f
(
BM

(
b,

δ

2

)
X B

)
Ď BN

(
c,

ε

2

))
.
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Remark 4.47. For a given function f , let δ(f, c, ε) denote the supremum of all δ(c, ε)
mentioned in Remark 4.6. Then the uniform continuity of a function f : A Ñ N is equivalent
to that

δf (ε) ” inf
c PA

δ(f, c, ε) ą 0 @ ε ą 0 .

Remark 4.48. Let (M,d) and (N, ρ) be metric spaces, A be a subset of M , and f : A Ñ N

be a map. For a set B Ď A, the following four statements are equivalent:

(1) f is not uniformly continuous on B.

(2) D txnu8
n=1, tynu8

n=1 Ď B Q lim
nÑ8

d(xn, yn) = 0 and lim sup
nÑ8

ρ
(
f(xn), f(yn)

)
ą 0.

(3) D txnu8
n=1, tynu8

n=1 Ď B Q lim
nÑ8

d(xn, yn) = 0 and lim
nÑ8

ρ
(
f(xn), f(yn)

)
ą 0.

(4) D ε ą 0 Q @n ą 0, D xn, yn P B and d(xn, yn) ă
1

n
Q ρ

(
f(xn), f(yn)

)
ě ε.

Theorem 4.49. Let (M,d) and (N, ρ) be metric spaces, A be a subset of M , and f : A Ñ N

be a map. If K is a compact subset of A and f is continuous on K, then f is uniformly
continuous on K.

Proof. Assume the contrary that f is not uniformly continuous on K. Then ((3) of Remark
4.48 implies that) there are sequences txnu8

n=1 and tynu8
n=1 in K such that

lim
nÑ8

d(xn, yn) = 0 but lim
nÑ8

ρ
(
f(xn), f(yn)

)
ą 0 .

SinceK is (sequentially) compact, there exist convergent subsequences txnk
u8
k=1 and tynk

u8
k=1

with limits x, y P K. On the other hand, lim
nÑ8

d(xn, yn) = 0, we must have x = y; thus by
the continuity of f (on K),

0 = ρ
(
f(x), f(x)

)
= lim

kÑ8
ρ
(
f(xnk

), f(ynk
)
)
= lim

nÑ8
ρ
(
f(xn), f(yn)

)
ą 0 ,

a contradiction. ˝

Alternative proof. Let ε ą 0 be given. Since f is continuous on K,

@ a P K, D δ = δ(a) ą 0 Q ρ
(
f(x), f(a)

)
ă
ε

2
whenever x P B(a, δ) X A .

Then
!

B
(
a,

δ(a)

2

))
aPK

is an open cover of K; thus the compactness of K implies that

D ta1, ¨ ¨ ¨ , aNu Ď K Q K Ď

N
ď

i=1

B
(
ai,

δi
2

)
,
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where δi = δ(ai). Let δ = 1

2
mintδ1, ¨ ¨ ¨ , δNu. Then δ ą 0, and if x1, x2 P K and d(x1, x2) ă δ,

there must be j = 1, ¨ ¨ ¨ , N such that x1, x2 P B(aj, δj). In fact, since x1 P B
(
aj,

δj
2

)
for

some j = 1, ¨ ¨ ¨ , N , then

d(x2, aj) ď d(x1, x2) + d(x1, aj) ă δ +
δj
2

ď δj .

Therefore, x1, x2 P B(aj, δj) X A for some j = 1, ¨ ¨ ¨ , N ; thus

ρ
(
f(x1), f(x2)

)
ď ρ

(
f(x1), f(aj)

)
+ ρ

(
f(x2), f(aj)

)
ă
ε

2
+
ε

2
= ε . ˝

Lemma 4.50. Let (M,d) and (N, ρ) be metric spaces, A be a subset of M , and f : A Ñ N

be uniformly continuous. If txku8
k=1 Ď A is a Cauchy sequence, so is

␣

f(xk)
(8

k=1
.

Proof. Let txku8
k=1 be a Cauchy sequence in (M,d), and ε ą 0 be given. Since f : A Ñ N

is uniformly continuous,

D δ ą 0 Q ρ
(
f(x), f(y)

)
ă ε whenever d(x, y) ă δ and x, y P A .

For this particular δ, there exists N ą 0 such that d(xk, xℓ) ă δ whenever k, ℓ ě N .
Therefore,

ρ(f(xk), f(xℓ)
)

ă ε whenever k, ℓ ě N . ˝

Corollary 4.51. Let (M,d) and (N, ρ) be metric spaces, A be a subset of M , and f : A Ñ N

be uniformly continuous. If N is complete, then f has a unique extension to a continuous
function on sA; that is, there exists g : sA Ñ N such that

(1) g is uniformly continuous on sA;

(2) g(x) = f(x) for all x P A;

(3) if h : sA Ñ N is a continuous map satisfying h(x) = f(x) for all x P A, then h = g.

Proof. Let x P sAzA. Then there exists txku8
k=1 Ď A such that xk Ñ x as k Ñ 8. Since

txku8
k=1 is Cauchy, by Lemma 4.50

␣

f(xk)
(8

k=1
is a Cauchy sequence in (N, ρ); thus is

convergent. Moreover, if tzku8
k=1 Ď A is another sequence converging to x, we must have

d(xk, zk) Ñ 0 as k Ñ 8; thus ρ(f(xk), f(zk)) Ñ 0 as k Ñ 8, so the limit of
␣

f(xk)
(8

k=1
and

␣

f(zk)
(8

k=1
must be the same.

Define g : sA Ñ N by

g(x) =

#

f(x) if x P A ,

lim
kÑ8

f(xk) if x P sAzA, and txku8
k=1 Ď A converging to x as k Ñ 8 .



§4.4 Uniform Continuity 111

Then the argument above shows that g is well-defined, and (2) holds.
Let ε ą 0 be given. Since f : A Ñ N is uniformly continuous,

D δ ą 0 Q ρ
(
f(x), f(y)

)
ă
ε

3
whenever d(x, y) ă 2δ and x, y P A .

Suppose that x, y P sA such that d(x, y) ă δ. Let txku8
k=1, tyku8

k=1 Ď A be sequences
converging to x and y, respectively. Then there exists N ą 0 such that

d(xk, x) ă
δ

2
, d(yk, y) ă

δ

2
and ρ

(
f(xk), g(x)

)
ă
ε

3
, ρ
(
f(yk), g(y)

)
ă
ε

3
@ k ě N .

In particular, due to the triangle inequality,

d(x
N
, y

N
) ď d(x

N
, x) + d(x, y) + d(y, y

N
) ă

δ

2
+ δ +

δ

2
= 2δ ;

thus ρ
(
f(x

N
), f(y

N
)
)

ă
ε

3
. As a consequence,

ρ
(
g(x), g(y)

)
ď ρ

(
g(x), f(x

N
)
)
+ ρ

(
f(x

N
), f(y

N
)
)
+ ρ

(
f(y

N
), f(y)

)
ă
ε

3
+
ε

3
+
ε

3
= ε

which establishes (1).
Finally, suppose that h : sA Ñ N is a continuous map satisfying h = f on A, and a P A.

Let txku8
k=1 be a sequence in A with limit a. By Proposition 4.38, g is continuous on sA;

thus Proposition 4.9 implies that

g(a) = lim
kÑ8

g(xk) = lim
kÑ8

f(xk) = lim
kÑ8

h(xk) = h(a) ,

so (3) is also concluded. ˝



Chapter 5

Differentiation of Maps

5.1 Bounded Linear Maps
Definition 5.1. Let X,Y be vector spaces over a common scalar field F, where F = R or C.
A map L from X to Y is said to be linear if L(cx1+x2) = cL(x1)+L(x2) for all x1,x2 P X

and c P F. We often write Lx instead of L(x), and the collection of all linear maps from X

to Y is denoted by L (X,Y ).
Suppose further that X and Y are normed spaces equipped with norms } ¨ }X and } ¨ }Y ,

respectively. A linear map L : X Ñ Y is said to be bounded if

sup
}x}X=1

}Lx}Y ă 8 .

The collection of all bounded linear maps from X to Y is denoted by B(X,Y ), and the
number sup

}x}X=1

}Lx}Y is often denoted by }L}B(X,Y ).

Example 5.2. Let L : Rn Ñ Rm be given by Lx = Ax, where A is an mˆ n matrix. Then
Example 2.19 shows that }L}B(Rn,Rm) is the square root of the largest eigenvalue of ATA

which is certainly a finite number. Therefore, any linear transformation from Rn to Rm is
bounded.

Example 5.3. Recall that X = C ([a, b];R) and } ¨ }X = } ¨ }2 given in Example 2.21 which
makes a normed vector space (X, } ¨ }X). Let ϕ P X be given. Define F : X Ñ R by

F (f) =

ż b

a

f(x)ϕ(x) dx .

Then clearly F P L (X,R) (the proof is left as an exercise). Moreover, the Cauchy-Schwarz
inequality implies that

112
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ˇ

ˇF (f)
ˇ

ˇ ď }f}2}ϕ}2 ;

thus
sup

}f}8=1

F (f) ď }ϕ}2 ă 8 .

Therefore, F P B(X,R).

Example 5.4. Let (X, } ¨ }X) = (Y, } ¨ }Y ) = (C, | ¨ |), and we consider the bounded linear
maps B(X,Y ).

1. Treat C as a vector space over C. Then t1u is a basis of C and a linear map L P L (C,C)
is determined by L1 and we have Lz = zL1 (thus any linear map from C to C is a
multiple of a complex number). Moreover,

sup
|z|=1

|Lz| = |L1| ă 8

which shows that L P B(C,C).

2. Treat C as a vector space over R. Then t1, iu is a basis of C and a linear map
L P L (C,C) is determined by L1 and Li. In fact, if L1 = a + bi and Li = c + di for
some a, b, c, d P R, then for x, y P R,

L(x+ yi) = xL1 + yLi = x(a+ bi) + y(c+ di) = (ax+ cy) + (bx+ dy)i .

Treating x+ yi as a vector (x, y) P R2, the map L maps
[
x
y

]
to

[
a c
b d

] [
x
y

]
. Since

sup
|x+yi|=1

|L(x+ yi)| = sup
|x+yi|=1

ˇ

ˇ(ax+ cy) + (bx+ dy)i
ˇ

ˇ = sup
}(x,y)}2=1

›

›

›

[
a c
b d

] [
x
y

]
›

›

›

2
,

the norm of L is the same as the 2-norm of the matrix
[
a c
b d

]
. Therefore,

}L}B(C,C) = the square root of the largest eigenvalue of
[
a c
b d

] [
a b
c d

]
ă 8 ;

thus L P B(C,C). Since C over R is identical to R2 over R (from the discussion
above), we always treat C as a vector space over C.

Remark 5.5. By treating C as a vector space over C (which, we emphasize again, will
always be the case), there is only one linear map from C to R, the trivial linear map (which
sends any vectors to the zero vector). This result is left as an exercise.
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Proposition 5.6. Let (X, } ¨ }X) and (Y, } ¨ }Y ) be normed spaces over a common scalar field
F, where F = R or C, and L P B(X,Y ). Then

}L}B(X,Y ) = sup
x‰0

}Lx}Y

}x}X
= inf

␣

M ą 0
ˇ

ˇ }Lx}Y ď M}x}X
(

.

In particular, the first equality implies that

}Lx}Y ď }L}B(X,Y )}x}X @ x P X .

Proposition 5.7. Let (X, } ¨ }X) and (Y, } ¨ }Y ) be normed spaces over a common scalar
field F, where F = R or C, and L P L (X,Y ). Then L is continuous on X if and only if
L P B(X,Y ).

Proof. “ñ” Since L is continuous at 0 P X, there exists δ ą 0 such that

}Lx}Y = }Lx ´ L0}Y ă 1 whenever }x}X ă δ .

Then
›

›L
(δ
2
x
)›
›

Y
ď 1 whenever

›

›

δ

2
x
›

›

X
ă δ; thus by the linearity of L and properties

of norms,
}Lx}Y ď

2

δ
whenever }x}X ă 2 .

Therefore, sup
}x}X=1

}Lx}Y ď
2

δ
which implies that L P B(X,Y ).

“ð” If L P B(X,Y ), then M = }L}B(X,Y ) ă 8, and

}Lx1 ´ Lx2}Y = }L(x1 ´ x2)}Y ď M}x1 ´ x2}X

which shows that L is uniformly continuous on X. ˝

Proposition 5.8. Let (X, } ¨ }X) and (Y, } ¨ }Y ) be normed spaces over a common scalar
field F, where F = R or C. Then

(
B(X,Y ), } ¨ }B(X,Y )

)
is a normed space. Moreover, if

(Y, } ¨ }Y ) is a Banach space, so is
(
B(X,Y ), } ¨ }B(X,Y )

)
.

Proof. That
(
B(X,Y ), } ¨ }B(X,Y )

)
is a normed space is left as an exercise. Now suppose

that
(
Y, } ¨ }Y

)
is a Banach space. Let tLku8

k=1 Ď B(X,Y ) be a Cauchy sequence. Then by
Proposition 5.6, for each x P X we have

}Lkx ´ Lℓx}Y = }(Lk ´ Lℓ)x}Y ď }Lk ´ Lℓ}B(X,Y )}x}X Ñ 0 as k, ℓ Ñ 8 .
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Therefore, for each x P X the sequence tLkxu8
k=1 is Cauchy in Y ; thus convergent. Suppose

that lim
kÑ8

Lkx = y. We then establish a map x ÞÑ y which we denoted by L; that is, Lx = y.
Then L is linear since if x1,x2 P X and c P F,

L(cx1 + x2) = lim
kÑ8

Lk(cx1 + x2) = lim
kÑ8

(
cLkx1 + Lkx2

)
= cLx1 + Lx2 .

Moreover, since tLku8
k=1 is a Cauchy sequence, by Proposition 2.58 there exists M ą 0 such

that }Lk}B(X,Y ) ď M for all k P N. For each x P X there exists N = Nx ą 0 such that

}Lkx ´ Lx}Y ă 1 whenever k ě Nx .

Therefore, for k ě Nx,

}Lx}Y ă }Lkx}Y + 1 ď }Lk}B(X,Y )}x}X + 1 ď M}x}X + 1

which implies that sup
}x}X=1

}Lx}Y ď M + 1; thus L P B(X,Y ).

Finally, we show that lim
kÑ8

}Lk ´ L}B(X,Y ) = 0. Let ε ą 0 be given. Since tLku8
k=1 is

a Cauchy sequence, there exists N ą 0 such that }Lk ´ Lℓ}B(X,Y ) ă
ε

2
whenever k, ℓ ě N .

Then if k ě N , for every x P X we have

}Lkx ´ Lx}Y = lim
ℓÑ8

}Lkx ´ Lℓx}Y ď lim sup
ℓÑ8

}Lk ´ Lℓ}B(X,Y )}x}X ď
ε

2
}x}X ;

thus }Lk ´ L}B(X,Y ) ă ε whenever k ě N . ˝

Proposition 5.9. Let (X, } ¨ }X), (Y, } ¨ }Y ), (Z, } ¨ }Z) be normed spaces over a common
scalar field F, where F = R or C, and L P B(X,Y ), K P B(Y, Z). Then K ˝ L P B(X,Z),
and

}K ˝ L}B(X,Z) ď }K}B(Y,Z)}L}B(X,Y ) .

We often write K ˝ L as KL if K and L are linear.

Proof. By the properties of the norm of a bounded linear map,

}K ˝ L(x)}Z = }K(Lx)}Z ď }K}B(Y,Z)}Lx}Y ď }K}B(Y,Z)}L}B(X,Y )}x}X . ˝

From now on, when the domain X and the target Y of a linear map L is clear, we use
}L} instead of }L}B(X,Y ) to simplify the notation.
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Theorem 5.10. Let (X, } ¨ }X) and (Y, } ¨ }Y ) be normed spaces over a common scalar field
F, where F = R or C, and X be finite dimensional. Then every linear map from X to Y is
bounded; that is, L (X,Y ) = B(X,Y ).

Proof. Let tekunk=1 be a basis of X (so that dim(X) = n). Then every x P X can be
expressed as a unique linear combination of ek’s; that is, for all x P X, there exist unique n
numbers c1 = c1(x), ¨ ¨ ¨ , cn = cn(x) P F such that

x = c1e1 + ¨ ¨ ¨ + cnen .

Define an inner product x¨, ¨y on X by

xx,yy =
n
ÿ

k=1

ck(x)ck(y)

and let } ¨ }2 be the norm induced by this inner product; that is, }x}2 =
a

xx,xy. That x¨, ¨y

is indeed an inner product on X is left as an exercise.
Having define x¨, ¨y, these coefficients ck’s in fact are determined by ck(x) = xx, eky, and,

by Example 4.29 and the Cauchy-Schwarz inequality, satisfy
ˇ

ˇck(x)
ˇ

ˇ ď }x}2}ek}2 ď C}x}X @ 1 ď k ď n

for some constant C ą 0. As a consequence, if L is a linear map from X to Y , then

}Lx}Y =
›

›L(c1(x)e1 + ¨ ¨ ¨ + cn(x)en)
›

›

Y
ď |c1(x)|}Le1}Y + ¨ ¨ ¨ |cn(x)|}Len}Y

ď C
(
}Le1}Y + }Le2}Y + ¨ ¨ ¨ + }Len}Y

)
}x}X ď M}x}X

for some constant M ą 0; thus }L}B(X,Y ) ď M ă 8 which shows that L P B(X,Y ). ˝

Theorem 5.11. Let GL(n) be the set of all invertible linear maps on Rn; that is,

GL(n) =
␣

L P L (Rn,Rn)
ˇ

ˇL is one-to-one (and onto)
(

.

1. If L P GL(n) and K P B(Rn,Rn) satisfying }K ´ L}}L´1} ă 1 , then K P GL(n).

2. GL(n) is an open set of B(Rn,Rn).

3. The mapping L ÞÑ L´1 is continuous on GL(n).
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Proof. 1. Let }L´1} =
1

α
and }K ´ L} = β. Then β ă α; thus for every x P Rn,

α}x}Rn = α}L´1Lx}Rn ď α}L´1}}Lx}Rn = }Lx}Rn ď }(L ´ K)x}Rn + }Kx}Rn

ď β}x}Rn + }Kx}Rn .

As a consequence, (α ´ β)}x}Rn ď }Kx}Rn and this implies that K : Rn Ñ Rn is
one-to-one hence invertible.

2. By 1, we find that if }K ´L} ă
1

}L´1}
, then K P GL(n). Then B

(
L,

1

}L´1}

)
Ď GL(n)

if L P GL(n). Therefore, GL(n) is open.

3. Let L P GL(n) and ε ą 0 be given. Choose δ = min
!

1

2}L´1}
,

ε

2}L´1}2

)

. Then δ ą 0,

and K P GL(n) whenever }K ´ L} ă δ. Since K´1 ´ L´1 = K´1(L´K)L´1, we find
that if }K ´ L} ă δ,

}K´1} ´ }L´1} ď }K´1 ´ L´1} ď }K´1}}K ´ L}}L´1} ă
1

2
}K´1}

which implies that }K´1} ă 2}L´1}. Therefore, if }K ´ L} ă δ,

}K´1 ´ L´1} ď }K´1}}K ´ L}}L´1} ă 2}L´1}2δ ď ε . ˝

5.2 Definition of Derivatives
Definition 5.12. Let (X, } ¨ }X) and (Y, } ¨ }Y ) be two normed spaces over a common scalar
field F, where F = R or C. A map f : A Ď X Ñ Y is said to be differentiable at a P A

if there exists a map in B(X,Y ), denoted by (Df)(a) and called the derivative of f at a,
such that

lim
xÑa

›

›f(x) ´ f(a) ´ (Df)(a)(x ´ a)
›

›

Y

}x ´ a}X
= 0 ,

where (Df)(a)(x ´ a) denotes the value of the bounded linear map (Df)(a) applied to the
vector x ´ a P X (so (Df)(a)(x ´ a) P Y ). In other words, f is differentiable at a P A if
there exists L P B(X,Y ) such that

@ ε ą 0, D δ ą 0 Q }f(x) ´ f(a) ´ L(x ´ a)}Y ď ε}x ´ a}X whenever x P B(a, δ) X A .

If f is differentiable at each point of A, we say that f is differentiable on A.

Remark 5.13. If f is differentiable on A, then for each x P A, (Df)(x) is a bounded linear
map from X to Y , but Df in general is not linear in x.
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Remark 5.14. The condition

lim
xÑa

›

›f(x) ´ f(a) ´ (Df)(a)(x ´ a)
›

›

Y

}x ´ a}X
= 0 ,

is sometimes written as

f(x) = f(a) + (Df)(a)(x ´ a) + O(}x ´ a}X) as x Ñ a ,

where f = g + O(h) as x Ñ a is a short-hand notation for lim
xÑa

}f ´ g}

h
= 0.

Remark 5.15. Let a P A and v be a unit vector in (X, } ¨ }X) such that a + tv P A for all
t P [0, 1]. If f : A Ñ R is differentiable at a, then

lim
tÑ0+

ˇ

ˇf(a+ tv) ´ f(a) ´ (Df)(a)(tv)
ˇ

ˇ

}(a+ tv) ´ a}X
= 0 .

Since (Df)(a)(tv) = t(Df)(a)(v) and }tv}X = t (since t ą 0), the identity above implies
that

lim
tÑ0+

ˇ

ˇ

f(a+ tv) ´ f(a)

t
´ (Df)(a)(v)

ˇ

ˇ = 0

or equivalently,
lim
tÑ0+

f(a+ tv) ´ f(a)

t
= (Df)(a)(v) .

In Calculus, the limit on the left-hand side is the directional derivative of f at a

in direction v and is usually denoted by (Dvf)(a); thus the quantity (Df)(a)(v) is a
generalization of the directional derivative.

Example 5.16. Let f : (a, b) Ñ R be differentiable at c P (a, b). Then there exists
L P B(R,R) such that

lim
xÑc

ˇ

ˇf(x) ´ f(c) ´ L(x ´ c)
ˇ

ˇ

|x ´ c|
= 0 .

Since L P B(R,R), there exists a real number m such that L(x) = mx for all x P R; thus
the identity above implies that

lim
xÑc

f(x) ´ f(c) ´ m(x ´ c)

x ´ c
= 0

or equivalently,
lim
xÑc

f(x) ´ f(c)

x ´ c
= m.

In other words, a function f : (a, b) Ñ R is differentiable at c P (a, b) if and only if the limit

lim
xÑc

f(x) ´ f(c)

x ´ c
exists. The limit is usually denoted by f 1(c), and we identify the linear map

L with the real number f 1(c) using the relation L(x) = f 1(c)x.
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Example 5.17. Let f : (0,8) Ñ R be given by f(x) = 1

x
. Then f is differentiable at any

a P (0,8) since (Df)(a) : R Ñ R is the linear map given by

(Df)(a)(x) = ´
1

a2
¨ x .

To see this, we observe that

lim
xÑa

ˇ

ˇ

ˇ

1

x
´

1

a
´

´1

a2
(x ´ a)

ˇ

ˇ

ˇ

|x ´ a|
= lim

xÑa

ˇ

ˇ

ˇ

a2 ´ xa+ x2 ´ xa

xa2

ˇ

ˇ

ˇ

|x ´ a|
= lim

xÑa

a2 ´ 2xa+ x2

xa2|x ´ a|

= lim
xÑa

|x ´ a|

xa2
= 0 .

Example 5.18. Let (X, } ¨ }X) and (Y, } ¨ }Y ) be two normed spaces. Then every bounded
linear map L : X Ñ Y is differentiable. In fact, (DL)(a) = L for all a P X since

lim
xÑa

}Lx ´ La ´ L(x ´ a)}Y
}x ´ a}X

= 0 .

Example 5.19. Recall that Mnˆn denotes the collection of all nˆ n real matrices. Equip
it with 2-norm and let f : Mnˆn Ñ Mnˆn be given by f(L) = L2. Then for K,L P Mnˆn,

f(K) ´ f(L) = K2 ´ L2 = L(K ´ L) + (K ´ L)L+ (K ´ L)2 .

This motivates us to define (Df)(L) by (Df)(L)(H) = LH +HL so that

}f(K) ´ f(L) ´ (Df)(L)(K ´ L)}2 ď }K ´ L}22 ;

which shows
lim
KÑL

}f(K) ´ f(L) ´ (Df)(L)(K ´ L)}2
}K ´ L}2

= 0 .

Therefore, f is differentiable at every L P Mnˆn.

Example 5.20. Let f : GL(n) Ñ GL(n) be given by f(L) = L´1, where GL(n) is defined in
Theorem 5.11. Then f is differentiable at any “point” L P GL(n) with derivative (Df)(L) P

B(GL(n),GL(n)) given by

(Df)(L)(K) = ´L´1KL´1 for all K P GL(n) .

To see this, for K,L P GL(n),
›

›f(K) ´ f(L) + L´1(K ´ L)L´1
›

›

B(GL(n),GL(n)) =
›

›(L´1 ´ K´1)(K ´ L)L´1
›

›

B(GL(n),GL(n))

ď }L´1 ´ K´1}B(GL(n),GL(n))}K ´ L}B(GL(n),GL(n))}L
´1}B(GL(n),GL(n)) ;
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thus if K ‰ L,
›

›f(K)´ f(L) +L´1(K ´L)L´1
›

›

B(GL(n),GL(n))
}K ´ L}B(GL(n),GL(n))

ď }L´1}B(GL(n),GL(n))}L
´1 ´K´1}B(GL(n),GL(n)).

By the fact that the map L ÞÑ L´1 is continuous on GL(n) (Theorem 5.11), we find that

lim
KÑL

›

›f(K) ´ f(L) + L´1(K ´ L)L´1
›

›

B(GL(n),GL(n))

}K ´ L}B(GL(n),GL(n))
= 0 .

Example 5.21. Recall the setting in Example 4.11 that X = C ([a, b];R), } ¨ }X = } ¨ }2,
and I : X Ñ R given by

I(f) =
ż b

a

ˇ

ˇf(x)
ˇ

ˇ

2
dx .

Then I is differentiable at every f P X since if (DI)(f)(h) ” 2
ż b

a
f(x)h(x) dx, Example 5.3

shows that (DI)(f) P B(X,R) and

ˇ

ˇI(g) ´ I(f) ´ (DI)(f)(g ´ f)
ˇ

ˇ =
ˇ

ˇ

ˇ

ż b

a

[
|g(x)|2 ´ |f(x)|2 ´ 2f(x)(g(x) ´ f(x)

)]
dx

ˇ

ˇ

ˇ

=

ż b

a

[
g(x) ´ f(x)

]2
dx = }f ´ g}22

which implies that

lim
gÑf

ˇ

ˇI(g) ´ I(f) ´ (DI)(f)(g ´ f)
ˇ

ˇ

}g ´ f}2
= 0 .

Example 5.22. The function f : R2 Ñ R given by f(x, y) = x2 + y2 is differentiable at
every (a, b) P R2. In fact, (Df)(a, b)(h, k), the linear map (Df)(a, b) acting on the vector
(h, k) is (Df)(a, b)(h, k) = 2ah+ 2bk, since

lim
(x,y)Ñ(a,b)

ˇ

ˇf(x, y) ´ f(a, b) ´ (Df)(a, b)(x ´ a, y ´ b)
ˇ

ˇ

}(x, y) ´ (a, b)}

= lim
(h,k)Ñ(0,0)

ˇ

ˇf(a+ h, b+ k) ´ f(a, b) ´ (Df)(a, b)(h, k)
ˇ

ˇ

}(h, k)}

= lim
(h,k)Ñ(0,0)

ˇ

ˇ(a+ h)2 + (b+ k)2 ´ a2 ´ b2 ´ 2ah ´ 2bk
ˇ

ˇ

?
h2 + k2

= lim
(h,k)Ñ(0,0)

h2 + k2
?
h2 + k2

= lim
(h,k)Ñ(0,0)

?
h2 + k2 = 0 .



§5.2 Definition of Derivatives 121

On the other hand, Example 5.5 shows that the function g : C Ñ R given by g(z) = |z|2 is
differentiable only if g 1(z) ” (Dg)(z) = 0. Therefore, if g is differentiable at z0, then

0 = lim
zÑz0

ˇ

ˇ|z|2 ´ |z0|2
ˇ

ˇ

|z ´ z0|
= lim

hÑ0

ˇ

ˇ(z0 + h) ¨ z0 + h ´ z0z0
ˇ

ˇ

|h|
= lim

hÑ0

ˇ

ˇ

ˇ
z̄0 ´ z0

h̄

h

ˇ

ˇ

ˇ
;

thus z0 = 0 since lim
hÑ0

h̄

h
does not exist.

By treating R as a subset of C, we treat g as a function from C to C (note that there
are more maps in B(C,C) so in principle it is easier to have differentiable functions from
C to C). Assume the contrary that g 1(z0) ” (Dg)(z0) P B(C,C) exists, then

0 = lim
zÑz0

ˇ

ˇg(z) ´ g(z0) ´ g 1(z0)(z ´ z0)
ˇ

ˇ

|z ´ z0|
= lim

hÑ0

ˇ

ˇg(z0 + h) ´ g(z0) ´ g 1(z0)h
ˇ

ˇ

|h|

= lim
hÑ0

ˇ

ˇ(z0 + h)(z0 + h) ´ z0z0 ´ g 1(z0)h
ˇ

ˇ

|h|
= lim

hÑ0

ˇ

ˇhz̄0 + z0h̄+ |h|2 ´ g 1(z0)h
ˇ

ˇ

|h|

= lim
hÑ0

ˇ

ˇ

ˇ
z̄0 ´ g 1(z0) + z0

h̄

|h|

ˇ

ˇ

ˇ
;

thus lim
hÑ0

(
z̄0 ´ g 1(z0)+ z0

h̄

|h|

)
= 0 or equivalently, z0

(
lim
hÑ0

h̄

|h|

)
= g 1(z0)´ z̄0 . If z0 ‰ 0, then

the fact that lim
hÑ0

h̄

|h|
does not exist shows that the identity above cannot be true; thus g is

not differentiable at z0 ‰ 0. On the other hand, if z0 = 0, the choice of g 1(z0) = 0 makes
the identity valid. Therefore, g is differentiable only at 0 and g 1(0) = 0. This agrees with
the observation by treating g as a function from C to R.

Note that by writing z = x+iy, we indeed have g(x+iy) = x2+y2; thus f(x, y) = g(x+iy).
Even though f is differentiable at every point in R2, g is not. The reason behind this is
that there are “much more” bounded linear maps in B(R2,R) than bounded linear maps in
B(C,R) or B(C,C) so that it is easier to make a function from R2 Ñ R differentiable.

Theorem 5.23. Let (X, } ¨ }X), (Y, } ¨ }Y ) be normed vector spaces, A be a subset of X, and
f : A Ñ Y be differentiable at a. If a P Å, then (Df)(a) is uniquely determined by f .

Proof. Suppose L1, L2 P B(X,Y ) are derivatives of f at a. Let ε ą 0 be given and e P X

be a unit vector; that is, }e}X = 1. Since a is an interior point of A, there exists r ą 0 such
that B(a, r) Ď A. By Definition 5.12, there exists 0 ă δ ă r such that

}f(x) ´ f(a) ´ L1(x ´ a)}Y
}x ´ a}X

ă
ε

2
and }f(x) ´ f(a) ´ L2(x ´ a)}Y

}x ´ a}X
ă

ε

2
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if 0 ă }x ´ a}X ă δ. Letting x = a+ λe with 0 ă |λ| ă δ, we have

}L1e ´ L2e}Y =
1

|λ|
}L1(x ´ a) ´ L2(x ´ a)}Y

ď
1

|λ|

(›
›f(x) ´ f(a) ´ L1(x ´ a)

›

›

Y
+
›

›f(x) ´ f(a) ´ L2(x ´ x2)
›

›

Y

)
=

›

›f(x) ´ f(a) ´ L1(x ´ a)
›

›

Y

}x ´ a}X
+

›

›f(x) ´ f(a) ´ L2(x ´ a)
›

›

Y

}x ´ a}X

ă
ε

2
+
ε

2
= ε .

Since ε ą 0 is arbitrary, we conclude that L1e = L2e for all unit vectors e P X which
guarantees that L1 = L2 (since if x ‰ 0, L1x = }x}XL1

(
x

}x}X

)
= }x}XL2

(
x

}x}X

)
= L2x). ˝

Example 5.24. (Df)(a) may not be unique if the domain of f is not open. For example,
let A =

␣

(x, y)
ˇ

ˇ 0 ď x ď 1, y = 0
(

be a subset of R2, and f : A Ñ R be given by f(x, y) = 0.
Fix a = (h, 0) P A, then both of the linear map

L1(x, y) = 0 and L2(x, y) = hy @ (x, y) P R2

satisfy Definition 5.12 since

lim
(x,0)Ñ(h,0)

ˇ

ˇf(x, 0)´ f(h, 0)´L1(x´ h, 0)
ˇ

ˇ

›

›(x, 0)´ (h, 0)
›

›

R2

= lim
(x,0)Ñ(h,0)

ˇ

ˇf(x, 0)´ f(h, 0)´L2(x´ h, 0)
ˇ

ˇ

›

›(x, 0)´ (h, 0)
›

›

R2

= 0 .

Remark 5.25. Let U Ď Rn be an open set and suppose that f : U Ñ Rm is differentiable
on U . Then Df : U Ñ B(Rn,Rm). Treating Df as a map from U to the normed space(
B(Rn,Rm), } ¨ }B(Rn,Rm)

)
, and suppose that Df is also differentiable on U . Then the

derivative of Df , denoted by D2f , is a map from U to B(Rn,B(Rn,Rm)). In other words,
for each a P U , (D2f)(a) P B(Rn,B(Rn,Rm)) satisfying

lim
xÑa

›

›(Df)(x) ´ (Df)(a) ´ (D2f)(a)(x ´ a)
›

›

B(Rn,Rm)

}x ´ a}Rn

= 0 ,

here (D2f)(a) is bounded linear map from Rn to B(Rn,Rm); thus (D2f)(a)(x ´ a) P

B(Rn,Rm).

Definition 5.26. Let tekunk=1 be the standard basis of Rn, U Ď Rn be an open set, a P U

and f : U Ñ R be a function. The partial derivative of f at a in the direction ej, denoted

by Bf

Bxj
(a), is the limit
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lim
hÑ0

f(a+ hej) ´ f(a)

h

if it exists. In other words, if a = (a1, ¨ ¨ ¨ , an), then

Bf

Bxj
(a) = lim

hÑ0

f(a1, ¨ ¨ ¨ , aj´1, aj + h, aj+1, ¨ ¨ ¨ , an) ´ f(a1, ¨ ¨ ¨ , an)

h
.

Theorem 5.27. Suppose U Ď Rn is an open set and f : U Ñ Rm is differentiable at a P U .
Then the partial derivatives Bfi

Bxj
(a) exists for all i = 1, ¨ ¨ ¨m and j = 1, ¨ ¨ ¨n, and the matrix

representation of the linear map Df(a) with respect to the standard basis of Rn and Rm is
given by

[
(Df)(a)

]
=


Bf1
Bx1

(a) ¨ ¨ ¨
Bf1
Bxn

(a)

... . . . ...
Bfm
Bx1

(a) ¨ ¨ ¨
Bfm
Bxn

(a)

 or
[
(Df)(a)

]
ij
=

Bfi
Bxj

(a) .

Proof. Since U is open and a P U , there exists r ą 0 such that B(a, r) Ď U . By the
differentiability of f at a, there is L P B(Rn,Rm) such that for any given ε ą 0, there exists
0 ă δ ă r such that

}f(x) ´ f(a) ´ L(x ´ a)}Rm ď ε}x ´ a}Rn whenever x P B(a, δ) .

In particular, for each i = 1, ¨ ¨ ¨ ,m,
ˇ

ˇ

ˇ

fi(a+ hej) ´ fi(a)

h
´ (Lej)i

ˇ

ˇ

ˇ
ď

›

›

›

f(a+ hej) ´ f(a)

h
´ Lej

›

›

›

Rm
ď ε @ 0 ă |h| ă δ, h P R ,

where (Lej)i denotes the i-th component of Lej in the standard basis. As a consequence,
for each i = 1, ¨ ¨ ¨ ,m,

lim
hÑ0

fi(a+ hej) ´ fi(a)

h
= (Lej)i exists

and by definition, we must have (Lej)i =
Bfi
Bxj

(a). Therefore, Lij =
Bfi
Bxj

(a). ˝

Definition 5.28. Let U Ď Rn be an open set, and f : U Ñ Rm. The matrix

(Jf)(x) ”


Bf1
Bx1

¨ ¨ ¨
Bf1
Bxn

... . . . ...
Bfm
Bx1

¨ ¨ ¨
Bfm
Bxn

 (x) ”


Bf1
Bx1

(x) ¨ ¨ ¨
Bf1
Bxn

(x)

... . . . ...
Bfm
Bx1

(x) ¨ ¨ ¨
Bfm
Bxn

(x)
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is called the Jacobian matrix of f at x (if each entry exists). If n = m, the determinant
of (Jf)(x) is called the Jacobian of f at x.

Remark 5.29. A function f might not be differential even if the Jacobian matrix Jf exists;
however, if f is differentiable at x0, then (Df)(x) can be represented by (Jf)(x); that is,
[(Df)(x)] = (Jf)(x).

Example 5.30. Let f : R2 Ñ R3 be given by f(x1, x2) = (x21, x
3
1x2, x

4
1x

2
2). Suppose that f

is differentiable at x = (x1, x2), then

[
(Df)(x)

]
=

 2x1 0
3x21x2 x31
4x31x

2
2 2x41x2

 .
Example 5.31. Let f : R2 Ñ R be given by

f(x, y) =

# xy

x2 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

Then Bf

Bx
(0, 0) =

Bf

By
(0, 0) = 0; thus if f is differentiable at (0, 0), then [(Df)(0, 0)] =

[
0 0

]
.

However,
ˇ

ˇ

ˇ
f(x, y) ´ f(0, 0) ´

[
0 0

] [x
y

]
ˇ

ˇ

ˇ
=

|xy|

x2 + y2
=

|xy|

(x2 + y2)
3
2

a

x2 + y2 ;

thus f is not differentiable at (0, 0) since |xy|

(x2 + y2)
3
2

cannot be arbitrarily small even if x2+y2

is small.

Example 5.32. Let f : R2 Ñ R be given by

f(x, y) =

$

&

%

x if y = 0 ,
y if x = 0 ,

1 otherwise .

Then Bf

Bx
(0, 0) = lim

hÑ0

f(h, 0) ´ f(0, 0)

h
= lim

hÑ0

h

h
= 1. Similarly, Bf

By
(0, 0) = 1; thus if f is

differentiable at (0, 0), then [(Df)(0, 0)] =
[
1 1

]
. However,

ˇ

ˇ

ˇ
f(x, y) ´ f(0, 0) ´

[
1 1

] [x
y

]
ˇ

ˇ

ˇ
=
ˇ

ˇf(x, y) ´ (x+ y)
ˇ

ˇ ;
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thus if xy ‰ 0,
ˇ

ˇf(x, y) ´ (x+ y)
ˇ

ˇ = |1 ´ x ´ y| Ñ̂ 0 as (x, y) Ñ (0, 0), xy ‰ 0 .

Therefore, f is not differentiable at (0, 0).

Definition 5.33. Let U Ď Rn be an open set. The derivative of a scalar function f : U Ñ R
is called the gradient of f and is denoted by gradf or ∇f .

5.3 Continuity of Differentiable Maps
Theorem 5.34. Let (X, } ¨ }X) and (Y, } ¨ }Y ) be normed spaces, U Ď X be open, and
f : U Ñ Y be differentiable at a P U . Then f is continuous at a.

Proof. Since f is differentiable at a, there exists L P B(X,Y ) such that

D δ ą 0 Q
›

›f(x) ´ f(a) ´ L(x ´ a)
›

›

Y
ď }x ´ a}X @x P B(a, δ) .

As a consequence,
›

›f(x) ´ f(a)
›

›

Y
ď

(
}L} + 1

)
}x ´ a}X @x P B(a, δ) ; (5.3.1)

thus lim
xÑa

}f(x) ´ f(a)}Y = 0. ˝

Remark 5.35. In fact, if f is differentiable at x0, then f satisfies the “local Lipschitz
property”; that is,

DM =M(x0) ą 0 and δ = δ(x0) ą 0 Q }f(x) ´ f(x0)}Y ď M}x ´ x0}X if }x ´ x0}X ă δ

since we can choose M = }L} + 1 and δ = δ1 (see (5.3.1)).

Example 5.36. Let f : R2 Ñ R be given in Example 5.31. We have shown that f is not
differentiable at (0, 0). In fact, f is not even continuous at (0, 0) since when approaching
the origin along the straight line x2 = mx1,

lim
(x1,mx1)Ñ(0,0)

f(x1,mx1) = lim
x1Ñ0

mx21
(m2 + 1)x21

=
m2

m2 + 1
‰ f(0, 0) if m ‰ 0 .

Example 5.37. Let f : R2 Ñ R be given in Example 5.32. Then f is not continuous at
(0, 0); thus not differentiable at (0, 0).
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Example 5.38. Let f : R2 Ñ R be given by

f(x, y) =

$

&

%

x3

x2 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

Then fx(0, 0) = 1 and fy(0, 0) = 0. However,
ˇ

ˇ

ˇ
f(x, y) ´ f(0, 0) ´

[
1 0

] [x
y

]
ˇ

ˇ

ˇ

a

x2 + y2
=

|x|y2

(x2 + y2)
3
2

Ñ̂ 0 as (x, y) Ñ (0, 0) .

Therefore, f is not differentiable at (0, 0). On the other hand, f is continuous at (0, 0) since
ˇ

ˇf(x, y) ´ f(0, 0)
ˇ

ˇ =
ˇ

ˇf(x, y)
ˇ

ˇ ď |x| Ñ 0 as (x, y) Ñ (0, 0).

5.4 Conditions for Differentiability
Proposition 5.39. Let U Ď Rn be open, a P U , and f = (f1, ¨ ¨ ¨ , fm) : U Ñ Rm. Then
f is differentiable at a if and only if fi is differentiable at a for all i = 1, ¨ ¨ ¨ ,m. In other
words, for vector-valued functions defined on an open subset of Rn,

Componentwise differentiable ô Differentiable.

Proof. By the definition of differentiability and Proposition 2.49,
f is differentiable at a

ô (DL P Mmˆn)
(

lim
xÑa

}f(x) ´ f(a) ´ L(x ´ a)}Rm

}x ´ a}Rn
= 0

)
ô (DL P Mmˆn)

(
lim
xÑa

›

›

›

f(x) ´ f(a)

}x ´ a}Rn
´ L

(
[x ´ a]

}x ´ a}Rn

)›
›

›

Rm
= 0

)
ô (DL P Mmˆn)(@ 1 ď i ď n)

(
lim
xÑa

ˇ

ˇ

ˇ

fi(x) ´ fi(a)

}x ´ a}Rn
´ (eT

i L)
(

[x ´ a]

}x ´ a}Rn

)ˇ
ˇ

ˇ
= 0

)
ô (DL P Mmˆn)(@ 1 ď i ď n)

(
lim
xÑa

ˇ

ˇfi(x) ´ fi(a) ´ (eT
i L)(x ´ a)

ˇ

ˇ

}x ´ a}Rn
= 0

)
ô (DLi P Mmˆ1)

(
lim
xÑa

ˇ

ˇfi(x) ´ fi(a) ´ Li(x ´ a)
ˇ

ˇ

}x ´ a}Rn
= 0

)
ô fi is differentiable at a for each 1 ď i ď n. ˝

Theorem 5.40. Let U Ď Rn be open, a P U , and f : U Ñ R. If each entry of the Jacobian
matrix

[
Bf

Bx1
¨ ¨ ¨

Bf

Bxn

]
of f
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1. exists in a neighborhood of a, and

2. is continuous at a except perhaps one entry.

Then f is differentiable at a.

Proof. W.L.O.G. we can assume that Bf

Bxi
is continuous at a for 1 ď i ă n. Let tejunj=1 be the

standard basis of Rn, and ε ą 0 be given. Since Bf

Bxi
is continuous at a for i = 1, ¨ ¨ ¨ , n´ 1,

D δi ą 0 Q

ˇ

ˇ

ˇ

Bf

Bxi
(x) ´

Bf

Bxi
(a)

ˇ

ˇ

ˇ
ă

ε
?
n

whenever }x ´ a}Rn ă δi .

On the other hand, by the definition of the partial derivatives,

D δn ą 0 Q

ˇ

ˇ

ˇ

f(a+ hen) ´ f(a)

h
´

Bf

Bxn
(a)

ˇ

ˇ

ˇ
ď

ε
?
n

whenever |h| ă δn .

Let k = x ´ a and δ = min
␣

δ1, ¨ ¨ ¨ , δn
(

. Then
ˇ

ˇ

ˇ
f(x) ´ f(a) ´

[
Bf

Bx1
(a)(x1 ´ a1) + ¨ ¨ ¨ +

Bf

Bxn
(a)(xn ´ an)

]ˇ
ˇ

ˇ

=
ˇ

ˇ

ˇ
f(a+ k) ´ f(a) ´

Bf

Bx1
(a)k1 ´ ¨ ¨ ¨ ´

Bf

Bxn
(a)kn

ˇ

ˇ

ˇ

=
ˇ

ˇ

ˇ
f(a1 + k1, ¨ ¨ ¨ , an + kn) ´ f(a1, ¨ ¨ ¨ , an) ´

Bf

Bx1
(a)k1 ´ ¨ ¨ ¨ ´

Bf

Bxn
(a)kn

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
f(a1 + k1, ¨ ¨ ¨ , an + kn) ´ f(a1, a2 + k2, ¨ ¨ ¨ , an + kn) ´

Bf

Bx1
(a)k1

ˇ

ˇ

ˇ

+
ˇ

ˇ

ˇ
f(a1, a2 + k2, ¨ ¨ ¨ , an + kn) ´ f(a1, a2, a3 + k3, ¨ ¨ ¨ , an + kn) ´

Bf

Bx2
(a)k2

ˇ

ˇ

ˇ

+ ¨ ¨ ¨ +
ˇ

ˇ

ˇ
f(a1, ¨ ¨ ¨ , an´1, an + kn) ´ f(a1, ¨ ¨ ¨ , an) ´

Bf

Bxn
(a)kn

ˇ

ˇ

ˇ
.

By the mean value theorem,

f(a1, ¨ ¨ ¨ , aj´1, aj + kj, ¨ ¨ ¨ , an + kn) ´ f(a1, ¨ ¨ ¨ , aj, aj+1 + kj+1, ¨ ¨ ¨ , an + kn)

= kj
Bf

Bxj
(a1, ¨ ¨ ¨ , aj´1, aj + θjkj, aj+1 + kj+1, ¨ ¨ ¨ , an + kn)

for some 0 ă θj ă 1; thus for j = 1, ¨ ¨ ¨ , n ´ 1, if }x ´ a}Rn = }k}Rn ă δ,
ˇ

ˇ

ˇ
f(a1, ¨ ¨ ¨ , aj´1, aj + kj, ¨ ¨ ¨ , an + kn) ´ f(a1, ¨ ¨ ¨ , aj, aj+1 + kj+1, ¨ ¨ ¨ , an + kn) ´

Bf

Bxj
(a)kj

ˇ

ˇ

ˇ

=
ˇ

ˇ

ˇ

Bf

Bxj
(a1, ¨ ¨ ¨ , aj´1, aj + θjkj, aj+1 + kj+1, ¨ ¨ ¨ , an + kn) ´

Bf

Bxj
(a)

ˇ

ˇ

ˇ
|kj| ď

ε
?
n

|kj| .
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Moreover, if }x ´ a}Rn ă δ, then |kn| ď }k}Rn = }x ´ a}Rn ă δ ď δn; thus
ˇ

ˇ

ˇ
f(a1, ¨ ¨ ¨ , an´1, an + kn) ´ f(a1, ¨ ¨ ¨ , an) ´

Bf

Bxn
(a)kn

ˇ

ˇ

ˇ
ď

ε
?
n

|kn| .

As a consequence, if }x ´ a}Rn ă δ, by Cauchy’s inequality,
ˇ

ˇ

ˇ
f(x) ´ f(a) ´

[
Bf

Bx1
(a)(x1 ´ a1) + ¨ ¨ ¨ +

Bf

Bxn
(a)(xn ´ an)

]ˇ
ˇ

ˇ

ď
ε

?
n

n
ÿ

j=1

|kj| ď ε}k}Rn = ε}x ´ a}Rn

which implies that f is differentiable at a. ˝

Remark 5.41. When two or more components of the Jacobian matrix
[

Bf

Bx1
¨ ¨ ¨

Bf

Bxn

]
of a

scalar function f are discontinuous at a point a P U , in general f is not differentiable at a.
For example, both components of the Jacobian matrix of the functions given in Example
5.31, 5.32, 5.38 are discontinuous at (0, 0), and these functions are not differentiable at (0, 0).

Example 5.42. Let U = R2z
␣

(x, 0) P R2
ˇ

ˇx ě 0
(

, and f : U Ñ R be given by

f(x, y) = arg(x+ iy) =

$

’

’

’

’

&

’

’

’

’

%

arccos x
a

x2 + y2
if y ą 0 ,

π if y = 0 ,

2π ´ arccos x
a

x2 + y2
if y ă 0 .

Then

Bf

Bx
(x, y) =

$

&

%

´
y

x2 + y2
if y ‰ 0 ,

0 if y = 0 ,
and Bf

By
(x, y) =

$

’

&

’

%

x

x2 + y2
if y ‰ 0 ,

1

x
if y = 0 .

Since Bf

Bx
and Bf

By
are both continuous on U , f is differentiable on U .

Definition 5.43. Let U Ď Rn be open, and f : U Ñ Rm be differentiable on U . f is
said to be continuously differentiable on U if Df : U Ñ B(Rn,Rm) is continuous on
U . The collection of all continuously differentiable mappings from U to Rm is denoted by
C 1(U ;Rm). The collection of all bounded differentiable functions from U to Rm whose
derivative is continuous and bounded is denoted by C 1

b (U ;Rm). In other words,

C 1(U ;Rm) =
␣

f : U Ñ Rm is differentiable on U
ˇ

ˇDf : U Ñ B(Rn,Rm) is continuous
(
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and
C 1
b (U ;Rm) =

!

f P C 1(U ;Rm)
ˇ

ˇ

ˇ
sup
xPU

|f(x)| + sup
xPU

}Df(x)}B(Rn,Rm) ă 8

)

.

Theorem 5.44. Let U Ď Rn be open, and f : U Ñ Rm. Then f P C 1(U ;Rm) if and only if

the partial derivatives Bfi
Bxj

exist and are continuous on U for i = 1, ¨ ¨ ¨ ,m and j = 1, ¨ ¨ ¨ , n.

Proof. Note that B(Rn,Rm) is finite dimensional. By Example 4.29, there exist c and C ą 0

such that

c
m
ÿ

i=1

n
ÿ

j=1

|aij|ď}L}B(Rn,Rm) ďC
m
ÿ

i=1

n
ÿ

j=1

|aij| @LPB(Rn,Rm) with representation [L] = [aij] .

Therefore, for every a P U ,

c
m
ÿ

i=1

n
ÿ

j=1

ˇ

ˇ

ˇ

Bfi
Bxj

(x) ´
Bfi
Bxj

(a)
ˇ

ˇ

ˇ
ď
›

›(Df)(x) ´ (Df)(a)
›

›

B(Rn,Rm)
ď C

m
ÿ

i=1

n
ÿ

j=1

ˇ

ˇ

ˇ

Bfi
Bxj

(x) ´
Bfi
Bxj

(a)
ˇ

ˇ

ˇ
;

thus lim
xÑa

}(Df)(x) ´ (Df)(a)}B(Rn,Rm) = 0 if and only if lim
xÑa

ˇ

ˇ

ˇ

Bfi
Bxj

(x) ´
Bfi
Bxj

(a)
ˇ

ˇ

ˇ
= 0 for all

1 ď i ď m, 1 ď j ď n. ˝

Example 5.45. If f : R Ñ R is differentiable at a, must f 1 be continuous at a? In other
words, is it always true that lim

xÑa
f 1(x) = f 1(a)?

Answer: No! For example, take

f(x) =

$

&

%

x2 sin 1

x
if x ‰ 0,

0 if x = 0.

Then f is differentiable at x = 0 since the limit

lim
hÑ0

f(0 + h) ´ f(0)

h
= lim

hÑ0

h2 sin 1

h
h

= lim
hÑ0

h sin 1

h
= 0

exists. Therefore,

f 1(x) =

$

&

%

2x sin 1

x
´ cos 1

x
if x ‰ 0,

0 if x = 0.

However, lim
xÑ0

f 1(x) does not exist.
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5.5 The Product Rule and the Chain Rule
Theorem 5.46. Let (X, } ¨ }X), (Y, } ¨ }Y ) be normed vector spaces over field F, where F = R
or C, U Ď X be open, and f : U Ñ Y and g : U Ñ F be differentiable at a P U . Then
gf : U Ñ Y is differentiable at a, and

D(gf)(a)(v) = g(a)(Df)(a)(v) + (Dg)(a)(v)f(a) . (5.5.1)

Moreover, if g(a) ‰ 0, then f

g
: U Ñ Y is also differentiable at a, and D(

f

g
)(a) : X Ñ Y is

given by

D
(f
g

)
(a)(v) =

g(a)
(
(Df)(a)(v)

)
´ (Dg)(a)(v)f(a)

g2(a)
. (5.5.2)

Proof. We only prove (5.5.1), and (5.5.2) is left as an exercise.
Define A : X Ñ Y by A(v) = g(a)(Df)(a)(v) + (Dg)(a)(v)f(a). Then clearly A P

L (X,Y ). Moreover,

}Av}Y ď
›

›g(a)(Df)(a)(v)
›

›

Y
+
›

›(Dg)(a)(v)f(a)
›

›

Y

ď
ˇ

ˇg(a)
ˇ

ˇ

›

›(Df)(a)(v)
›

›

Y
+
ˇ

ˇ(Dg)(a)(v)
ˇ

ˇ

›

›f(a)
›

›

Y

ď
ˇ

ˇg(a)
ˇ

ˇ

›

›(Df)(a)
›

›

B(X,Y )
}v}X +

›

›(Dg)(a)
›

›

B(X,F)}v}X}f(a)}Y

=
[
ˇ

ˇg(a)
ˇ

ˇ

›

›(Df)(a)
›

›

B(X,Y )
+
›

›(Dg)(a)
›

›

B(X,F)}f(a)}Y

]
}v}X

so that A is bounded. Note that

(gf)(x) ´ (gf)(a) ´ A(x ´ a) = g(x)
(
f(x) ´ f(a) ´ (Df)(a)(x ´ a)

)
+
(
g(x) ´ g(a) ´ (Dg)(a)(x ´ a)

)
f(a)

+
(
g(x) ´ g(a)

(
(Df)(a)(x ´ a)

))
.

As a consequence, for x ‰ a,
›

›(gf)(x) ´ (gf)(a) ´ A(x ´ a)
›

›

Y

}x ´ a}X
ď
ˇ

ˇg(x)
ˇ

ˇ

›

›f(x) ´ f(a) ´ (Df)(a)(x ´ a)
›

›

Y

}x ´ a}X

+

ˇ

ˇg(x) ´ g(a) ´ (Dg)(a)(x ´ a)
ˇ

ˇ

}x ´ a}X
}f(a)}Y +

›

›(Df)(a)
›

›

B(X,Y )

ˇ

ˇg(x) ´ g(a)
ˇ

ˇ

and the right-hand side approaches zero as x Ñ a since f and g are differentiable at a (so
that g is continuous at a). Therefore, gf is differentiable at a with derivative D(gf)(a)

given by (5.5.1). ˝
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Theorem 5.47. Let (X, } ¨ }X), (Y, } ¨ }Y ), (Z, } ¨ }Z) be normed vector spaces, U Ď X and
V Ď Y be open sets. Suppose that f : U Ñ Y is differentiable at a P U , f(U) Ď V , and
g : V Ñ Z is differentiable at f(a). Then the map F = g ˝ f : U Ñ Z defined by

F (x) = g
(
f(x)

)
@x P U

is differentiable at a, and

(DF )(a)(h) = (Dg)
(
f(a)

)(
(Df)(a)(h)

)
@h P X .

In particular, if X = Rn, Y = Rm and Z = Rℓ, then(
(DF )(a)

)
ij
=

m
ÿ

k=1

Bgi
Byk

(
f(a)

)Bfk
Bxj

(a) .

Proof. To simplify the notation, we write b = f(a), A = (Df)(a) P B(X,Y ), and B =

(Dg)(b) P B(Y, Z). Since U and V are open, there exists r1, r2 ą 0 such that BX(a, r1) Ď U

and BY (b, r2) Ď V , where BX and BY denote balls in X and Y , respectively.

Let ε ą 0 be given. Define u : BX(0, r1) Ñ Y and v : BY (0, r2) Ñ Z by

u(h) = f(a+ h) ´ f(a) ´ Ah and v(k) = g(b+ k) ´ g(b) ´ Bk .

By the differentiability of f and g at a and b, there exist 0 ă δ1 ă r1 and 0 ă δ2 ă r2 such
that

}u(h)}Y ď min
!

1,
ε

2(}B} + 1)

)

}h}X whenever }h}X ă δ1 ,

}v(k)}Z ď
ε

2(}A} + 1)
}k}Y whenever }k}Y ă δ2 .

Let k = f(a+ h) ´ f(a) = Ah+ u(h). Then lim
hÑ0

k = 0; thus there exists δ3 ą 0 such that

}k}Y ă δ2 whenever }h}X ă δ3 .

Define δ = mintδ1, δ3u. Then δ ą 0; thus by the fact that

F (a+ h) ´ F (a) = g(b+ k) ´ g(b) = Bk + v(k) = B
(
Ah+ u(h)

)
+ v(k)

= BAh+Bu(h) + v(k) ,

we find that if }h}X ă δ,

}F (a+ h) ´ F (a) ´ BAh}Z ď }Bu(h)}Z + }v(k)}Z ď }B}}u(h)}Y +
ε

2(}A} + 1)
}k}Y

ď
ε

2
}h}X +

ε

2(}A} + 1)

(
}A}}h}X + }u(h)}Y

)
ď

ε

2
}h}X +

ε

2
}h}X = ε}h}X .
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Since BA = B ˝ A P B(X,Z) by Proposition 5.9, we conclude that F is differentiable at a
and (DF )(a) = BA. ˝

Example 5.48. Let X = C ([a, b];R) and } ¨ }X be the maximum norm; that is, }f}X =

max
xP[a,b]

ˇ

ˇf(x)
ˇ

ˇ. Let I : X Ñ X be defined by I(f) = f 2 and J : X Ñ R be defined by

J(f) =
ż b

a
f(x)2 dx. Then I is differentiable on X (with (DI)(f)(h) = 2fh) and J is

differentiable on X
(
with (DJ)(f)(h) =

ż b

a
2f(x)h(x) dx

)
. Therefore, the chain rule implies

that J ˝ I is differentiable on X and

D(J ˝ I)(f)(h) = (DJ)(f 2)
(
(DI)(f)(h)

)
= (DJ)(f 2)(2fh) =

ż b

a

4f 3(x)h(x) dx .

Example 5.49. Let f : GL(n) Ñ B(Rn,Rn) and g : B(Rn,Rn) Ñ B(Rn,Rn) be defined
by f(L) = L´1 and g(L) = L2. Then for H P GL(n), Example 5.19 and 5.20 imply that

(Df)(L)(H) = ´L´1HL´1 and (Dg)(L)(H) = LH +HL .

Therefore, the chain rule shows that

D(g ˝ f)(L)(H) = (Dg)(L´1)
(
(Df)(L)(H)

)
= L´1

(
(Df)(L)(H)

)
+
(
(Df)(L)(H)

)
L´1

= ´L´2HL´1 ´ L´1HL´2 .

5.6 Higher Derivatives of Functions

Let U Ď X be open, and f : U Ñ Y is differentiable. By Proposition 5.8, the space(
B(X,Y ), } ¨ }B(X,Y )

)
is a normed space, so it is legitimate to ask if Df : U Ñ B(X,Y )

is differentiable or not. If Df is differentiable at a, we call f twice differentiable at a,
and denote the twice derivative of f at a as (D2f)(a). If Df is differentiable on U , then
D2f : U Ñ B

(
X,B(X,Y )

)
. Similar, we can talk about three times differentiability of a

function if it is twice differentiable. In general, we have the following

Definition 5.50. Let (X, } ¨ }X) and (Y, } ¨ }Y ) be normed spaces, and U Ď X be open. A
function f : U Ñ Y is said to be twice differentiable at a P U if

1. f is (once) differentiable in a neighborhood of a;
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2. there exists L2 P B
(
X,B(X,Y )

)
, usually denoted by (D2f)(a) and called the second

derivative of f at a, such that

lim
xÑa

›

›(Df)(x) ´ (Df)(a) ´ L2(x ´ a)
›

›

B(X,Y )

}x ´ a}X
= 0 .

For two vectors u, v P X, (D2f)(a)(v) P B(X,Y ) and (D2f)(a)(v)(u) P Y . The vector
(D2f)(a)(v)(u) is usually denoted by (D2f)(a)(u, v).

In general, a function f is said to be k-times differentiable at a P U if

1. f is (k ´ 1)-times differentiable in a neighborhood of a;

2. there exists Lk P B(X,B(X, ¨ ¨ ¨ ,B(X
loooooooooomoooooooooon

k copies of “X”

, Y ) ¨ ¨ ¨ ))
loomoon

k copies of “)”

, usually denoted by (Dkf)(a) and

called the k-th derivative of f at a, such that

lim
xÑa

›

›(Dk´1f)(x) ´ (Dk´1f)(a) ´ Lk(x ´ a)
›

›

B(X,B(X,¨¨¨ ,B(X,Y )¨¨¨ ))

}x ´ a}X
= 0 .

For k vectors u(1), ¨ ¨ ¨ , u(k) P X, the vector (Dkf)(a)(u(1), ¨ ¨ ¨ , u(k)) is defined as the vector

(Dkf)(a)(u(k))(u(k´1)) ¨ ¨ ¨ (u(1)) ,

where (Dkf)(a)(u(k)) P B(X,B(X, ¨ ¨ ¨ ,B(X
loooooooooomoooooooooon

(k ´ 1) copies of “X”

, Y ) ¨ ¨ ¨ ))
loomoon

(k ´ 1) copies of “)”

so that (Dkf)(a)(u(k))(u(k´1)) P

B(X,B(X, ¨ ¨ ¨ ,B(X
loooooooooomoooooooooon

(k ´ 2) copies of “X”

, Y ) ¨ ¨ ¨ ))
loomoon

(k ´ 2) copies of “)”

, and etc.

Example 5.51. Let (X, } ¨ }X) and (Y, } ¨ }Y ) be two normed spaces, and f(x) = Lx for
some L P B(X,Y ). From Example 5.18, (Df)(a) = L for all a P X; thus (D2f)(a) = 0

since Df : U P B(X,Y ) is a “constant” map. In fact, one can also conclude from

lim
xÑa

›

›(Df)(x) ´ (Df)(a) ´ 0(x ´ a)
›

›

B(X,Y )

}x ´ a}X
= 0

that (D2f)(a) = 0 for all a P X.

Remark 5.52. We focus on what (Dkf)(a)(uk)(¨ ¨ ¨ )(u1) means in this remark. We first
look at the case that f is twice differentiable at a. With x = a+ tv for v P X with }v}X = 1

in the definition, we find that

lim
tÑ0

›

›(Df)(a+ tv) ´ (Df)(a) ´ t(D2f)(a)(v)
›

›

B(X,Y )

|t|
= 0 .
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Since (Df)(a + tv) ´ (Df)(a) ´ t(D2f)(a)(v) P B(X,Y ), for all u P X with }u}X = 1 we
have

lim
tÑ0

›

›

›

(Df)(a+ tv)(u) ´ (Df)(a)(u)

t
´ (D2f)(a)(v)(u)

›

›

›

Y

= lim
tÑ0

›

›(Df)(a+ tv)(u) ´ (Df)(a)(u) ´ t(D2f)(a)(v)(u)
›

›

Y

|t|

= lim
tÑ0

›

›

[
(Df)(a+ tv) ´ (Df)(a) ´ t(D2f)(a)(v)

]
(u)

›

›

Y

|t|

ď lim
tÑ0

›

›(Df)(a+ tv) ´ (Df)(a) ´ t(D2f)(a)(v)
›

›

B(X,Y )

}(a+ tv) ´ a}X
= 0 .

On the other hand, by the definition of the direction derivative (see Remark 5.15),

(Df)(a+ tv)(u) ´ (Df)(a)(u) = lim
sÑ0

[
f(a+ tv + su) ´ f(a+ tv)

s
´

f(a+ su) ´ f(a)

s

]
;

thus the limit above implies that

(D2f)(a)(v)(u) = lim
tÑ0

lim
sÑ0

f(a+ tv + su) ´ f(a+ tv) ´ f(a+ su) + f(a)

st

= lim
tÑ0

lim
sÑ0

f(a+ tv + su) ´ f(a+ tv)

s
´ lim
sÑ0

f(a+ su) ´ f(a)

s
t

= Dv(Duf)(a) .

Therefore, (D2f)(a)(v)(u) is obtained by first differentiating f around a in the u-direction,
then differentiating (Df) at a in the v-direction.

In general, (Dkf)(a)(uk) ¨ ¨ ¨ (u1) is obtained by first differentiating f around a in the
u1-direction, then differentiating (Df) near a in the u2-direction, and so on, and finally
differentiating (Dk´1f) at a in the uk-direction.

Remark 5.53. Since (D2f)(a) P B(X,B(X,Y )), if v1, v2 P X and c P R, we have
(D2f)(a)(cv1 + v2) = c(D2f)(a)(v1) + (D2f)(a)(v2) (treated as “vectors” in B(X,Y )); thus

(D2f)(a)(cv1 + v2)(u) = c(D2f)(a)(v1)(u) + (D2f)(a)(v2)(u) @u, v1, v2 P X .

On the other hand, since (D2f)(a)(v) P B(X,Y ),

(D2f)(a)(v)(cu1 + u2) = c(D2f)(a)(v)(u1) + (D2f)(a)(v)(u2) @u1, u2, v P X .

Therefore, (D2f)(a)(v)(u) is linear in both u and v variables. A map with such kind of
property is called a bilinear map (meaning 2-linear). In particular, (D2f)(a) : XˆX Ñ Y

is a bilinear map.
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In general, the vector (Dkf)(a)(u(1), ¨ ¨ ¨ , u(k)) is linear in u(1), ¨ ¨ ¨ , u(k); that is,

(Dkf)(a)(u(1), ¨ ¨ ¨ , u(i´1), αv + βw, u(i+1), ¨ ¨ ¨ , u(k))

= α(Dkf)(a)(u(1), ¨ ¨ ¨ , u(i´1), v, u(i+1), ¨ ¨ ¨ , u(k))

+ β(Dkf)(a)(u(1), ¨ ¨ ¨ , u(i´1), w, u(i+1), ¨ ¨ ¨ , u(k))

for all v, w P X, α, β P R, and i = 1, ¨ ¨ ¨ , n. Such kind of map which is linear in each
component when the other k ´ 1 components are fixed is called k-linear.

Consider the case that X is finite dimensional with dim(X) = n,
␣

e1, e2, . . . , en
(

is a
basis of X, and Y = R. Then (D2f)(a) : XˆX Ñ Y is a bilinear form (here the term “form”
means that Y = R). A bilinear form B : X ˆ X Ñ R can be represented as follows: Let
aij = B(ei, ej) P R for i, j = 1, 2, ¨ ¨ ¨ , n. Given x, y P Rn, write u =

n
ř

i=1

uiei and v =
n
ř

j=1

vjej.

Then by the bilinearity of B,

B(u, v) = B
( n
ÿ

i=1

uiei,
n
ÿ

j=1

vjej
)
=

n
ÿ

i,j=1

uivjaij =
[
u1 ¨ ¨ ¨ un

] a11 ¨ ¨ ¨ a1n
... . . . ...
an1 ¨ ¨ ¨ ann


v1...
vn

 .
Therefore, if f : U Ď Rn Ñ R is twice differentiable at a, then the bilinear form (D2f)(a)

can be represented as

(D2f)(a)(u, v) =
[
u1 ¨ ¨ ¨ un

] 
(D2f)(e1, e1) ¨ ¨ ¨ (D2f)(a)(e1, en)

... . . . ...
(D2f)(en, e1) ¨ ¨ ¨ (D2f)(a)(en, en)


v1...
vn

 .
The following proposition is an analogy of Proposition 5.39. The proof is similar to the

one of Proposition 5.39, and is left as an exercise.

Proposition 5.54. Let U Ď Rn be open, a P U , and f = (f1, ¨ ¨ ¨ , fm) : U Ñ Rm. Then f is
k-times differentiable at a if and only if fi is k-times differentiable at a for all i = 1, ¨ ¨ ¨ ,m.

Due to the proposition above, when talking about the higher-order differentiability of
f : U Ď Rn Ñ Rm and a point a P U , from now on we only focus on the case m = 1.

Example 5.55. In this example, we focus on what the second derivative (D2f)(a) of a
function f is, or in particular, what (D2f)(a)(ei, ej) (which appears in the Remark 5.53) is,
if X = R2.
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Let f : R2 Ñ R be differentiable, then[
(Df)(x, y)

]
=

[
fx(x, y) fy(x, y)

]
=

[
Bf

Bx
(x, y)

Bf

By
(x, y)

]
.

Suppose that f is twice differentiable at (a, b), and let L2 = (D2f)(a, b). Then

lim
(x,y)Ñ(a,b)

›

›(Df)(x, y) ´ (Df)(a, b) ´ L2

(
(x ´ a, y ´ b)

)›
›

B(R2,R)
a

(x ´ a)2 + (y ´ b)2
= 0

or equivalently,

lim
(x,y)Ñ(a,b)

›

›

[
fx(x, y) fy(x, y)

]
´
[
fx(a, b) fy(a, b)

]
´
[
L2

(
(x ´ a, y ´ b)

)]›
›

B(R2,R)
a

(x ´ a)2 + (y ´ b)2
= 0 ,

where
[
L2

(
(x´a, y´b)

)]
denotes the matrix representation of the linear map L2

(
(x´a, y´

b)
)

P B(R2,R). In particular, we must have

lim
xÑa

›

›

›

›

[
fx(x, b) ´ fx(a, b)

x ´ a

fy(x, b) ´ fy(a, b)

x ´ a

]
´
[
L2e1

]››
›

›

B(R2,R)
= 0

and

lim
yÑb

›

›

›

›

[
fx(a, y) ´ fx(a, b)

y ´ b

fy(a, y) ´ fy(a, b)

y ´ b

]
´
[
L2e2

]››
›

›

B(R2,R)
= 0 .

Using the notation of second partial derivatives, we find that[
L2e1

]
=

[
fxx(a, b) fyx(a, b)

]
and

[
L2e2

]
=

[
fxy(a, b) fyy(a, b)

]
,

where fxy = (fx)y =
B

By

(
Bf

Bx

)
and fyx = (fy)x =

B

Bx

(
Bf

By

)
. Therefore, if v = v1e1 + v2e2,

[L2v] =
[
L2(v1e1 + v2e2)

]
=

[
v1fxx(a, b) + v2fxy(a, b) v1fyx(a, b) + v2fyy(a, b)

]
. (5.6.1)

Symbolically, we can write[
L2

]
=

[ [
fxx(a, b) fyx(a, b)

] [
fxy(a, b) fyy(a, b)

] ]
so that[

L2(v1e1 + v2e2)
]
=

[
L2

] [v1
v2

]
=

[ [
fxx(a, b) fyx(a, b)

] [
fxy(a, b) fyy(a, b)

] ] [v1
v2

]
= v1

[
fxx(a, b) fyx(a, b)

]
+ v2

[
fxy(a, b) fyy(a, b)

]
.
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For two vectors u and v, what does (D2f)(a, b)(v)(u) or (D2f)(a, b)(u, v) mean? To see
this, let u = u1e1 + u2e2 and v = v1e1 + v2e2. Then[

(D2f)(a, b)(v)(u)
]
=

[
(D2f)(a, b)(v)

][
u
]
=

[
L2(v1e1 + v2e2)

] [u1
u2

]
= v1

[
fxx(a, b) fyx(a, b)

] [u1
u2

]
+ v2

[
fxy(a, b) fyy(a, b)

] [u1
u2

]
=

[
v1 v2

] [fxx(a, b) fyx(a, b)
fxy(a, b) fyy(a, b)

] [
u1
u2

]
.

Therefore, (D2f)(a, b)(e1, e1) = fxx(a, b), (D2f)(a, b)(e1, e2) = fxy(a, b), (D2f)(a, b)(e2, e1) =
fyx(a, b) and (D2f)(a, b)(e2, e2) = fyy(a, b).

On the other hand, we can identify B(R2;R) as R2 (every 1ˆ2 matrix is a “row” vector),
and treat g ”

[
Df

]T
: R2 Ñ R2 as a vector-valued function. By Theorem 5.27 (Dg)(a, b)

can be represented as a 2 ˆ 2 matrix given by[
(Dg)(a, b)

]
=

[
fxx(a, b) fxy(a, b)
fyx(a, b) fyy(a, b)

]
.

We note that the representation above means

lim
(x,y)Ñ(a,b)

›

›

›

›

[
fx(x, y)
fy(x, y)

]
´

[
fx(a, b)
fy(a, b)

]
´

[
fxx(a, b) fxy(a, b)
fyx(a, b) fyy(a, b)

] [
x ´ a
y ´ b

]›
›

›

›

R2
a

(x ´ a)2 + (y ´ b)2
= 0 .

The equality above is equivalent to that

lim
(x,y)Ñ(a,b)

›

›

›

[
(Df)(x, y)

]
´
[
(Df)(a, b)

]
´
[
x ´ a y ´ b

] [fxx(a, b) fyx(a, b)
fxy(a, b) fyy(a, b)

]
›

›

›

R2

a

(x ´ a)2 + (y ´ b)2
= 0

According to the equality above, L2 = (D2f)(a, b) should be defined by

[
L2(v1e1 + v2e2)

]
=

[
v1 v2

] [fxx(a, b) fyx(a, b)
fxy(a, b) fyy(a, b)

]
=

([
fxx(a, b) fxy(a, b)
fyx(a, b) fyy(a, b)

] [
v1
v2

])T

which agrees with what (5.6.1) provides.

Proposition 5.56. Let U Ď Rn be open, and f : U Ñ R. Suppose that f is k-times
differentiable at a. Then for k vectors u(1), ¨ ¨ ¨ , u(k) P Rn,

(Dkf)(a)(u(1), ¨ ¨ ¨ , u(k)) =
n
ÿ

j1,¨¨¨ ,jk=1

Bkf

BxjkBxjk´1
¨ ¨ ¨ Bxj1

(a)u
(1)
j1
u
(2)
j2

¨ ¨ ¨u
(k)
jk
,
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where u(i) = (u
(i)
1 , u

(i)
2 , ¨ ¨ ¨ , u

(i)
n ) for all i = 1, ¨ ¨ ¨ , k ( 上標括號中的數字指所給定的 k 個向

量中的第幾個向量，下標指每一個固定向量的第幾個分量 ) and

Bkf

BxjkBxjk´1
¨ ¨ ¨ Bxj1

(a) =
B

Bxjk

ˇ

ˇ

ˇ

x=a

(
B

Bxjk´1

(
¨ ¨ ¨

B

Bxj2

(
Bf

Bxj1

)
¨ ¨ ¨

))
.

Proof. We prove the proposition by induction. Let tejunj=1 be the standard basis of Rn. By
Remark 5.53 (on multi-linearity), it suffices to show that

(Dkf)(a)(ejk)(ejk´1
) ¨ ¨ ¨ (ej2)(ej1) = (Dkf)(a)(ej1 , ¨ ¨ ¨ , ejk) =

Bkf

BxjkBxjk´1
¨ ¨ ¨ Bxj1

(a) (5.6.2)

provided that f is k-times differentiable at a since if so, we must have

(Dkf)(a)(u(1), ¨ ¨ ¨ , u(k)) = (Dkf)(a)
( n
ÿ

j1=1

u
(1)
j1

ej1 , ¨ ¨ ¨ ,
n
ÿ

jk=1

u
(k)
jk

ejk
)

=
n
ÿ

j1=1

n
ÿ

j2=1

¨ ¨ ¨

n
ÿ

jk=1

(Dkf)(a)(ej1 , ¨ ¨ ¨ , ejk)u
(1)
j1
u
(2)
j2

¨ ¨ ¨u
(k)
jk

=
n
ÿ

j1,¨¨¨ ,jk=1

Bkf

BxjkBxjk´1
¨ ¨ ¨ Bxj1

(a)u
(1)
j1
u
(2)
j2

¨ ¨ ¨u
(k)
jk
.

Note that the case k = 1 is true because of Theorem 5.27. Next we assume that (5.6.2)
holds true for k = ℓ if f is (ℓ ´ 1)-times differentiable in a neighborhood of a and f is
ℓ-times differentiable at a. Now we show that (5.6.2) also holds true for k = ℓ + 1 if f is
ℓ-times differentiable in a neighborhood of a, and f is (ℓ + 1)-times differentiable at a. By
the definition of (ℓ+ 1)-times differentiability at a,

lim
xÑa

›

›(Dℓf)(x) ´ (Dℓf)(a) ´ (Dℓ+1f)(a)(x ´ a)
›

›

B(Rn,B(Rn,¨¨¨ ,B(Rn,R)¨¨¨ ))

}x ´ a}Rn
= 0 .

Since
ˇ

ˇ

ˇ

[
(Dℓf)(x) ´ (Dℓf)(a) ´ (Dℓ+1f)(a)(x ´ a)

]
(ejℓ) ¨ ¨ ¨ (ej2)(ej1)

ˇ

ˇ

ˇ

ď

›

›

›

[
(Dℓf)(x) ´ (Dℓf)(a) ´ (Dℓ+1f)(a)(x ´ a)

]
(ejℓ) ¨ ¨ ¨ (ej2)

›

›

›

B(Rn,R)
}ej1}Rn

ď
›

›(Dℓf)(x) ´ (Dℓf)(a) ´ (Dℓ+1f)(a)(x ´ a)
›

›

B(Rn,B(Rn,¨¨¨ ,B(Rn,R)¨¨¨ ))}ej1}Rn ¨ ¨ ¨ }ejℓ}Rn

=
›

›(Dℓf)(x) ´ (Dℓf)(a) ´ (Dℓ+1f)(a)(x ´ a)
›

›

B(Rn,B(Rn,¨¨¨ ,B(Rn,R)¨¨¨ )) ,
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using (5.6.2) (for the case k = ℓ) we conclude that for x ‰ a,
ˇ

ˇ

ˇ

Bℓf

BxjℓBxjk´1
¨ ¨ ¨ Bxj1

(x) ´
Bℓf

BxjℓBxjk´1
¨ ¨ ¨ Bxj1

(a) ´ (Dℓ+1f)(a)(ej1 , ¨ ¨ ¨ , ejℓ , x ´ a)
ˇ

ˇ

ˇ

}x ´ a}Rn

=

ˇ

ˇ(Dℓf)(x)(ej1 , ¨ ¨ ¨ , ejℓ) ´ (Dℓf)(a)(ej1 , ¨ ¨ ¨ , ejℓ) ´ (Dℓ+1f)(a)(x ´ a)(ej1 , ¨ ¨ ¨ , ejℓ)
ˇ

ˇ

}x ´ a}Rn

ď

›

›(Dℓf)(x) ´ (Dℓf)(a) ´ (Dℓ+1f)(a)(x ´ a)
›

›

B(Rn,B(Rn,¨¨¨ ,B(Rn,R)¨¨¨ ))

}x ´ a}Rn

and the right-hand side approaches zero as x Ñ a so that

lim
xÑa

ˇ

ˇ

ˇ

Bℓf

BxjℓBxjk´1
¨ ¨ ¨ Bxj1

(x) ´
Bℓf

BxjℓBxjk´1
¨ ¨ ¨ Bxj1

(a) ´ (Dℓ+1f)(a)(ej1 , ¨ ¨ ¨ , ejℓ , x ´ a)
ˇ

ˇ

ˇ

}x ´ a}Rn
= 0 .

In particular, we pass to the limit as x Ñ a in the way x = a + tejℓ+1
as t Ñ 0 for some

jℓ+1 = 1, ¨ ¨ ¨ , n and conclude from the definition of partial derivatives that

(Dℓ+1f)(a)(ej1 , ¨ ¨ ¨ , ejℓ , ejℓ+1
) = lim

tÑ0

Bℓf

BxjℓBxjk´1
¨ ¨ ¨ Bxj1

(a+ tejℓ+1
) ´

Bℓf

BxjℓBxjk´1
¨ ¨ ¨ Bxj1

(a)

t

=
Bℓ+1f

Bxjℓ+1
BxjℓBxjk´1

¨ ¨ ¨ Bxj1
(a)

which is (5.6.2) for the case k = ℓ+ 1. ˝

Example 5.57. Let f : R2 Ñ R be given by f(x1, x2) = x21 cosx2, and u(1) = (2, 0),
u(2) = (1, 1), u(3) = (0,´1). Suppose that f is three-times differentiable at a = (0, 0) (in
fact it is, but we have not talked about this yet). Then

(D3f)(a)(u(1), u(2), u(3)) =
2
ÿ

i,j,k=1

B3f

BxkBxjBxi
(a)u

(1)
i u

(2)
j u

(3)
k =

2
ÿ

j=1

B3f

Bx2BxjBx1
(a) ¨ 2 ¨ u

(2)
j ¨ (´1)

=
B3f

Bx2Bx21
(0, 0) ¨ 2 ¨ 1 ¨ (´1) +

B3f

Bx22Bx1
(0, 0) ¨ 2 ¨ 1 ¨ (´1) = 0 .

Corollary 5.58. Let U Ď Rn be open, and f : U Ñ R be (k + 1)-times differentiable at a.
Then for u(1), ¨ ¨ ¨ , u(k), u(k+1) P Rn,

(Dk+1f)(a)(u(1), ¨ ¨ ¨ , u(k), u(k+1)) =
n
ÿ

j=1

u
(k+1)
j

B

Bxj

ˇ

ˇ

ˇ

x=a
(Dkf)(x)(u(1), ¨ ¨ ¨ , u(k)) .

In other words, (using the terminology in Remark 5.15) (Dk+1f)(a)(u(1), ¨ ¨ ¨ , u(k), u(k+1)) is
the “directional derivative” of the function (Dkf)(¨)(u(1), ¨ ¨ ¨ , u(k)) at a in the “direction”
u(k+1).
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Proof. By Proposition 5.56,

(Dk+1f)(a)(u(1), ¨ ¨ ¨ , u(k), u(k+1)) =
n
ÿ

j1,¨¨¨ ,jk,jk+1=1

Bk+1f

Bxjk+1
Bxjk ¨ ¨ ¨ Bxj1

(a)u
(1)
j1

¨ ¨ ¨u
(k)
jk
u
(k+1)
jk+1

=
n
ÿ

jk+1=1

u
(k+1)
jk+1

n
ÿ

j1,¨¨¨ ,jk=1

Bk+1f

Bxjk+1
Bxjk ¨ ¨ ¨ Bxj1

(a)u
(1)
j1

¨ ¨ ¨u
(k)
jk

=
n
ÿ

jk+1=1

u
(k+1)
jk+1

B

Bxjk+1

ˇ

ˇ

ˇ

x=a

n
ÿ

j1,¨¨¨ ,jk=1

Bkf

Bxjk ¨ ¨ ¨ Bxj1
(x)u

(1)
j1

¨ ¨ ¨u
(k)
jk

=
n
ÿ

jk+1=1

u
(k+1)
jk+1

B

Bxjk+1

ˇ

ˇ

ˇ

x=a
(Dkf)(x)(u(1), ¨ ¨ ¨ , u(k)) . ˝

Example 5.59. Let f : R2 Ñ R be twice differentiable at a = (a1, a2) P R2. Then the
proposition above shows that for u = (u1, u2), v = (v1, v2) P R2,

(D2f)(a)(v)(u) = (D2f)(a)(u, v) =
2
ÿ

i,j=1

B2f

BxjBxi
(a)uivj

=
B2f

Bx21
(a)u1v1 +

B2f

Bx2Bx1
(a)u1v2 +

B2f

Bx1Bx2
(a)u2v1 +

B2f

Bx22
(a)u2v2

=
[
u1 u2

] 
B2f

Bx21
(a)

B2f

Bx2Bx1
(a)

B2f

Bx1Bx2
(a)

B2f

Bx22
(a)

[
v1
v2

]
.

In general, if f : Rn Ñ R be twice differentiable at a = (a1, ¨ ¨ ¨ , an) P Rn. Then for
u = (u1, ¨ ¨ ¨ , un), v = (v1, ¨ ¨ ¨ , vn) P Rn,

(D2f)(a)(v)(u) =
[
u1 ¨ ¨ ¨ un

]


B2f

Bx21
(a) ¨ ¨ ¨

B2f

BxnBx1
(a)

... . . . ...
B2f

Bx1Bxn
(a) ¨ ¨ ¨

B2f

Bx2n
(a)


v1...
vn

 .

The bilinear form B : Rn ˆ Rn Ñ R given by

B(u, v) = (D2f)(a)(v)(u) @u, v P Rn
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is called the Hessian of f , and is represented (in the matrix form) as an n ˆ n matrix by
B2f

Bx21
(a) ¨ ¨ ¨

B2f

BxnBx1
(a)

... . . . ...
B2f

Bx1Bxn
(a) ¨ ¨ ¨

B2f

Bx2n
(a)

 .

If the second partial derivatives B2f

BxjBxi
(a) of f at a exists for all i, j = 1, ¨ ¨ ¨ , n (here the

twice differentiability of f at a is ignored), the matrix (on the right-hand side of equality)
above is also called the Hessian matrix of f at a.

Even though there is no reason to believe that (D2f)(a)(u, v) = (D2f)(a)(v, u) (since
the left-hand side means first differentiating f in u-direction and then differentiating Df

in v-direction, while the right-hand side means first differentiating f in v-direction then
differentiating Df in u-direction), it is still reasonable to ask whether (D2f)(a) is symmetric
or not; that is, could it be true that (D2f)(a)(u, v) = (D2f)(a)(v, u) for all u, v P Rn? When
f is twice differentiable at a, this is equivalent of asking (by plugging in u = ei and v = ej)
that whether or not

B2f

BxjBxi
(a) =

B2f

BxiBxj
(a) . (5.6.3)

The following example provides a function f : R2 Ñ R such that (5.6.3) does not hold at
a = (0, 0). We remark that the function in the following example is not twice differentiable
at a even though the Hessian matrix of f at a can still be computed.

Example 5.60. Let f : R2 Ñ R be defined by

f(x, y) =

$

&

%

xy(x2 ´ y2)

x2 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

Then

fx(x, y) =

$

&

%

x4y + 4x2y3 ´ y5

(x2 + y2)2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) ,

and

fy(x, y) =

$

&

%

x5 ´ 4x3y2 ´ xy4

(x2 + y2)2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) ,
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It is clear that fx and fy are continuous on R2; thus f is differentiable on R2. However,

fxy(0, 0) = lim
kÑ0

fx(0, k) ´ fx(0, 0)

k
= ´1 ,

while
fyx(0, 0) = lim

hÑ0

fy(h, 0) ´ fy(0, 0)

h
= 1 ;

thus the Hessian matrix of f at the origin is not symmetric.

Theorem 5.61 (Clairaut’s Theorem). Let U Ď Rn be open, and f : U Ñ R. Suppose that

the mixed partial derivatives Bf

Bxi
, Bf

Bxj
, B2f

BxjBxi
, B2f

BxjBxi
exist in a neighborhood of a, and

B2f

BxjBxi
is continuous at a. Then

B2f

BxjBxi
(a) =

B2f

BxiBxj
(a) . (5.6.4)

Proof. Let a P U be given. For real numbers h, k ‰ 0 such that a+ hei + kej P U , define

Q(h, k) ”
f(a+ hei + kej) ´ f(a+ hei) ´ f(a+ kej) + f(a)

hk
.

Then

lim
kÑ0

Q(h, k) =
1

h
lim
kÑ0

(f(a+ hei + kej) ´ f(a+ hei)
k

´
f(a+ kej) + f(a)

k

)
=

1

h

( Bf

Bxj
(a+ hej) ´

Bf

Bxj
(a)

)
;

thus
lim
hÑ0

lim
kÑ0

Q(h, k) =
B2f

BxiBxj
(a) . (5.6.5)

Define φ(x) = f(x+ kej) ´ f(x). Then the mean value theorem implies that

Q(h, k) =
φ(a+ hei) ´ φ(a)

hk
=

1

k

Bφ

Bxi
(a+ θ1hei)

=
1

k

( Bf

Bxi
(a+ θ1hei + kej) ´

Bf

Bxi
(a+ θ1hei)

)
=

B2f

BxjBxi
(a+ θ1hei + θ2kej)
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for some functions θ1 = θ1(h, k) and θ2 = θ2(h, k) satisfying 0 ă θ1, θ2 ă 1. Therefore, we
establish that there exist functions θ1 = θ1(h, k) and θ2 = θ2(h, k) such that θ1, θ2 P (0, 1)

and

Q(h, k) =
B2f

BxjBxi
(a+ θ1hei + θ2kej) .

Passing to the limit as k Ñ 0 first then h Ñ 0, using (5.6.5) and the continuity of B2f

BxjBxi
we conclude that

B2f

BxiBxj
(a) = lim

hÑ0
lim
kÑ0

Q(h, k) = lim
hÑ0

lim
kÑ0

B2f

BxjBxi
(a+ θ1hei + θ2kej) =

B2f

BxjBxi
(a) . ˝

Remark 5.62. In view of Remark 5.52, (5.6.4) is the same as the following identity

lim
hÑ0

lim
kÑ0

f(a+ hei + kej) ´ f(a+ hei) ´ f(a+ kej) + f(a)

hk

= lim
kÑ0

lim
hÑ0

f(a+ hei + kej) ´ f(a+ hei) ´ f(a+ kej) + f(a)

hk

which implies that the order of the two limits lim
hÑ0

and lim
kÑ0

can be interchanged without
changing the value of the limit (under certain conditions).

Example 5.63. Let f(x, y) = yx2 cos y2. Then

fxy(x, y) = (2xy cos y2)y = 2x cos y2 ´ 2xy(2y) sin y2 = 2x cos y2 ´ 4xy2 sin y2 ,
fyx(x, y) = (x2 cos y2 ´ yx2(2y) sin y2)x = (x2 cos y2 ´ 2x2y2 sin y2)x

= 2x cos y2 ´ 4xy2 sin y2 = fxy(x, y) .

Definition 5.64. A function is said to be of class C k if the first k derivatives exist and
are continuous. A function is said to be smooth or of class C 8 if it is of class C k for all
positive integer k.

Now we would like to answer the question of what kind of functions are k-times differ-
entiable. Suppose that U Ď Rn is open and f : U Ñ R. Note that by the definition of
differentiability, f is k-times differentiable in U if and only if Dk´1f is differentiable in U .
This would further imply that f is k-times differentiable in U if and only if Dk´2f is twice
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differentiable in U . Therefore, Proposition 5.39 and Theorem 5.44 imply that

f is k-times (continuously) differentiable in U

ô Df is (k ´ 1)-times (continuously) differentiable in U

ô
[ Bf

Bx1
,

Bf

Bx2
, ¨ ¨ ¨ ,

Bf

Bxn

]
is (k ´ 1)-times (continuously) differentiable in U

ô
Bf

Bxj1
is (k ´ 1)-times (continuously) differentiable in U for all 1 ď j1 ď n

ô D
Bf

Bxj1
is (k ´ 2)-times (continuously) differentiable in U for all 1 ď j1 ď n

ô

[
B2f

Bx1Bxj1
, ¨ ¨ ¨ ,

B2f

BxnBxj1

]
is (k ´ 2)-times (continuously) differentiable in U

for all 1 ď j1 ď n

ô
B2f

Bxj2Bxj1
is (k ´ 2)-times (continuously) differentiable in U for all 1 ď j1, j2 ď n .

Applying similar argument several times, we obtain the following theorem which is an anal-
ogy of Theorem 5.44.

Theorem 5.65. Let U Ñ Rn and f : U Ñ R. Suppose that the partial derivative
Bkf

BxjkBxjk´1
¨ ¨ ¨ Bxj1

exists in a neighborhood of a P U and is continuous at a for all j1, ¨ ¨ ¨ , jk =

1, ¨ ¨ ¨ , n. Then f is k-times differentiable at a. Moreover, Bkf

BxjkBxjk´1
¨ ¨ ¨ Bxj1

is continuous

on U if and only if f is of class C k.

Corollary 5.66. Let U Ď Rn be open, and f is of class C 2. Then

(D2f)(a)(u, v) = (D2f)(a)(v, u) @ a P U and u, v P Rn .

5.7 Taylor’s Theorem
Recall Taylor’s Theorem for functions of one variable:

Theorem 5.67 (Taylor). Suppose that for some k P N, f : (a, b) Ñ R be (k + 1)-times
differentiable and c P (a, b). Then for all x P (a, b), there exists d in between c and x such
that

f(x) =
k
ÿ

ℓ=0

f (ℓ)(c)

ℓ!
(x ´ c)ℓ +

f (k+1)(d)

(k + 1)!
(x ´ c)(k+1),

where f (ℓ) denotes the ℓ-th derivative of f .



§5.7 Taylor’s Theorem 145

Theorem 5.68 (Taylor). Let U Ď Rn be open, and f : U Ñ R be (k+1)-times differentiable.
Suppose that x, a P U and the line segment joining x and a lies in U . Then there exists a
point c on the line segment joining x and a such that

f(x) ´ f(a) =
k
ÿ

ℓ=1

1

ℓ!
(Dℓf)(a)(

ℓ copies of x ´ a
hkkkkkkkkkikkkkkkkkkj

x ´ a, ¨ ¨ ¨ , x ´ a)

+
1

(k + 1)!
(Dk+1f)(c)(x ´ a, ¨ ¨ ¨ , x ´ a

looooooooomooooooooon

(k + 1) copies of x ´ a

) .
(5.7.1)

Proof. Let g(t) = f
(
(1 ´ t)a + tx

)
. Since xa Ď U and U is open, there exists δ ą 0 such

that (1 ´ t)a+ tx P U for all t P (´δ, 1 + δ). By the chain rule, for t P (´δ, 1 + δ),

g 1(t) =
n
ÿ

i=1

Bf

Bxi

(
(1 ´ t)a+ tx

)
(xi ´ ai) = (Df)

(
(1 ´ t)a+ tx

)
(x ´ a) ;

thus for t P (´δ, 1 + δ), Proposition 5.56 shows that

g2(t) =
n
ÿ

i,j=1

B2f

BxjBxi

(
(1 ´ t)a+ tx

)
(xi ´ ai)(xj ´ aj) = (D2f)

(
(1 ´ t)a+ tx

)
(x ´ a, x ´ a).

By induction, we conclude that

g(ℓ)(t) = (Dℓf)
(
(1 ´ t)a+ tx

)
(x ´ a, ¨ ¨ ¨ , x ´ a
looooooooomooooooooon

ℓ copies of x ´ a

) .

By the fact that f is (k + 1)-times differentiable, g : (´δ, 1 + δ) Ñ R is (k + 1)-times
differentiable as well. Theorem 5.67 then implies that for some t0 P (0, 1),

g(1) ´ g(0) =
k
ÿ

ℓ=1

g(ℓ)(0)

ℓ!
+
g(k+1)(t0)

(k + 1)!
. (5.7.2)

Letting c = (1 ´ t0)a+ t0x, (5.7.2) implies (5.7.1). ˝

Definition 5.69. Let U Ď Rn be open, and f : U Ñ R be k-times differentiable. The k-th
(order) Taylor polynomial for f at a is the polynomial

k
ÿ

ℓ=0

1

ℓ!
(Dℓf)(a)(x ´ a, ¨ ¨ ¨ , x ´ a

looooooooomooooooooon

ℓ copies x ´ a

).
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Corollary 5.70. Let U Ď Rn be open, f : U Ñ R be (k+1)-times differentiable, and define
the remainder

Rk(a, h) = f(a+ h) ´

k
ÿ

ℓ=0

1

ℓ!
(Dℓf)(a)(h, ¨ ¨ ¨ , h).

Then lim
hÑ0

Rk(a, h)

}h}kRn

= 0, or in notation, Rk(a, h) = O(}h}kRn) as h Ñ 0.

Remark 5.71. An n-dimensional multi-index is a vector α = (α1, ¨ ¨ ¨ , αn) of non-negative
integers (that is, αj P N Y t0u for all 1 ď j ď n). Given an n-dimensional multi-index
α = (α1, ¨ ¨ ¨ , αn), |α| and α! are numbers defined by

|α| =
n
ÿ

k=1

αk and α! =
n
ź

k=1

αk! ,

and the differential operator D α
x is defined by

D α
x =

Bα1

Bxα1
1

¨ ¨ ¨
Bαn

Bxαn
n

=
B|α|

Bxα1
1 ¨ ¨ ¨ Bxαn

n

.

We also use D α to denote D α
x when the variable of differentiation is clear. For a vector

h = (h1, ¨ ¨ ¨ , hn) P Rn and an n-dimensional multi-index α, we use hα to denote the number
hα1
1 h

α2
2 ¨ ¨ ¨hαn

n .
Suppose that f : U Ñ R is (k + 1)-times differentiable. Then Dℓf is continuous on U

for 1 ď ℓ ď k; that is, f is of class C k; thus Theorem 5.65 implies that all the mixed partial

derivatives Bℓf

BxjℓBxjℓ+1
¨ ¨ ¨ Bxj1

are continuous on U . Therefore, the Clairaut Theorem shows
that

(Dℓf)(x)(h, ¨ ¨ ¨ , h) =
ÿ

|α|=ℓ

|α|!

α!
(D αf )(x)hα @x P U , h P Rn ,

and the Taylor Theorem further implies that

f(x) =
k
ÿ

ℓ=0

ÿ

|α|=k

1

α!
(Dαf)(a)(x ´ a)α +

ÿ

|α|=m+1

1

α!
(Dαf)(c)(x ´ a)α .

Example 5.72. Let f(x, y) = ex cos y. Compute the fourth degree Taylor polynomial for
f at (0, 0).
Solution: We compute the zeroth, the first, the second, the third and the fourth mixed
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derivatives of f at (0, 0) as follows:

f(0, 0) = 1 , fx(0, 0) = 1 , fy(0, 0) = 0 ,

fxx(0, 0) = 1 , fxy(0, 0) = fyx(0, 0) = 0 , fyy(0, 0) = ´1 ,

fxxx(0, 0) = 1 , fxxy(0, 0) = fxyx(0, 0) = fyxx(0, 0) = 0 ,

fyyy(0, 0) = 0 , fyyx(0, 0) = fyxy(0, 0) = fxyy(0, 0) = ´1 ,

and

fxxxx(0, 0) = 1 , fyyyy(0, 0) = 1 ,

fxxxy(0, 0) = fxxyx(0, 0) = fxyxx(0, 0) = fyxxx(0, 0) = 0 ,

fxyyy(0, 0) = fyxyy(0, 0) = fyyxy(0, 0) = fyyyx(0, 0) = 0 ,

fxxyy(0, 0) = fxyxy(0, 0) = fxyyx(0, 0) = fyxxy(0, 0) = fyxyx(0, 0) = fyyxx(0, 0) = ´1 .

Then the fourth order Taylor polynomial for f at (0, 0) is

f(0, 0) + fx(0, 0)x+ fy(0, 0)y +
1

2

[
fxx(0, 0)x

2 + 2fxy(0, 0)xy + fyy(0, 0)y
2
]

+
1

6

[
fxxx(0, 0)x

3 + 3fxxy(0, 0)x
2y + 3fxyy(0, 0)xy

2 + fyyy(0, 0)y
3
]

+
1

24

[
fxxxx(0, 0)x

4 + 4fxxxy(0, 0)x
3 + 6fxxyy(0, 0)x

2y2

+ 4fxyyy(0, 0)xy
3 + fyyyy(0, 0)y

4
]

= 1 + x+
1

2

(
x2 ´ y2

)
+

1

6

(
x3 ´ 3xy2

)
+

1

24

(
x4 ´ 6x2y2 + y4

)
.

Observing that using the Taylor expansions

ex = 1 + x+
1

2
x2 +

1

6
x3 +

1

24
x4 + ¨ ¨ ¨ and cos y = 1 ´

1

2
y2 +

1

24
y4 + ¨ ¨ ¨ ,

we can “formally” compute ex cos y by multiplying the two “polynomials” above and obtain
that

ex cos y “=” 1 + x+
1

2

(
x2 ´ y2

)
+
(1
6
x3 ´

1

2
xy2

)
+
( 1

24
x4 ´

1

4
x2y2 +

1

24
y2
)
+ h.o.t. ;

where h.o.t. stands for the higher order terms which are terms with fifth or higher degree.

Theorem 5.73. Let U Ď Rn be open, and f : U Ñ R be of class C k and (Dℓf)(a) = 0 for
ℓ = 1, ¨ ¨ ¨ , k ´ 1. If (Dkf)(a)(u, u, ¨ ¨ ¨ , u) ą 0 for all non-zero vectors u P Rn, then f has a
local minimum at a; that is, there exists δ ą 0 such that

f(x) ě f(a) @x P B(a, δ) .
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Proof. Let a P U . Since U is open, there exists r ą 0 such that B(a, r) Ď U . Note that
g : B(a, r) ˆ Rn Ñ R defined by g(x, u) = (Dkf)(x)(u, ¨ ¨ ¨ , u) is continuous since
ˇ

ˇg(x, u) ´ g(y, v)
ˇ

ˇ =
ˇ

ˇ(Dkf)(x)(u, ¨ ¨ ¨ , u) ´ (Dkf)(y)(v, ¨ ¨ ¨ , v)
ˇ

ˇ

ď
ˇ

ˇ(Dkf)(x)(u, ¨ ¨ ¨ , u) ´ (Dkf)(x)(v, ¨ ¨ ¨ , v)
ˇ

ˇ+
ˇ

ˇ

ˇ

[
(Dkf)(x) ´ (Dkf)(y)

]
(v, ¨ ¨ ¨ , v)

ˇ

ˇ

ˇ

ď
ˇ

ˇ(Dkf)(x)(u, ¨ ¨ ¨ , u) ´ (Dkf)(x)(v, ¨ ¨ ¨ , v)
ˇ

ˇ+
ˇ

ˇ(Dkf)(x) ´ (Dkf)(y)
›

›}v}kRn

ď
ˇ

ˇ(Dkf)(x)(u ´ v, u, ¨ ¨ ¨ , u)
ˇ

ˇ+
ˇ

ˇ(Dkf)(x)(v, u, ¨ ¨ ¨ , u) ´ (Dkf)(x)(v, ¨ ¨ ¨ , v)
ˇ

ˇ

+
ˇ

ˇ(Dkf)(x) ´ (Dkf)(y)
›

›}v}kRn

ď
›

›(Dkf)(x)}}u ´ v}Rn}u}k´1
Rn +

ˇ

ˇ(Dkf)(x)(v, u ´ v, u ¨ ¨ ¨ , u) ´ (Dkf)(x)(v, ¨ ¨ ¨ , v)
ˇ

ˇ

+
ˇ

ˇ(Dkf)(x)(v, v, u ¨ ¨ ¨ , u) ´ (Dkf)(x)(v, ¨ ¨ ¨ , v)
ˇ

ˇ+
ˇ

ˇ(Dkf)(x) ´ (Dkf)(y)
›

›}v}kRn

ď ¨ ¨ ¨ ¨ ¨ ¨

ď
›

›(Dkf)(x)
›

›}u ´ v}Rn

(
}u}k´1

Rn + }u}k´2
Rn }v}Rn + ¨ ¨ ¨ + }u}Rn}v}k´2

Rn + }v}k´1
Rn

)
+
›

›(Dkf)(x) ´ (Dkf)(y)
›

›}v}kRn

so that
ˇ

ˇg(x, u) ´ g(y, v)
ˇ

ˇ

ď
›

›(Dkf)(x)
›

›

(
}u}Rn + }v}Rn

)k´1
}u ´ v}Rn +

›

›(Dkf)(x) ´ (Dkf)(y)
›

›}v}kRn

(5.7.3)

and the right-hand side approaches zero as x Ñ y and u Ñ v. In particular, by the
compactness of Sn´1 ”

␣

x P Rn
ˇ

ˇ }x} = 1
(

(= B[0, 1]zB(0, 1) which is closed and bounded),
g(a, ¨) attains its minimum at some point w P Sn´1; that is,

g(a, u) ě g(a, w) @u P Sn´1 .

Let λ = g(a, w) = (Dkf)(a)(w, ¨ ¨ ¨ , w) ą 0. Since f is of class C k, there exists 0 ă δ ă r

such that
}(Dkf)(x) ´ (Dkf)(a)} ă

λ

2
whenever x P B(a, δ) .

Let x P B(a, δ)ztau be given. By Taylor’s Theorem there exists c P xa (so that c P

B(a, δ)) such that

f(x) = f(a) +
k´1
ÿ

ℓ=1

1

ℓ!
(Dℓf)(a)(

ℓ copies of x ´ a
hkkkkkkkkkikkkkkkkkkj

x ´ a, ¨ ¨ ¨ , x ´ a) +
1

k!
(Dkf)(c)(

k copies of x ´ a
hkkkkkkkkkikkkkkkkkkj

x ´ a, ¨ ¨ ¨ , x ´ a) .

Since (Dℓf)(a)(u, u, ¨ ¨ ¨ , u) = 0 for 1 ď j ď k ´ 1, we conclude that

f(x) = f(a) +
1

k!
(Dkf)(c)(x ´ a, x ´ a, ¨ ¨ ¨ , x ´ a) = f(a) +

1

k!
g(c, x ´ a) .
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Note that (5.7.3) implies that
ˇ

ˇ

ˇ
g
(
c,

x ´ a

}x ´ a}

)
´ g

(
a,

x ´ a

}x ´ a}

)ˇ
ˇ

ˇ
ď
›

›(Dkf)(c) ´ (Dkf)(a)
›

› ă
λ

2
;

thus
g
(
c,

x ´ a

}x ´ a}

)
ą g

(
a,

x ´ a

}x ´ a}

)
´

λ

2
ě

λ

2
.

By the fact that g(c, x ´ a) = g
(
c,

x ´ a

}x ´ a}

)
}x ´ a}k, we conclude that

f(x) ą f(a) +
λ

2k!
}x ´ a}k @x P B(a, δ)ztau ;

thus f(x) ě f(a) for all x P B(a, δ). ˝

Corollary 5.74. Let U Ď Rn be open, a P U , and f : U Ñ R be of class C 2. If Bf

Bxℓ
(a) = 0

for all 1 ď ℓ ď n and the Hessian matrix of f at a is positive (cf. negative) definitive, then
f has a local minimum (cf. maximum) at a.

Definition 5.75. Let U Ď Rn be open. A function f : U Ñ R is said to be real analytic

at a P U if f(x) =
8
ř

k=0

1

k!
(Dkf)(a)(x ´ a, ¨ ¨ ¨ , x ´ a) in a neighborhood of a.

Example 5.76. Let f : R Ñ R be defined by

f(x) =

$

&

%

exp
(
´

1

|x|2

)
if x ą 0 ,

0 if x ă 0 .

Then f is of class C 8, and f (k)(0) = 0 for all k P N. Therefore, f is not real analytic at 0.



Chapter 6

Integration of Functions

6.1 Integrable Functions
In this chapter, we discuss the integration of (bounded) real-valued functions defined on
bounded sets. We first recall the integral of functions of one variable that we learned from
Calculus.

Definition 6.1. A finite set P = tx0, x1, ¨ ¨ ¨ , xnu is called a partition of the closed interval
[a, b] if a = x0 ă x1 ă ¨ ¨ ¨ ă xn = b. Such a partition P is usually denoted by ta = x0 ă x1 ă

¨ ¨ ¨ ă xn = bu. The norm of P , denoted by }P}, is the number max
␣

xi ´ xi´1

ˇ

ˇ 1 ď i ď n
(

.
Let f : [a, b] Ñ R be a function. A Riemann sum of f for the partition P = ta = x0 ă

x1 ă ¨ ¨ ¨ ă xn = bu of [a, b] is a sum which takes the form

n
ÿ

k=1

f(ξk)(xk ´ xk´1) ,

where ξk P [xk´1, xk] for each 1 ď k ď n. f is said to be Riemann integrable on [a, b] if
there exists a real number A such that for every ε ą 0, there exists δ ą 0 such that if P is
partition of [a, b] satisfying }P} ă δ, then any Riemann sums for the partition P belongs to
the interval (A´ ε, A+ ε). Such a number A (is unique and) is called the Riemann integral
of f on [a, b] and is denoted by

ż

[a,b]
f(x) dx.

To define the partition of a bounded set A in Rn, we start with the simplest case n = 1.

Definition 6.2. Let A Ď R be a bounded set. A collection of point P = tx0, x1, ¨ ¨ ¨ , xNu

is called a partition of A if P is a partition of the closed interval
[

infA, supA
]
. Such a

150



§6.1 Integrable Functions 151

partition P is usually denoted by
␣

[xk, xk+1]
ˇ

ˇ 0 ď k ď N ´ 1
(

, and the norm of P is the
maximum of the length of intervals in P ; that is,

}P} ” max
␣

xk ´ xk´1

ˇ

ˇ 1 ď k ď N
(

.

Next we look at how a partition of a bounded set in the plane is defined.

Definition 6.3. Let A Ď R2 be a bounded set. Define

a1 = inf
␣

x P R
ˇ

ˇ (x, y) P A for some y P R
(

,

b1 = sup
␣

x P R
ˇ

ˇ (x, y) P A for some y P R
(

,

a2 = inf
␣

y P R
ˇ

ˇ (x, y) P A for some x P R
(

,

b2 = sup
␣

y P R
ˇ

ˇ (x, y) P A for some x P R
(

.

A collection of rectangles P is called a partition of A if there exists a partition Px of [a1, b1]
and a partition Py of [a2, b2], where

Px =
␣

a1 = x0 ă x1 ă ¨ ¨ ¨ ă xn = b1
(

and Py =
␣

a2 = y0 ă y1 ă ¨ ¨ ¨ ă ym = b2
(

,

such that

P =
␣

∆ij

ˇ

ˇ∆ij = [xi´1, xi] ˆ [yj´1, yj] for i = 1, 2, ¨ ¨ ¨ , n and j = 1, 2, ¨ ¨ ¨ ,m
(

.

The norm of P , denoted by }P} and also called the mesh size of the partition P , is a real
number defined by

}P} = max
!
b

(xi ´ xi´1)2 + (yj ´ yj´1)2
ˇ

ˇ

ˇ
i = 1, 2, ¨ ¨ ¨ , n, j = 1, 2, ¨ ¨ ¨ ,m

)

.

The number
a

(xi ´ xi´1)2 + (yj ´ yj´1)2 is often denoted by diam(∆ij), and is called the
diameter of ∆ij (thus the norm of P is the maximum of the diameter of rectangles in P).

In general, the partition of a bounded set A Ď Rn is defined as follows.

Definition 6.4. Let A Ď Rn be a bounded set. Define the numbers a1, a2, ¨ ¨ ¨ , an and
b1, b2, ¨ ¨ ¨ , bn by

ak = inf
␣

xk P R
ˇ

ˇx = (x1, ¨ ¨ ¨ , xn) P A for some x1, ¨ ¨ ¨ , xk´1, xk+1, ¨ ¨ ¨ , xn P R
(

,

bk = sup
␣

xk P R
ˇ

ˇx = (x1, ¨ ¨ ¨ , xn) P A for some x1, ¨ ¨ ¨ , xk´1, xk+1, ¨ ¨ ¨ , xn P R
(

.
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A collection of rectangles P is called a partition of A if there exists partitions P (k) of
[ak, bk], k = 1, ¨ ¨ ¨ , n, P (k) =

␣

ak = x
(k)
0 ă x

(k)
1 ă ¨ ¨ ¨ ă x

(k)
Nk

= bk
(

, such that

P =
!

∆i1i2¨¨¨in

ˇ

ˇ

ˇ
∆i1i2¨¨¨in = [x

(1)
i1´1, x

(1)
i1
] ˆ [x

(2)
i2´1, x

(2)
i2
] ˆ ¨ ¨ ¨ ˆ [x

(n)
in´1, x

(n+1)
in

],

ik = 1, 2, ¨ ¨ ¨ , Nk, k = 1, ¨ ¨ ¨ , n
)

.

The norm of P , denoted by }P} and also called the mesh size of the partition P , is a real
number defined by

}P} = max
#

g

f

f

e

n
ÿ

k=1

(x
(k)
ik

´ x
(k)
ik´1)

2

ˇ

ˇ

ˇ
ik = 1, 2, ¨ ¨ ¨ , Nk, k = 1, ¨ ¨ ¨ , n

+

.

The number
d

n
ř

k=1

(x
(k)
ik

´ x
(k)
ik´1

)2 is often denoted by diam(∆i1i2¨¨¨in), and is called the diam-

eter of the rectangle ∆i1i2¨¨¨in . The volume of ∆i1i2¨¨¨in , denoted by νn(∆i1i2¨¨¨in) (or simply
ν(∆i1i2¨¨¨in) is n is clear to us), is defined by

ν(∆i1i2¨¨¨in) =
n
ź

k=1

(
x
(k)
ik

´ x
(k)
ik´1

)
=

(
x
(1)
i1

´ x
(1)
i1´1

)(
x
(2)
i2

´ x
(2)
i2´1

)
¨ ¨ ¨

(
x
(n)
in

´ x
(n)
in´1

)
.

Next we define the Riemann sum of a function f : A Ñ R for a partition P of A.

Definition 6.5. Let A Ď Rn be a bounded set, and f : A Ñ R be a (bounded) function.
A Riemann sum of f for the partition P = t∆1,∆2, ¨ ¨ ¨ ,∆Nu of A is a sum which takes
the form N

ÿ

k=1

f
A

(ξk)ν(∆k) ,

where fA is a function given by

f
A

(x) =

"

f(x) x P A ,

0 x R A .
(6.1.1)

and the set Ξ = tξ1, ξ2, ¨ ¨ ¨ , ξNu satisfies that ξk P ∆k for all 1 ď k ď N .

Definition 6.6. Let A Ď Rn be a bounded set, and f : A Ñ R be a (bounded) function.
The function f is Riemann integrable on A if and only if there exists (a unique) I P R such
that for every given ε ą 0, there exists δ ą 0 such that if P is a partition of A satisfying
}P} ă δ, then any Riemann sums of f for the partition P belongs to the interval (I´ε, I+ε).
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In other words, f is Riemann integrable on A if and only if there exists I P R such that for
every given ε ą 0, there exists δ ą 0 such that

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

k=1

f
A

(ξk)ν(∆k) ´ I
ˇ

ˇ

ˇ

ˇ

ˇ

ă ε (6.1.2)

whenever P = t∆1, ¨ ¨ ¨ ,∆N

(

is a partition of A satisfying }P} ă δ and the set Ξ =

tξ1, ξ2, ¨ ¨ ¨ , ξNu satisfies that ξk P ∆k for all 1 ď k ď N . The number I is denoted by

(R)
ż

A
f(x) dx.

The definition of the integrability of functions given above is due to Bernhard Riemann;
however, the definition above somehow lacks of flexibility for developing the theory of in-
tegration of functions. In the following, we adopt another point of view due to Gaston
Darboux to discuss the integration of (bounded) functions f : A Ñ R for general bounded
set A Ď Rn.

Definition 6.7. Let A Ď Rn be a bounded set, and f : A Ñ R be a (bounded) function.
For a partition P =

␣

∆1,∆2, ¨ ¨ ¨ ,∆N

(

, the upper sum and the lower sum of f for the
partition P , denoted by U(f,P) and L(f,P) respectively, are numbers defined by

U(f,P) =
N
ÿ

k=1

sup
xP∆k

f
A

(x)ν(∆k) and L(f,P) =
N
ÿ

k=1

inf
xP∆k

f
A

(x)ν(∆k) .

The two numbers
ż

A

f(x) dx ” inf
␣

U(f,P)
ˇ

ˇP is a partition of A
(

,

and
ż

A

f(x) dx ” sup
␣

L(f,P)
ˇ

ˇP is a partition of A
(

are called the upper integral and lower integral of f on A, respectively. The function

f is said to be Darboux integrable (on A) if
ż

A
f(x) dx and

ż

A
f(x) dx are identical real

numbers, and in this case, we express the upper and lower integral as (D)
ż

A
f(x) dx, called

the Darboux integral of f on A.

Using the property of supremum and infimum, we immediately obtain the following
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Proposition 6.8. Let A Ď Rn be a bounded set, and f, g : A Ñ R be functions. If P is a
partition of A, then

L(f,P) + L(g,P) ď L(f + g,P) ď U(f + g,P) ď U(f,P) + U(g,P) . (6.1.3)

Definition 6.9. A partition P 1 of a bounded set A Ď Rn is called a refinement of another
partition P of A if for any ∆1 P P 1, there is ∆ P P such that ∆1 Ď ∆. A partition
P of a bounded set A Ď Rn is called the common refinement of another partitions
P1,P2, ¨ ¨ ¨ ,Pk of A if

1. P is a refinement of Pj for all 1 ď j ď k.

2. If P 1 is a refinement of Pj for all 1 ď j ď k, then P 1 is also a refinement of P .

In other words, P is a common refinement of P1,P2, ¨ ¨ ¨ ,Pk if it is the coarsest refinement.

“+” “=”

Figure 6.1: The common refinement of two partitions

Qualitatively speaking, P is a common refinement of P1,P2, ¨ ¨ ¨ ,Pk if for each j =

1, ¨ ¨ ¨n, the j-th component cj of the vertex (c1, ¨ ¨ ¨ , cn) of each rectangle ∆ P P belongs to
P (j)
i for some i = 1, ¨ ¨ ¨ , k.

The following proposition should be clear to the readers, and the proof is left as an
exercise.

Proposition 6.10. Let A Ď Rn be a bounded set, and f : A Ñ R be a function. If P and
P 1 are partitions of A and P 1 is a refinement of P, then

L(f,P) ď L(f,P 1) ď U(f,P 1) ď U(f,P) .

Corollary 6.11. Let A Ď Rn be a bounded set, and f : A Ñ R be a function. If P1 and P2

are partitions of A, then L(f,P1) ď U(f,P2).

Proof. Let P be the common refinement of P1 and P2. Then Proposition 6.10 implies that

L(f,P1) ď L(f,P) ď U(f,P) ď U(f,P2) . ˝



§6.1 Integrable Functions 155

Corollary 6.12. Let A Ď Rn be a bounded subset, and f : A Ñ R be a function. Then
ż

A

f(x)dx ď

ż

A

f(x)dx .

Proof. Note that for each given partition P of A, the previous corollary implies that L(f,P)

is a lower bound for all possible upper sum. Therefore,

L(f,P) ď

ż

A

f(x)dx for all partitions P of A

which further implies that
ż

A
f(x)dx is an upper bound for all possible lower sum; thus

ż

A
f(x)dx ď

ż

A
f(x)dx . ˝

In the following proposition, we state an equivalent condition for Darboux integrability
of bounded functions (on bounded sets).

Proposition 6.13 (Riemann’s condition). Let A Ď Rn be a bounded set, and f : A Ñ R be
a (bounded) function. Then f is Darboux integrable on A if and only if

@ ε ą 0, D a partition P of A Q U(f,P) ´ L(f,P) ă ε .

Proof. “ñ” Let ε ą 0 be given. By the definition of infimum and supremum, there exist
partition P1 and P2 of A such that

ż

A

f(x) dx ´
ε

2
ă L(f,P2) and

ż

A

f(x) dx+
ε

2
ą U(f,P1) .

Let P be a common refinement of P1 and P2. Since f is Darboux integrable on A,
ż

A
f(x)dx =

ż

A
f(x)dx; thus Proposition 6.10 implies that

U(f,P) ´ L(f,P) ď U(f,P1) ´ L(f,P2)

ă

ż

A

f(x) dx+
ε

2
´

( ż
A

f(x) dx ´
ε

2

)
= ε .

“ð” Let ε ą 0 be given. By assumption there exists a partition P of A such that U(f,P)´

L(f,P) ă ε. Then

0 ď

ż

A

f(x) dx ´

ż

A

f(x) dx ď U(f,P) ´ L(f,P) ă ε .
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Since ε ą 0 is given arbitrary, we must have
ż

A
f(x)dx =

ż

A
f(x)dx; thus f is Darboux

integrable on A. ˝

The following theorem establishes the equivalence between the Riemann integrals and
the Darboux integrals.

Theorem 6.14 (Darboux). Let A Ď Rn be a bounded set, and f : A Ñ R be a (bounded)
function. Then f is Riemann integrable on A if and only if f is Darboux integrable on A.
In either cases,

(R)

ż

A

f(x) dx = (D)

ż

A

f(x) dx .

Proof. The boundedness ofA guarantees thatA Ď
[́ r

2
,
r

2

]n for some r ą 0. LetR =
[́ r

2
,
r

2

]n.
Then ν(R) = rn.

“ñ” Suppose that f is Riemann integrable on A with (R)
ż

A
f(x) dx = I. Let ε ą 0 be

given. Then there exists δ ą 0 such that if P is a partition of A satisfying }P} ă δ,
then any Riemann of f for P locates in

(
I ´

ε

4
, I + ε

4

)
.

Let P = t∆1, ¨ ¨ ¨ ,∆N

(

be a partition of A with }P} ă δ. For each 1 ď k ď N , choose
ξk, ηk P ∆k such that

(a) sup
xP∆k

f
A

(x) ´
ε

4ν(R)
ă f

A

(ξk) ď sup
xP∆k

f
A

(x);

(b) inf
xP∆k

f
A

(x) +
ε

4ν(R)
ą f

A

(ηk) ě inf
xP∆k

f
A

(x).

Then

U(f,P) =
N
ÿ

k=1

sup
xP∆k

f
A

(x)ν(∆k) ă

N
ÿ

k=1

[
f

A

(ξk) +
ε

4ν(R)

]
ν(∆k)

=
N
ÿ

k=1

f
A

(ξk)ν(∆k) +
ε

4ν(R)

N
ÿ

k=1

ν(∆k) ă I + ε

4
+
ε

4
= I + ε

2

and

L(f,P) =
N
ÿ

k=1

inf
xP∆k

f
A

(x)ν(∆k) ą

N
ÿ

k=1

[
f

A

(ηk) ´
ε

4ν(R)

]
ν(∆k)

=
N
ÿ

k=1

f
A

(ηk)ν(∆k) ´
ε

4ν(R)

N
ÿ

k=1

ν(∆k) ą I ´
ε

4
´
ε

4
= I ´

ε

2
.
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As a consequence, I´
ε

2
ă L(f,P) ď U(f,P) ă I+ ε

2
; thus U(f,P)´L(f,P) ă ε which

shows that f is Darboux integrable on A. Moreover, since ε ą 0 is given arbitrarily
and L(f,P) ď (D)

ż

A
f(x) dx ď U(f,P), we must have I = (D)

ż

A
f(x) dx.

“ð” Let I = (D)
ż

A
f(x)dx, and ε ą 0 be given. Since f is Darboux integrable on A,

there exists a partition P1 of A such that U(f,P1) ´ L(f,P1) ă
ε

2
. Suppose that

P (i)
1 =

␣

y
(i)
0 , y

(i)
1 , ¨ ¨ ¨ , y

(i)
mi

(

for 1 ď i ď n. We define

δ =
ε

4rn´1(m1 +m2 + ¨ ¨ ¨ +mn + n)
(

sup fA

(R) ´ inf fA

(R) + 1
) .

Then δ ą 0.

Assume that P = t∆1,∆2, ¨ ¨ ¨ ,∆Nu is a given partition of A with }P} ă δ.
Let P 1 be the common refinement of P and P1. Write P 1 = t∆1

1,∆
1
2, ¨ ¨ ¨ ,∆1

N 1u and
∆k = ∆

(1)
k ˆ ∆

(2)
k ˆ ¨ ¨ ¨ ˆ ∆

(n)
k as well as ∆1

k = ∆
1(1)
k ˆ ∆

1(2)
k ˆ ¨ ¨ ¨ ˆ ∆

1(n)
k . Define two

classes of rectangles in P and P 1 by

C1 =
␣

∆ P P
ˇ

ˇ y
(i)
j R ∆(i) for all i, j

(

, C2 =
␣

∆ P P
ˇ

ˇ y
(i)
j P ∆(i) for some i, j

(

,

D1 =
␣

∆1 P P 1
ˇ

ˇ y
(i)
j R ∆1(i) for all i, j

(

, D2 =
␣

∆ P P 1
ˇ

ˇ y
(i)
j P ∆1(i) for some i, j

(

.

By the definition of the upper sum,

U(f,P) =
N
ÿ

k=1

sup
xP∆k

f
A

(x)ν(∆k) =
ÿ

∆PC1

sup
xP∆

f
A

(x)ν(∆) +
ÿ

∆PC2

sup
xP∆

f
A

(x)ν(∆)

and similarly,

U(f,P 1) =
N 1
ÿ

k=1

sup
xP∆1

k

f
A

(x)ν(∆1
k) =

ÿ

∆1PD1

sup
xP∆1

f
A

(x)ν(∆1) +
ÿ

∆1PD2

sup
xP∆1

f
A

(x)ν(∆1) .

By the fact that C1 = D1, we must have
ÿ

∆PC1

sup
xP∆

f
A

(x)ν(∆) =
ÿ

∆1PD1

sup
xP∆1

f
A

(x)ν(∆1)

and
ÿ

∆PC2

ν(∆k) =
ÿ

∆1PD2

ν(∆1) .
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The equalities above further imply that

U(f,P) ´ U(f,P 1) =
ÿ

∆PC2

sup
xP∆

f
A

(x)ν(∆) ´
ÿ

∆1PD2

sup
xP∆1

f
A

(x)ν(∆1)

ď
(

sup fA

(R) ´ inf fA

(R)
) ÿ

∆PC2

ν(∆)

=
(

sup fA

(R) ´ inf fA

(R)
) ÿ

1ďkďN with y
(i)
j P ∆

(i)
k for some i, j

ν(∆k)

=
(

sup fA

(R) ´ inf fA

(R)
) n
ÿ

i=1

mi
ÿ

j=0

ÿ

1ďkďN with y
(i)
j P∆

(i)
k

ν(∆k) .

Moreover, for each fixed i, j,
ď

1ďkďN with y
(i)
j P∆

(i)
k

∆k Ď
[
´

r

2
,
r

2

]i´1
ˆ
[
y
(i)
j ´ δ, y

(i)
j + δ

]
ˆ
[
´

r

2
,
r

2

]n´i
;

thus
ÿ

1ďkďN with y
(i)
j P∆

(i)
k

ν(∆k) ď 2δrn´1 @ 1 ď i ď n, 1 ď j ď mi .

Therefore,

U(f,P) ´ U(f,P 1) ď
(

sup fA

(R) ´ inf fA

(R)
) n
ÿ

i=1

mi
ÿ

j=0

ÿ

1ďkďN with y
(i)
j P∆

(i)
k

ν(∆k)

ď
(

sup fA

(R) ´ inf fA

(R)
) n
ÿ

i=1

mi
ÿ

j=0

2δrn´1

ď 2δrn´1(m1 +m2 + ¨ ¨ ¨ +mn + n)
(

sup fA

(R) ´ inf fA

(R)
)

ă
ε

2
,

and the fact that U(f,P1) ´ L(f,P1) ă
ε

2
shows that

U(f,P) ´ I ď U(f,P) ´ I + U(f,P1) ´ U(f,P1)

ď U(f,P) ´ L(f,P1) + U(f,P1) ´ U(f,P 1) ă ε .

Similar argument can be used to show that L(f,P) ´ I ą ε. Therefore,

I ´ ε ă L(f,P) ď U(f,P) ă I + ε

which implies that any Riemann sum of f for P locates in (I ´ ε, I + ε). ˝
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Notation: If f : A Ñ R is Riemann/Darboux integrable on A,

(R)
ż

A
f(x) dx = (D)

ż

A
f(x) dx

and we use
ż

A
f(x) dx to denote this common number.

From now on, we will simply use sf to denote the zero extension of f when the
domain outside which the zero extension is made is clear.

6.2 The Lebesgue Theorem
In this section, we talk about another equivalent condition of Riemann/Darboux integra-
bility, named the Lebesgue theorem. The Lebesque theorem provides a more practical way
to check the Riemann/Darboux integrability in the development of theory. To understand
the Lebesgue theorem, we need to talk about a new concept, sets of measure zero.

6.2.1 Volume and sets of measure zero

Definition 6.15. A bounded set A Ď Rn is said to have volume if the characteristic
function or the indicator function of A, denoted by 1A and given by

1A(x) =
"

1 if x P A ,

0 otherwise ,

is Riemann integrable on A, and the number
ż

A
1A(x) dx is called the volume of A and is

denoted by ν(A). If ν(A) = 0, then A is said to have volume zero or be a set of volume
zero.

Remark 6.16. Not all bounded set has volume.

Proposition 6.17. Let A Ď Rn be bounded. Then the following three statements are
equivalent.

(a) A has volume zero;

(b) for every ε ą 0, there exists finite open rectangles S1, ¨ ¨ ¨ , SN whose sides are parallel
to the coordinate axes such that

A Ď

N
ď

k=1

Sk and
N
ÿ

k=1

ν(Sk) ă ε (6.2.1)
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(c) for every ε ą 0, there exist finite rectangles S1, ¨ ¨ ¨ , SN such that (6.2.1) holds.

Proof. It suffices to show (a)ñ(b) and (c)ñ(a) since it is clear that (b)ñ(c).

“(a)ñ(b)” Let ε ą 0 be given. Since A has volume zero,
ż

A
1A(x) dx = 0; thus there exists

a partition P of A such that

U(1A,P) ă

ż

A
1A(x) dx+

ε

2
=

ε

2
.

Since sup
xP∆

1A(x) =
"

1 if ∆ X A ‰ H ,

0 otherwise ,
we must have

ř

∆PP
∆XA‰H

ν(∆) ă
ε

2
. Now if ∆ P P

and ∆ X A ‰ H, we can find an open rectangle l whose sides are parallel to the
coordinate axes such that ∆ Ď l and ν(l) ă 2ν(∆). Let S1, ¨ ¨ ¨ , SN be those open

rectangles l. Then A Ď
N
Ť

k=1

Sk and
N
ř

k=1

ν(Sk) ă ε.

“(c)ñ(a)” Let ε ą 0 be given. By assumption there exist rectangles S1, S2, ¨ ¨ ¨ , SN such
that (6.2.1) holds. W.L.O.G. we can assume that the ratio of the maximum length
and minimum length of sides of Sk is less than 2 for all k = 1, ¨ ¨ ¨ , N (otherwise
we can divide Sk into smaller rectangles so that each smaller rectangle satisfies this
requirement). Then each Sk can be covered by a closed rectangle lk whose sides are
parallel to the coordinate axes with the property that ν(lk) ď 2n´1

?
n
n
ν(Sk). Let

P be a partition of A such that for each ∆ P P with ∆ X A ‰ H, ∆ Ď lk for some
k = 1, ¨ ¨ ¨ , N . Then

U(1A,P) =
ÿ

∆PP
∆XA‰H

ν(∆) ď

N
ÿ

k=1

ν(lk) ď 2n´1
?
n
n

N
ÿ

k=1

ν(Sk) ă 2n´1
?
n
n
ε ;

thus the upper integral
ż

A
1A(x) dx = 0. Since the lower integral cannot be negative,

we must have
ż

A
1A(x) dx =

ż

A
1A(x) dx = 0 which shows that A has volume zero. ˝

Example 6.18. Each point in Rn has volume zero.

Definition 6.19. A set A Ď Rn (not necessarily bounded) is said to have measure
zero（測度為零）or be a set of measure zero（零測度集）if for every ε ą 0, there exist
countable many rectangles S1, S2, ¨ ¨ ¨ such that tSku8

k=1 is a cover of A
(
that is, A Ď

8
Ť

k=1

Sk
)

and
8
ř

k=1

ν(Sk) ă ε.
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Example 6.20. The real line R ˆ t0u on R2 has measure zero: for any given ε ą 0, let
Sk = [´k, k] ˆ

[ ´ε

2k+3k
,

ε

2k+3k

]
. Then

R ˆ t0u Ď

8
ď

k=1

Sk and
8
ÿ

k=1

ν(Sk) =
8
ÿ

k=1

2k ¨
2ε

2k+3k
=

8
ÿ

k=1

ε

2k+1
=
ε

2
ă ε .

Similarly, any hyperplane in Rn also has measure zero.

Proposition 6.21. Let A Ď Rn be a set of measure zero. If B Ď A, then B also has
measure zero.

Modifying the proof of Proposition 6.17, we can also conclude the following

Proposition 6.22. A set A Ď Rn has measure zero if and only if for every ε ą 0, there
exist countable many open rectangles S1, S2, ¨ ¨ ¨ whose sides are parallel to the coordinate
axes such that A Ď

8
Ť

k=1

Sk and
8
ř

k=1

ν(Sk) ă ε.

Remark 6.23. If a set A has volume zero, then it has measure zero.

Proposition 6.24. Let K Ď Rn be a compact set of measure zero. Then K has volume
zero.

Proof. Let ε ą 0 be given. Then there are countable open rectangles S1, S2, ¨ ¨ ¨ such that

K Ď

8
ď

k=1

Sk and
8
ÿ

k=1

ν(Sk) ă ε .

Since tSku8
k=1 is an open cover of K, by the compactness of K there exists N ą 0 such that

K Ď
N
Ť

k=1

Sk, while
N
ř

k=1

ν(Sk) ď
8
ř

k=1

ν(Sk) ă ε. As a consequence, K has volume zero. ˝

Since the boundary of a rectangle has measure zero, we also have the following

Corollary 6.25. Let S Ď Rn be a bounded rectangle with positive volume. Then S is not a
set of measure zero.

Theorem 6.26. If A1, A2, ¨ ¨ ¨ are sets of measure zero in Rn, then
8
Ť

k=1

Ak has measure
zero.
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Proof. Let ε ą 0 be given. Since A1
ks are sets of measure zero, there exist countable

rectangles
␣

S
(k)
j

(8

j=1
, such that

Ak Ď

8
ď

j=1

S
(k)
j and

8
ÿ

j=1

ν(S
(k)
j ) ă

ε

2k+1
@ k P N .

Consider the collection consisting of all S(k)
j ’s. Since there are countable many rectangles in

this collection, we can label them as S1, S2, ¨ ¨ ¨ , and we have
8
ď

k=1

Ak Ď

8
ď

k=1

8
ď

j=1

S
(k)
j =

8
ď

ℓ=1

Sℓ

and
8
ÿ

k=1

ν(Sℓ) =
8
ÿ

k=1

8
ÿ

j=1

ν(S
(k)
j ) ď

8
ÿ

k=1

ε

2k+1
=
ε

2
ă ε .

Therefore,
8
Ť

k=1

Ak has measure zero. ˝

Corollary 6.27. The set of rational numbers in R has measure zero.

Theorem 6.28. Let A Ď Rn be bounded and B Ď Rm be a set of measure zero. Then AˆB

has measure zero in Rn+m.

Proof. Let ε ą 0 be given. Since A is bounded, there exist a bounded rectangle R such that
A Ď R. Since B has measure zero, there exist countable rectangles tSku8

k=1 Ď Rm such that

B Ď

8
ď

k=1

Sk and
8
ÿ

k=1

νm(Sk) ă
ε

ν(R)
.

Then A ˆ B Ď
8
Ť

k=1

(R ˆ Sk), and

8
ÿ

k=1

νn+m(R ˆ Sk) =
8
ÿ

k=1

νn(R)νm(Sk) = νn(R)
8
ÿ

k=1

νm(Sk) ă ε .

Since R ˆ Sk is a rectangle for all k P N, we conclude that A ˆ B has measure zero. ˝

6.2.2 The Lebesgue theorem

在之前我們提到了函數 Riemann 可積的兩個等價條件：Riemann’s condition 和 Darboux
定理。在這一節中，我們將引進函數是 Riemman 可積的另一個等價條件。這個等價條件
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說的是一個函數 f 在 A 上是 Riemann 可積的若且唯若 f 的延拓 f
A

（在函數可積分的定

義中有定義）的不連續點所構成的集合其測度為零。為了證明這個敘述，我們先對一個

函數的連續點做一個量化的刻劃。這個刻劃的方式，可以很容易用來檢驗一個函數在一

個點是否連續。

Definition 6.29. Let f : Rn Ñ R be a function. For any x P Rn, the oscillation of f at
x is the quantity

osc(f, x) ” inf
δą0

sup
x1,x2PB(x,δ)

ˇ

ˇf(x1) ´ f(x2)
ˇ

ˇ .

我們注意到在上述定義中被取 infimum 的這個量 h(δ; x) ” sup
x1,x2PB(x,δ)

ˇ

ˇf(x1)´ f(x2)
ˇ

ˇ 是

個 δ 的遞減函數（x 固定），而 osc(f, x) 則是 h(δ; x) 當 δ Ñ 0 時的極限。另外，我們也

注意到說 h(δ; x) 也可以寫成 sup
yPB(x,δ)

f(y) ´ inf
yPB(x,δ)

f(y).

以下的 Lemma 是關於如何檢驗一個函數在一個點是連續的。

Lemma 6.30. Let f : Rn Ñ R be a function, and x0 P Rn. Then f is continuous at x0 if
and only if osc(f, x0) = 0.

Proof. “ñ” Let ε ą 0 be given. Since f is continuous at x0,

D δ ą 0 Q
ˇ

ˇf(x) ´ f(x0)
ˇ

ˇ ă
ε

3
whenever x P B(x0, δ).

In particular, for any x1, x2 P B(x0, δ),
ˇ

ˇf(x1) ´ f(x2)
ˇ

ˇ ď
ˇ

ˇf(x1) ´ f(x0)
ˇ

ˇ+
ˇ

ˇf(x0) ´ f(x2)
ˇ

ˇ ă
2ε

3
;

thus sup
x1,x2PB(x0,δ)

ˇ

ˇf(x1) ´ f(x2)
ˇ

ˇ ď
2ε

3
which further implies that

0 ď osc(f, x0) ď
2ε

3
ă ε.

Since ε is given arbitrarily, osc(f, x0) = 0.

“ð” Let ε ą 0 be given. By the definition of infimum, there exists δ ą 0 such that

sup
x1,x2PB(x0,δ)

ˇ

ˇf(x1) ´ f(x2)
ˇ

ˇ ă ε .

In particular,
ˇ

ˇf(x) ´ f(x0)
ˇ

ˇ ď sup
x1,x2PB(x0,δ)

ˇ

ˇf(x1) ´ f(x2)
ˇ

ˇ ă ε for all x P B(x0, δ). ˝
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Lemma 6.31. Let f : Rn Ñ R be a function. Then for all ε ą 0, the set Dε =
␣

x P

Rn
ˇ

ˇ osc(f, x) ě ε
(

is closed.

Proof. Suppose that tyku8
k=1 Ď Dε and yk Ñ y. Then for any δ ą 0, there exists N ą 0 such

that yk P B(y, δ) for all k ě N . Since B(y, δ) is open, for each k ě N there exists δk ą 0

such that B(yk, δk) Ď B(y, δ); thus we find that

sup
x1,x2PB(yk,δk)

ˇ

ˇf(x1) ´ f(x2)
ˇ

ˇ ď sup
x1,x2PB(y,δ)

ˇ

ˇf(x1) ´ f(x2)
ˇ

ˇ @ k ě N .

The inequality above implies that osc(f, y) ě ε; thus y P Dε and Dε is closed. ˝

Theorem 6.32 (Lebesgue). Let A Ď Rn be a bounded set, f : A Ñ R be a bounded function,
and fA be the extension of f by zero outside A; that is,

f
A

(x) =

"

f(x) if x P A ,

0 otherwise .

Then f is Riemann integrable on A if and only if the collection of discontinuity of fA is a
set of measure zero.

Proof. Let D =
␣

x P Rn
ˇ

ˇ osc(fA

, x) ą 0
(

and Dε =
␣

x P Rn
ˇ

ˇ osc(fA

, x) ě ε
(

. We remark

here that D =
8
Ť

k=1

D 1
k
.

“ñ” We show that D 1
k

has measure zero for all k P N (if so, then Theorem 6.26 implies
that D has measure zero).

Let k P N be fixed, and ε ą 0 be given. By Riemann’s condition there exists a
partition P of A such that

ÿ

∆PP

[
sup
xP∆

f
A

(x) ´ inf
xP∆

f
A

(x)
]
ν(∆) ă

ε

k
.

Define

D
(1)
1
k

”
␣

x P D 1
k

ˇ

ˇx P B∆ for some ∆ P P
(

,

D
(2)
1
k

”
␣

x P D 1
k

ˇ

ˇx P int(∆) for some ∆ P P
(

.

Then D 1
k
= D

(1)
1
k

Y D
(2)
1
k

. We note that D(1)
1
k

has measure zero since it is contained in
Ť

∆PP
B∆ while each B∆ has measure zero. Now we show that D(2)

1
k

also has measure
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zero. Let C =
␣

∆ P P
ˇ

ˇ int(∆) X D 1
k

‰ H
(

. Then D
(2)
1
k

Ď
Ť

∆PC

∆ . Moreover, we

also note that if ∆ P C, sup
xP∆

f
A

(x) ´ inf
xP∆

f
A

(x) ě
1

k
. In fact, if ∆ P C, there exists

y P int(∆) X D 1
k
; thus choosing δ ą 0 such that B(y, δ) Ď int(∆),

sup
xP∆

f
A

(x) ´ inf
xP∆

f
A

(x) = sup
x1,x2P∆

ˇ

ˇf
A

(x1) ´ f
A

(x2)
ˇ

ˇ ě sup
x1,x2PB(y,δ)

ˇ

ˇf
A

(x1) ´ f
A

(x2)
ˇ

ˇ

ě inf
δą0

sup
x1,x2PB(y,δ)

ˇ

ˇf
A

(x1) ´ f
A

(x2)
ˇ

ˇ = osc(fA

, y) ě
1

k
.

As a consequence,

1

k

ÿ

∆PC

ν(∆) ď
ÿ

∆PP

[
sup
xP∆

f
A

(x) ´ inf
xP∆

f
A

(x)
]
ν(∆) = U(f,P) ´ L(f,P) ă

ε

k

which implies that
ř

∆PC

ν(∆) ă ε. In other words, we establish that D(2)
1
k

has measure

zero. Therefore, D 1
k

has measure zero for all k P N; thus D has measure zero.

“ð” Let R be a bounded closed rectangle with sides parallel to the coordinate axes and sA Ď

int(R), and ε ą 0 be given. Define ε1 =
ε

2}f}8 + ν(R) + 1
, where }f}8 = sup

xPA
|f(x)|.

1. Since Dε1 is a subset of D, Proposition 6.21 implies that Dε1 has measure zero;
thus Proposition 6.22 provides open rectangles S1, S2, ¨ ¨ ¨ whose sides are parallel

to the coordinate axes such that Dε1 Ď
8
Ť

k=1

Sk, and
8
ř

k=1

ν(Sk) ă ε1. In addition,

we can assume that Sk Ď R for all k P N since Dε1 Ď R.

2. Since Dε1 Ď R is bounded, Lemma 6.31 implies that Dε1 is compact; thus Dε1 Ď
N
Ť

k=1

Sk for some N P N.

Let lk = ĎSk, and P1 be a partition of R satisfying

(a) For each ∆ P P1 with ∆ X Dε1 ‰ H, ∆ Ď lk for some k = 1, ¨ ¨ ¨ , N .

(b) For each k = 1, ¨ ¨ ¨ , N , lk is the union of rectangles in P1.

(c) Some collection of ∆ P P1 forms a partition P2 of A.
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R SN

S1 A

Dε1

ñ

R SN

S1 A

Dε1

Figure 6.2: Constructing partitions P1 and P2 from finite rectangles S1, ¨ ¨ ¨ , SN

Rectangles in P1 fall into two families: C1 =
␣

∆ P P1

ˇ

ˇ∆ Ď lk for some k = 1, ¨ ¨ ¨ , N
(

,
and C2 =

␣

∆ P P1

ˇ

ˇ∆ Ę lk for all k = 1, ¨ ¨ ¨ , N
(

. By the definition of the oscillation
function, for x R Dε1 we let δx ą 0 be such that

sup
xPB(y,δy)

f
A

(y) ´ inf
xPB(y,δy)

f
A

(y) = sup
x1,x2PB(x,δx)

ˇ

ˇf
A

(x1) ´ f
A

(x2)
ˇ

ˇ ă ε1 .

Since K =
Ť

∆PC2

∆ is compact, there exists r ą 0
(
the Lebesgue number associated

with K and open cover
Ť

xPK

B(x, δx)
)

such that for each a P K, B(a, r) Ď B(y, δy) for

some y P K. Let P 1 be a refinement of P1 such that }P 1} ă r. Then if ∆1 P P 1 satisfies
that ∆1 Ď ∆ for some ∆ P C2, we must have ∆1 Ď B(y, δy) for some y P K; thus

sup
xP∆1

f
A

(x) ´ inf
xP∆1

f
A

(x) ď sup
xPB(y,δy)

f
A

(y) ´ inf
xPB(y,δy)

f
A

(y)

= sup
x1,x2PB(y,δy)

ˇ

ˇf
A

(x1) ´ f
A

(x2)
ˇ

ˇ ă ε1

if ∆1 Ď ∆ for some ∆ P C2. Let P =
␣

∆1 P P 1
ˇ

ˇ∆1 Ď ∆ for some ∆ P P2

(

. Then P is
a partition of A and

U(f,P) ´ L(f,P) =
(

ÿ

∆1PP1

∆1Ď∆PC1

+
ÿ

∆1PP1

∆1Ď∆PC2

)(
sup
xP∆1

f
A

(x) ´ inf
xP∆1

f
A

(x)
)
ν(∆1)

ď 2}f}8

ÿ

∆1PP1

∆1Ď∆PC1

ν(∆1) + ε1
ÿ

∆1PP1

∆1Ď∆PC2

ν(∆1)

ď 2}f}8

ÿ

∆PPXC1

ν(∆) + ε1ν(R)

ď 2}f}8

N
ÿ

k=1

ν(Sk) + ε1ν(R) ă
(
2}f}8 + ν(R)

)
ε1 ď ε ;

thus f is Riemann integrable on A by Riemann’s condition. ˝
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Example 6.33. Let A = Q X [0, 1], and f : A Ñ R be the constant function f ” 1. Then

sf(x) =

"

1 if x P Q X [0, 1] ,

0 otherwise .

The collection of points of discontinuity of sf is [0, 1] which, by Corollary 6.25, cannot be a
set of measure zero; thus f is not Riemann integrable.

Another way to see that f is not Riemann integrable is U(f,P) = 1 and L(f,P) = 0 for
all partitions P of A.

Corollary 6.34. A bounded set A Ď Rn has volume if and only if the boundary of A has
measure zero.

Proof. It suffices to show that the collection of discontinuities of the function 1A (which is
the same as Ď1AA) is indeed BA.

1. If x0 R BA, then there exists δ ą 0 such that either B(x0, δ) Ď A or B(x0, δ) Ď AA;
thus 1A is continuous at x0 R BA since 1A(x) is constant for all x P B(x0, δ).

2. On the other hand, if x0 P BA, then there exists xk P A, yk P AA such that xk Ñ x0 and
yk Ñ x0 as k Ñ 8. This implies that 1A cannot be continuous at x0 since 1A(xk) = 1

while 1A(yk) = 0 for all k P N.

As a consequence, the collection of discontinuity of 1A is exactly BA, and the corollary
follows from Lebesgue’s theorem. ˝

Corollary 6.35. Let A Ď Rn be a bounded set with volume. A bounded function f : A Ñ R
is Riemann integrable on A if and only if the collection of discontinuities of f has measure
zero. In particular, a bounded function f : A Ñ R with a finite or countable number of
points of discontinuity is Riemann integrable on A.

Proof. Note that
␣

x P Rn
ˇ

ˇ osc( sf, x) ą 0
(

Ď BA Y
␣

x P A
ˇ

ˇ f is discontinuous at x
(

and
␣

x P A
ˇ

ˇ f is discontinuous at x
(

Ď
␣

x P Rn
ˇ

ˇ osc( sf, x) ą 0
(

;

thus by the fact that BA has measure zero (Corollary 6.34) and Theorem 6.26 we conclude
that the collection of discontinuities of sf has measure zero if and only if the collection of
discontinuities of f has measure zero. ˝



168 CHAPTER 6. Integration of Functions

Corollary 6.36. A bounded function is integrable on a compact set of measure zero.

Proof. If f : K Ñ R is bounded, and K is a compact set of measure zero, then the collection
of discontinuities of sf is a subset of K. ˝

Corollary 6.37. Suppose that A,B Ď Rn are bounded sets with volume, and f : A Ñ R is
Riemann integrable on A. Then f is Riemann integrable on A X B.

Proof. By the inclusion
␣

x P int(A X B)
ˇ

ˇ osc(fAXB

, x) ą 0
(

Ď
␣

x P Rn
ˇ

ˇ osc(fA

, x) ą 0
(

,

we find that
␣

x P Rn
ˇ

ˇ osc(fAXB

, x) ą 0
(

Ď B(A X B) Y
␣

x P int(A X B)
ˇ

ˇ osc(fAXB

, x) ą 0
(

Ď BA Y BB Y
␣

x P Rn
ˇ

ˇ osc(fA

, x) ą 0
(

.

Since BA and BB both have measure zero, the integrability of f on AXB then follows from
the integrability of f on A and the Lebesgue Theorem. ˝

Remark 6.38. Suppose that A Ď Rn is a bounded set of measure zero. Even if f : A Ñ R
is continuous, f might not be Riemann integrable. For example, the function f given in
Example 6.33 is not Riemann integrable even though f is continuous on A.

Remark 6.39. When f : A Ñ R is Riemann integrable on A, it is not necessary that A
has volume. For example, the zero function is Riemann integrable on A = Q X [0, 1] even
though A does not has volume.

Corollary 6.40 (Lebesgue’s Differentiation Theorem, a simple version). Let A Ď Rn be a
bounded set with volume, and f : A Ñ R be bounded and Riemann integrable on A. Then

lim
rÑ0

1

ν(B(x0, r) X A)

ż

B(x0,r)XA

f(x) dx = f(x0) (6.2.2)

for almost every x0 P A; that is, the equality above does not hold only for x0 from a set of
measure zero.

Proof. Let ε ą 0 be given, and suppose that sf , the zero extension of f outside A, is
continuous at x0. Then there exists δ ą 0 such that

ˇ

ˇ sf(x) ´ sf(x0)
ˇ

ˇ ă
ε

2
@x P B(x0, δ) X A .
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Since BA has measure zero, by the fact that B(B(x0, r) XA) Ď BB(x0, r) Y BA we find that
B(B(x0, r)XA) also has measure zero for all r ą 0. In other words, B(x0, r)XA has volume.
Then if 0 ă r ă δ,

ˇ

ˇ

ˇ

1

ν(B(x0, r) X A)

ż

B(x0,r)XA

f(x) dx ´ f(x0)
ˇ

ˇ

ˇ

=
ˇ

ˇ

ˇ

1

ν(B(x0, r) X A)

ż

B(x0,r)XA

(
sf(x) ´ sf(x0)

)
dx

ˇ

ˇ

ˇ

ď
1

ν(B(x0, r) X A)

ż

B(x0,r)XA

ˇ

ˇ sf(x) ´ sf(x0)
ˇ

ˇ dx

ď
ε

2

1

ν(B(x0, r) X A)

ż

B(x0,r)XA

1 dx =
ε

2
ă ε .

This implies that (6.2.2) holds for all x0 at which sf is continuous. The theorem then follows
from the Lebesgue theorem. ˝

6.3 Properties of the Integrals

Proposition 6.41. Let A Ď Rn be a bounded set, and f, g : A Ñ R be bounded functions.
Then

(a) If B Ď A, then
ż

A
(f1B)(x) dx =

ż

B
f(x) dx and

ż

A
(f1B)(x) dx =

ż

B
f(x) dx.

(b)
ż

A
f(x) dx+

ż

A
g(x) dx ď

ż

A
(f+g)(x) dx ď

ż

A
(f+g)(x) dx ď

ż

A
f(x) dx+

ż

A
g(x) dx.

(c) If c ě 0, then
ż

A
(cf)(x) dx = c

ż

A
f(x) dx and

ż

A
(cf)(x) dx = c

ż

A
f(x) dx. If c ă 0,

then
ż

A
(cf)(x) dx = c

ż

A
f(x) dx and

ż

A
(cf)(x) dx = c

ż

A
f(x) dx.

(d) If f ď g on A, then
ż

A
f(x) dx ď

ż

A
g(x) dx and

ż

A
f(x) dx ď

ż

A
g(x) dx.

(e) If A has volume zero, then f is Riemann integrable on A, and
ż

A
f(x) dx = 0.

Proof. We only prove (a), (b), (c) and (e) since (d) is trivial.
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(a) Let ε ą 0 be given. By the definition of the lower integral, there exist partition PA of
A and PB of B such that

ż

A

(f1B)(x) dx ´ ε ă L(f1B,PA) =
ÿ

∆PPA

inf
xP∆

f1B
A

(x)ν(∆)

and
ż

B

f(x) dx ´
ε

2
ă L(f,PB) =

ÿ

∆PPB

inf
xP∆

f
B

(x)ν(∆) .

Let P 1
A be a refinement of PA such that some collection of rectangles in P 1

A forms a
partition of B. Denote this partition of B by P 1

B. Since inf
xP∆

f
B

(x) ď 0 if ∆ P P 1
AzP 1

B,
Proposition 6.10 implies that

ż

A

(f1B)(x) dx ´ ε ă L(f1B,PA) ď L(f1B,P 1
A) =

ÿ

∆PP 1
A

inf
xP∆

f1B
A

(x)ν(∆)

=
(

ÿ

∆PP 1
AzP 1

B

+
ÿ

∆PP 1
B

)
inf
xP∆

f
B

(x)ν(∆)

ď
ÿ

∆PP 1
B

inf
xP∆

f
B

(x)ν(∆) = L(f,P 1
B) ď

ż

B

f(x) dx .

On the other hand, let rPA be a partition of A such that PB Ď rPA and
ÿ

∆P rPAzPB ,∆XB‰H

ν(∆) ď
ε

2(M + 1)
,

where M ą 0 is an upper bound of |f |. Then
ÿ

∆P rPAzPB ,∆XB‰H

inf
xP∆

f
B

(x)ν(∆) ě ´M
ÿ

∆P rPAzPB ,∆XB‰H

ν(∆) ě ´
ε

2

which further implies that
ż

A

(f1B)(x) dx ě L(f1B, rPA) =
ÿ

∆P rPA

inf
xP∆

f1B
A

(x)ν(∆)

=
(

ÿ

∆PPB

+
ÿ

∆P rPAzPB ,∆XB‰H

+
ÿ

∆P rPAzPB ,∆XB=H

)
inf
xP∆

f
B

(x)ν(∆)

= L(f,PB) +
ÿ

∆P rPAzPB ,∆XB‰H

inf
xP∆

f
B

(x)ν(∆) ą

ż

B

f(x) dx ´ ε .
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Therefore, we establish that
ż

B

f(x) dx ´ ε ă

ż

A

(f1B)(x) dx ă

ż

B

f(x) dx+ ε .

Since ε ą 0 is given arbitrarily, we conclude that
ż

A
(f1B)(x) dx =

ż

B
f(x) dx. Similar

argument can be applied to conclude that
ż

A
(f1B)(x) dx =

ż

B
f(x) dx.

(b) Let ε ą 0 be given. By the definition of the lower integral, there exist partitions P1

and P2 of A such that
ż

A

f(x) dx ´
ε

2
ă L(f,P1) and

ż

A

g(x) dx ´
ε

2
ă L(g,P2) .

Let P be a common refinement of P1 and P2. Then
ż

A

f(x) dx +

ż

A

g(x) dx ´ ε ă L(f,P1) + L(f,P2) ď L(f,P) + L(g,P)

=
ÿ

∆PP
inf
xP∆

sf(x)ν(∆) +
ÿ

∆PP
inf
xP∆

sg(x)ν(∆)

ď
ÿ

∆PP
inf
xP∆

( sf + sg)(x)ν(∆) = L(f + g,P) ď

ż

A

(f + g)(x) dx .

Since ε ą 0 is given arbitrarily, we conclude that
ż

A

f(x) dx+

ż

A

g(x) dx ď

ż

A

(f + g)(x) dx .

Similarly, we have
ż

A
(f + g)(x) dx ď

ż

A
f(x) dx +

ż

A
g(x) dx; thus (b) is established.

(c) It suffices to show the case c = ´1. Let ε ą 0 be given. Then there exist partitions
P1 and P2 of A such that

ż

A

´f(x) dx ´ ε ă L(´f,P1) and U(f,P2) ă

ż

A

f(x) dx+ ε .

Let P be the common refinement of P1 and P2. Then
ż

A

´f(x) dx ´ ε ă L(´f,P1) ď L(´f,P) ď

ż

A

´f(x) dx

and
ż

A

f(x) dx ď U(f,P) ď U(f,P2) ă

ż

A

f(x) dx+ ε .
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By the fact that

L(´f,P) =
ÿ

∆PP
inf
xP∆

(´f)
A

(x)ν(∆) = ´
ÿ

∆PP
sup
xP∆

f
A

(x)ν(∆) = ´U(f,P) ,

we find that
ż

A

´f(x) dx ´ ε ă L(´f,P) = ´U(f,P) ď ´

ż

A

f(x) dx

and
ż

A

´f(x) dx ě L(´f,P) = ´U(f,P) ą ´

ż

A

f(x) dx ´ ε .

Therefore,
ż

A

´f(x) dx ´ ε ă ´

ż

A

f(x) dx ă

ż

A

´f(x) dx+ ε .

Since ε ą 0 is given arbitrarily, we conclude (c).

(e) Since f is bounded on A, there exist M ą 0 such that ´M ď f(x) ď M for all x P A.

Therefore, ´1A ď
f

M
ď 1A on A; thus (c) and (d) imply that

0 =

ż

A

1A(x) dx =

ż

A

1A(x) dx ě

ż

A

f(x)

M
dx =

1

M

ż

A

f(x) dx

which implies that
ż

A
f(x) dx ď 0. Similarly,

ż

A
´f(x) dx ď 0 which further implies

that
ż

A
f(x) dx ě 0. Therefore, by Corollary 6.12 we conclude that

0 ď

ż

A

f(x) dx ď

ż

A

f(x) dx ď 0

which implies that f is Riemann integrable on A and
ż

A
f(x) dx = 0. ˝

Remark 6.42. Let A Ď Rn be a bounded set.

1. If f : A Ñ R is a bounded function, then (a) of Proposition 6.41 shows that if B Ď A,
then f is Riemann integrable on B if and only if f1B is Riemann integrable on A.

2. If f, g : A Ñ R are bounded functions, then (b) of Proposition 6.41 also implies that
ż

A

(f´g)(x) dx ď

ż

A

f(x) dx´

ż

A

g(x) dx and
ż

A

f(x) dx´

ż

A

g(x) dx ď

ż

A

(f´g)(x) dx .
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Corollary 6.43. Let A,B Ď Rn be bounded sets such that A X B has volume zero, and
f : A Y B Ñ R be a bounded function. Then

ż

A

f(x) dx+

ż

B

f(x) dx ď

ż

AYB

f(x) dx ď

ż

AYB

f(x) dx ď

ż

A

f(x) dx+

ż

B

f(x) dx .

Proof. Note that f1A+ f1B = f1AYB+ f1AXB on AYB. Therefore, (a), (b) of Proposition
6.41 and Remark 6.42 implies that
ż

A

f(x) dx+

ż

B

f(x) dx =

ż

AYB

(f1A)(x) dx+
ż

AYB

(f1B)(x) dxď

ż

AYB

(f1A+f1B)(x) dx

=

ż

AYB

(
f1AYB ´ (´f1AXB)

)
(x) dx

ď

ż

AYB

f1AYB(x) dx ´

ż

AYB

(´f1AXB)(x) dx

=

ż

AYB

f(x) dx ´

ż

AXB

(´f)(x) dx

which, with the help of Proposition 6.41 (e), further implies that
ż

A

f(x) dx+

ż

B

f(x) dx ď

ż

AYB

f(x) dx .

The case of the upper integral can be proved in a similar fashion. ˝

Having established Proposition 6.41, it is easy to see the following theorem (except (c)).
The proof is left as an exercise.

Theorem 6.44. Let A Ď Rn be a bounded set, c P R, and f, g : A Ñ R be Riemann
integrable functions. Then

(a) f ˘ g is Riemann integrable, and
ż

A
(f ˘ g)(x) dx =

ż

A
f(x) dx ˘

ż

A
g(x) dx.

(b) cf is Riemann integrable, and
ż

A
(cf)(x) dx = c

ż

A
f(x) dx.

(c) |f | is Riemann integrable, and
ˇ

ˇ

ˇ

ż

A
f(x) dx

ˇ

ˇ

ˇ
ď

ż

A
|f(x)|dx.

(d) If f ď g, then
ż

A
f(x) dx ď

ż

A
g(x) dx.

(e) If A has volume and |f | ď M , then
ˇ

ˇ

ˇ

ż

A
f(x) dx

ˇ

ˇ

ˇ
ď Mν(A).
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Theorem 6.45. Let A Ď Rn be bounded, and f : A Ñ R be a Riemann integrable function.

1. If A has measure zero, then
ż

A
f(x)dx = 0.

2. If f(x) ě 0 for all x P A, and
ż

A
f(x)dx = 0, then the set

␣

x P A
ˇ

ˇ f(x) ‰ 0
(

has
measure zero.

Proof. 1. We show that L(f,P) ď 0 ď U(f,P) for all partitions P of A. Let P =
␣

∆1, ¨ ¨ ¨ ,∆N

(

be a partition of A. By Corollary 6.25, ∆k XAA ‰ H for k = 1, ¨ ¨ ¨ , N ;
thus we must have inf

xP∆k

sf(x) ď 0 and sup
xP∆k

sf(x) ě 0. As a consequence, if P is a

partition of A,

L(f,P) =
N
ÿ

k=1

inf
xP∆k

sf(x)ν(∆k) ď 0 and U(f,P) =
N
ÿ

k=1

sup
xP∆k

sf(x)ν(∆k) ě 0 ;

thus
ż

A
f(x)dx ď 0 ď

ż

A
f(x)dx. Since f is integrable on A,

ż

A
f(x)dx = 0.

2. Let Ak =
␣

x P A
ˇ

ˇ f(x) ě
1

k

(

. We claim that Ak has measure zero for all k P N.

Let ε ą 0 be given. Since
ż

A
f(x)dx = 0, there exists a partition P of A such that

U(f,P) ă
ε

k
. Let C =

␣

∆ P P
ˇ

ˇ∆ X Ak ‰ H
(

. Then Ak Ď
Ť

∆PC

∆, and

1

k

ÿ

∆PC

ν(C) ď
ÿ

∆PC

sup
xP∆

sf(x)ν(∆) ď
ÿ

∆PP
sup
xP∆

sf(x)ν(∆) = U(f,P) ă
ε

k

which implies that
ř

∆PC

ν(∆) ă ε. Therefore, Ak has measure zero; thus Theorem 6.26

implies that A =
8
Ť

k=1

Ak also has measure zero. ˝

Remark 6.46. Combining Corollary 6.36 and Theorem 6.45, we conclude that the integral
of a bounded function on a compact set of measure zero is zero.

Remark 6.47. Let A = QX [0, 1] and f : A Ñ R be the constant function f ” 1. We have
shown in Example 6.33 that f is not Riemann integrable. We note that A has no volume
since BA = [0, 1] which is not a set of measure zero. However, A has measure zero since it
consists of countable number of points.
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1. Since f is continuous on A, the condition that A has volume in Corollary 6.35 cannot
be removed.

2. Since A has measure zero, the condition that f is Riemann integrable in Theorem 6.45
cannot be removed.

Definition 6.48. Let A Ď Rn be a set and f : A Ñ R be a function. For B Ď A, the
restriction of f to B is the function f

ˇ

ˇ

B
: A Ñ R given by f |B = f1B. In other words,

f
ˇ

ˇ

B
(x) =

"

f(x) if x P B ,

0 if x P AzB .

The following two theorems are direct consequences of (a) of Proposition 6.41 and Corol-
lary 6.43.

Theorem 6.49. Let A,B be bounded subsets of Rn, B Ď A, and f : A Ñ R be a bounded
function. Then f is Riemann integrable on B if and only if f |B is Riemann integrable on
A. In either cases,

ż

A

f
ˇ

ˇ

B
(x) dx =

ż

B

f(x) dx .

Theorem 6.50. Let A,B be bounded subsets of Rn be such that A X B has volume zero,
and f : AYB Ñ R be bounded such that f

ˇ

ˇ

A
and f

ˇ

ˇ

B
are all Riemann integrable on AYB.

Then f is Riemann integrable on A Y B, and
ż

AYB

f(x) dx =

ż

A

f(x) dx+

ż

B

f(x) dx .

6.4 The Fubini Theorem
If f : [a, b] Ñ R is continuous, the fundamental theorem of Calculus can be applied to
computed the integral of f on [a, b]. In this section, we focus on how the integral of f on
A Ď Rn, where n ě 2, can be computed if the integral exists.

Definition 6.51. Let A Ď Rn and B Ď Rm be bounded sets, and f : A ˆ B Ñ R be a
bounded function. For each fixed x P A, the lower integral of the function f(x, ¨) : B Ñ

R is denoted by
ż

B
f(x, y) dy, and the upper integral of f(x, ¨) : B Ñ R is denoted by

ż

B
f(x, y) dy. If the upper integral and the lower integral of f(x, ¨) : B Ñ R are the same
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at x P A, we simply write
ż

B
f(x, y) dy for the integrals of f(x, ¨) on B. The integrals

ż

A
f(x, y) dx,

ż

A
f(x, y) dx and

ż

A
f(x, y) dx are defined similarly.

Theorem 6.52 (Fubini’s Theorem). Let A Ď Rn and B Ď Rm be bounded sets, and
f : A ˆ B Ñ R be a bounded function. For x P Rn and y P Rm, write z = (x, y). Then

ż

AˆB

f(z) dz ď

ż

A

( ż
B

f(x, y)dy
)
dx ď

ż

A

( ż
B

f(x, y)dy
)
dx ď

ż

AˆB

f(z) dz , (6.4.1a)
ż

AˆB

f(z) dz ď

ż

B

( ż
A

f(x, y)dx
)
dy ď

ż

B

( ż
A

f(x, y)dx
)
dy ď

ż

AˆB

f(z) dz . (6.4.1b)

In particular, if f : A ˆ B Ñ R is Riemann integrable, then
ż

AˆB

f(z) dz =

ż

A

( ż
B

f(x, y)dy
)
dx =

ż

A

( ż
B

f(x, y)dy
)
dx

=

ż

B

( ż
A

f(x, y)dx
)
dy =

ż

B

( ż
A

f(x, y)dx
)
dy .

Proof. It suffices to prove (6.4.1a). Let ε ą 0 be given. Choose a partition P of AˆB such
that L(f,P) ą

ż

AˆB
f(z) dz ´ ε. Since P is a partition of A ˆ B, there exist partition PA

of A and partition PB of B such that P =
␣

∆ = R ˆ S
ˇ

ˇR P PA, S P PB
(

. By Proposition
6.41 and Corollary 6.43, we find that

ż

A

( ż
B

f(x, y) dy
)
dx =

ż

Ť

RPPA
R

1A(x)
( ż

Ť

SPPB
S

f(x, y)1B(y) dy
)
dx

ě
ÿ

R PPA

ż

R

(
ÿ

S PPB

ż

S

f
AˆB

(x, y) dy
)
dx

ě
ÿ

R PPA

ÿ

S PPB

ż

R

( ż
S

f
AˆB

(x, y) dy
)
dx

ě
ÿ

R PPA,S PPB

inf
(x,y)PRˆS

f
AˆB

(x, y)νm(S)νn(R)

=
ÿ

∆PP
inf

(x,y)P∆
f

AˆB

(x, y)νn+m(∆) = L(f,P) ą

ż

AˆB

f(z)dz ´ ε .

Since ε ą 0 is given arbitrarily, we conclude that
ż

AˆB

f(z) dz ď

ż

B

( ż
A

f(x, y)dx
)
dy .

Similarly,
ż

A

( ż

B
f(x, y)dy

)
dx ď

ż

AˆB
f(z) dz; thus (6.4.1a) is concluded. ˝
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Corollary 6.53. Let S Ď Rn be a bounded set with volume, φ1, φ2 : S Ñ R be continuous
maps such that φ1(x) ď φ2(x) for all x P S, A =

␣

(x, y) P RnˆR
ˇ

ˇx P S, φ1(x) ď y ď φ2(x)
(

,
and f : A Ñ R be continuous. Then f is Riemann integrable on A, and

ż

A

f(x, y) d(x, y) =

ż

S

( ż φ2(x)

φ1(x)

f(x, y) dy
)
dx . (6.4.2)

Proof. Since BA has measure zero, and f is continuous on A, Corollary 6.35 implies that f
is Riemann integrable on A. Let m = min

xPS
φ1(x) and M = max

xPS
φ2(x). Then A Ď Sˆ [m,M ];

thus Theorem 6.50 and the Fubini Theorem imply that
ż

A

f(x, y) d(x, y) =

ż

Sˆ[m,M ]

f
A

(x, y) d(x, y) =

ż

S

( ż M

m

f
A

(x, y) dy
)
dx

=

ż

S

( ż M

m

f
A

(x, y) dy
)
dx .

Noting that [m,M ] has a boundary of volume zero in R, and for each x P S, fA

(x, ¨) is
continuous except perhaps at y = φ1(x) and y = φ2(x), Corollary 6.35 implies that fA

(x, ¨)

is Riemann integrable on [m,M ] for each x P S. Therefore,
ż M

m
f

A

(x, y) dy =
ż M

m
f

A

(x, y) dy

which further implies that
ż

A

f(x, y) d(x, y) =

ż

S

( ż M

m

f
A

(x, y) dy
)
dx . (6.4.3)

For each fixed x P S, let Ax =
␣

y P R
ˇ

ˇφ1(x) ď y ď φ2(x)
(

. Then f
A

(x, y) = f(x, y)1Ax(y)

for all (x, y) P Sˆ [m,M ] or equivalently, fA

(x, ¨) = f(x, ¨)|Ax for all x P S; thus Proposition
6.41 (a) implies that

ż M

m

f
A

(x, y) dy =

ż

Ax

f(x, y) dy =

ż φ2(x)

φ1(x)

f(x, y) dy @x P S . (6.4.4)

Combining (6.4.3) and (6.4.4), we conclude (6.4.2). ˝

Corollary 6.54. 1. Let φ1, φ2 : [a, b] Ñ R be continuous maps such that φ1(x) ď φ2(x)

for all x P [a, b], A =
␣

(x, y)
ˇ

ˇ a ď x ď b, φ1(x) ď y ď φ2(x)
(

, and f : A Ñ R be
continuous. Then f is Riemann integrable on A, and

ż

A

f(x, y) dA =

ż b

a

( ż φ2(x)

φ1(x)

f(x, y) dy
)
dx .
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2. Let ψ1, ψ2 : [c, d] Ñ R be continuous maps such that ψ1(y) ď ψ2(y) for all y P [c, d],
A =

␣

(x, y)
ˇ

ˇ c ď y ď d, ψ1(y) ď x ď ψ2(y)
(

, and f : A Ñ R be continuous. Then f is
Riemann integrable on A, and

ż

A

f(x, y) dA =

ż d

c

( ż ψ2(y)

ψ1(y)

f(x, y) dx
)
dy .

Remark 6.55. To simplify the notation, sometimes we use
ż

S

ż φ2(x)

φ1(x)
f(x, y) dydx to denote

the iterated integral the iterated integral
ż

S

( ż φ2(x)

φ1(x)
f(x, y) dy

)
dx. Similar notation applies

to the upper and the lower integrals. For example, we also have
ż b

a

ż d

c
f(x, y) dydx =

ż b

a

( ż d

c
f(x, y) dy

)
dx.

Remark 6.56. For each x P [a, b], define φ(x) =
ż d

c
f(x, y) dy and ψ(x) =

ż d

c
f(x, y) dy.

Then φ(x) ď ψ(x) for all x P [a, b], and the Fubini Theorem implies that
ż b

a

[
ψ(x) ´ φ(x)

]
dx = 0 .

By Theorem 6.45, the set
␣

x P [a, b]
ˇ

ˇψ(x) ´ φ(x) ‰ 0
(

has measure zero. In other words,
except on a set of measure zero, f(x, ¨) is Riemann integrable on [c, d] if f is Riemann
integrable on [a, b] ˆ [c, d]. This property can be rephrased as that “f(x, ¨) is Riemann
integrable on [c, d] for almost every x P [a, b] if f is Riemann integrable on the rectangle
[a, b] ˆ [c, d]”. Similarly, f(¨, y) is Riemann integrable for almost every y P [c, d] if f is
Riemann integrable on [a, b] ˆ [c, d].

Remark 6.57. The integrability of f does not guarantee that f(x, ¨) or f(¨, y) is Riemann
integrable. In fact, there exists a function f : [0, 1] ˆ [0, 1] Ñ R such that f is Riemann
integrable, f(¨, y) is Riemann integrable for each y P [0, 1], but f(x, ¨) is not Riemann
integrable for infinitely many x P [0, 1]. For example, let

f(x, y) =

$

&

%

0 if x = 0 or if x or y is irrational ,
1

p
if x, y P Q and x =

q

p
with (p, q) = 1 .

Then
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1. For each y P [0, 1], f(¨, y) is continuous at all irrational numbers. Therefore, f(¨, y) is
Riemann integrable, and

ż 1

0
f(x, y) dx =

ż 1

0
f(x, y) dx = 0.

2. For x = 0 or x R Q, f(x, ¨) is Riemann integrable, and
ż 1

0
f(x, y) dy = 0.

3. If x =
q

p
with (p, q) = 1, f(x, ¨) is nowhere continuous in [0, 1]. In fact, for each

y0 P [0, 1],
lim
yÑy0
yPQ

f(x, y) =
1

p
while lim

yÑy0
yRQ

f(x, y) = 0 ;

thus the limit of f(x, y) as y Ñ y0 does not exist. Therefore, the Lebesgue theorem
implies that f(x, ¨) is not Riemann integrable if x P QX (0, 1]. On the other hand, for
x =

q

p
with (p, q) = 1 we have

ż 1

0

f(x, y) dy = 0 and
ż 1

0

f(x, y) dy =
1

p
.

4. Define φ(x) =
ż 1

0
f(x, y) dy and ψ(x) =

ż 1

0
f(x, y) dy. Then 2 and 3 imply that φ

and ψ are Riemann integrable on [0, 1], and
ż 1

0
φ(x)dx =

ż 1

0
ψ(x)dx = 0.

5. For each a R Q X [0, 1] and b P [0, 1], f is continuous at (a, b). In fact, for any given
ε ą 0, there exists a prime number p such that 1

p
ă ε. Let

δ = min
!

ˇ

ˇa ´
ℓ

k

ˇ

ˇ

ˇ

ˇ

ˇ
0 ď ℓ ď k ď p, k P N, ℓ P N Y t0u

)

.

Then δ ą 0, and if (x, y) P B
(
(a, b), δ

)
X ([0, 1] ˆ [0, 1]), we have

ˇ

ˇf(x, y) ´ f(a, b)
ˇ

ˇ =
ˇ

ˇf(x, y)
ˇ

ˇ ă
1

p
ă ε ,

where we use the fact that if (x, y) P B
(
(a, b), δ

)
and x P Q, then x =

ℓ

k
(in reduced

form) for some k ą p.

As a consequence,
␣

(a, b) P R2
ˇ

ˇ sf is discontinuous at (a, b)
(

Ď Q ˆ [0, 1]. Since
Q ˆ [0, 1] is a countable union of measure zero sets, it has measure zero; thus f is
Riemann integrable by the Lebesgue theorem. The Fubini theorem then implies that

ż

[0,1]ˆ[0,1]

f(x, y) dA =

ż 1

0

ż 1

0

f(x, y) dxdy = 0 .
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Remark 6.58. The integrability of f(x, ¨) and f(¨, y) does not guarantee the integrability
of f . In fact, there exists a bounded function f : [0, 1] ˆ [0, 1] Ñ R such that f(x, ¨) and
f(¨, y) are both Riemann integrable on [0, 1], but f is not Riemann integrable on [0, 1]ˆ[0, 1].
For example, let

f(x, y) =

$

&

%

1 if (x, y) =
( k

2n
,
ℓ

2n

)
, 0 ă k, ℓ ă 2n odd numbers, n P N ,

0 otherwise .

Then for each x P [0, 1], f(x, ¨) only has finite number of discontinuities; thus f(x, ¨) is
Riemann integrable, and

ż 1

0

f(x, y) dy = 0 .

Similarly, f(¨, y) is Riemann integrable, and
ż 1

0
f(x, y) dx = 0. As a consequence,

ż 1

0

ż 1

0

f(x, y) dydx =

ż 1

0

ż 1

0

f(x, y) dxdy = 0 .

However, note that f is nowhere continuous on [0, 1] ˆ [0, 1]; thus the Lebesgue theorem
implies that f is not Riemann integrable. One can also see this by the fact that U(f,P) = 1

and L(f,P) = 0 for all partition of [0, 1] ˆ [0, 1].

Example 6.59. Let A =
␣

(x, y) P R2
ˇ

ˇ 0 ď x ď 1, x ď y ď 1
(

, and f : A Ñ R be given by
f(x, y) = xy. Then Corollary 6.54 implies that

ż

A

f(x, y) dA =

ż 1

0

( ż 1

x

xy dy
)
dx =

ż 1

0

xy2

2

ˇ

ˇ

ˇ

y=1

y=x
dx =

ż 1

0

(x
2

´
x3

2

)
dx =

1

4
´

1

8
=

1

8
.

On the other hand, since A =
␣

(x, y) P R2
ˇ

ˇ 0 ď y ď 1, 0 ď x ď y
(

, we can also evaluate the
integral of f on A by

ż

A

xy dA =

ż 1

0

( ż y

0

xy dx
)
dy =

ż 1

0

x2y

2

ˇ

ˇ

ˇ

x=y

x=0
dy =

ż 1

0

y3

2
dy =

1

8
.

Example 6.60. Let A =
␣

(x, y) P R2
ˇ

ˇ 0 ď x ď 1,
?
x ď y ď 1

(

, and f : A Ñ R be given by
f(x, y) = ey

3 . Then Corollary 6.54 implies that
ż

A

f(x, y) dA =

ż 1

0

( ż 1

?
x

ey
3

dy
)
dx .



§6.4 Fubini’s Theorem 181

Since we do not know how to compute the inner integral, we look for another way of finding
the integral. Observing that A =

␣

(x, y) P R2
ˇ

ˇ 0 ď y ď 1, 0 ď x ď y2
(

, we have
ż

A

f(x, y) dA =

ż 1

0

( ż y2

0

ey
3

dx
)
dy =

ż 1

0

y2ey
3

dy =
1

3
ey

3
ˇ

ˇ

ˇ

y=1

y=0
=
e ´ 1

3
.

Example 6.61. Let A Ď R3 be the set
␣

(x1, x2, x3) P R3
ˇ

ˇx1 ě 0, x2 ě 0, x3 ě 0, and x1 +

x2 + x3 ď 1
(

, and f : A Ñ R be given by f(x1, x2, x3) = (x1 + x2 + x3)
2. Let S =

[0, 1] ˆ [0, 1] ˆ [0, 1], and sf : R3 Ñ R be the extension of f by zero outside A. Then
Corollary 6.35 implies that f is Riemann integrable (since BA has measure zero). Write
px1 = (x2, x3), px2 = (x1, x3) and px3 = (x1, x2). Theorem 6.49 implies that

ż

A

f(x)dx =

ż

S

sf(x)dx ,

and Theorem 6.52 implies that
ż

S

sf(x)dx =

ż

[0,1]

( ż
[0,1]ˆ[0,1]

sf(px3, x3)dpx3

)
dx3 .

Let Ax3 =
␣

(x1, x2) P R2
ˇ

ˇx1 ě 0, x2 ě 0, x1 + x2 ď 1 ´ x3
(

. Then for each x3 P [0, 1],
ż

[0,1]ˆ[0,1]

sf(px3, x3)dpx3 =

ż

Ax3

f(px3, x3)dpx3 =

ż 1´x3

0

( ż 1´x3´x2

0

f(x1, x2, x3)dx1

)
dx2 .

Computing the iterated integral, we find that
ż

A

f(x)dx =

ż 1

0

[ ż 1´x3

0

( ż 1´x3´x2

0

(x1 + x2 + x3)
2dx1

)
dx2

]
dx3

=

ż 1

0

[ ż 1´x3

0

(x1 + x2 + x3)
3

3

ˇ

ˇ

ˇ

x1=1´x3´x2

x1=0
dx2

]
dx3

=

ż 1

0

[ ż 1´x3

0

(1
3

´
(x2 + x3)

3

3

)
dx2

]
dx3

=

ż 1

0

(1
4

´
x3
3

+
x43
12

)
dx3 =

1

4
´

1

6
+

1

60
=

15 ´ 10 + 1

60
=

1

10
.

Example 6.62. In this example we compute the volume of the n-dimensional unit ball ωn.
By the Fubini theorem,

ωn =

ż 1

´1

ż

?
1´x21

´
?

1´x21

¨ ¨ ¨

ż

?
1´x21´¨¨¨´x2n´1

´
?

1´x21´¨¨¨´x2n´1

dxn ¨ ¨ ¨ dx1 .
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Note that the integral
ż

?
1´x21

´
?

1´x21

¨ ¨ ¨

ż

?
1´x21´¨¨¨´x2n´1

´
?

1´x21´¨¨¨´x2n´1

dxn ¨ ¨ ¨ dx2 is in fact ωn´1(1 ´ x21)
n´1
2 ;

thus
ωn =

ż 1

´1

ωn´1(1 ´ x2)
n´1
2 dx = 2ωn´1

ż π
2

0

cosn θdθ . (6.4.5)

Integrating by parts,
ż π

2

0

cosn θ dθ =
ż π

2

0

cosn´1 θ d(sin θ) = cosn´1 θ sin θ
ˇ

ˇ

ˇ

θ=π
2

θ=0
+ (n ´ 1)

ż π
2

0

cosn´2 θ sin2 θ dθ

= (n ´ 1)

ż π
2

0

cosn´2 θ(1 ´ cos2 θ) dθ

which implies that
ż π

2

0

cosn θ dθ = n ´ 1

n

ż π
2

0

cosn´2 θ dθ .

As a consequence,

ż π
2

0

cosn θ dθ =

$

’

’

&

’

’

%

(n ´ 1)(n ´ 3) ¨ ¨ ¨ 2

n(n ´ 2) ¨ ¨ ¨ 3

ż π
2

0
cos θ dθ if n is odd ,

(n ´ 1)(n ´ 3) ¨ ¨ ¨ 1

n(n ´ 2) ¨ ¨ ¨ 2

ż π
2

0
dθ if n is even ;

thus the recursive formula (6.4.5) implies that ωn =
2ωn´2

n
π . Further computations shows

that

ωn =

$

’

’

’

&

’

’

’

%

(2π)
n´1
2

n(n ´ 2) ¨ ¨ ¨ 3
ω1 if n is odd ,

(2π)
n´2
2

n(n ´ 2) ¨ ¨ ¨ 4
ω2 if n is even .

Let Γ be the Gamma function defined by Γ(t) =
ż 8

0
xt´1e´x dx for t ą 0. Then Γ(x+ 1) =

xΓ(x) for all x ą 0, Γ(1) = 1 and Γ
(1
2

)
=

?
π. By the fact that ω1 = 2 and ω2 = π, we can

express ωn as

ωn =
π

n
2

Γ
(
n+2
2

) .
6.5 The Monotone and Bounded Convergence Theo-

rems
In the following, we introduce two very important theorems in the theory of integration of
functions. Before proceeding, we establish the following two lemmas.



§6.4 Fubini’s Theorem 183

Lemma 6.63. Let f : [a, b] Ñ R be a bounded function. Then for each ε ą 0, there exist
continuous functions g, h : [a, b] Ñ R such that inf

xP[a,b]
f(x) ď g ď f ď h ď sup

xP[a,b]

f(x) and
ż b

a

f(x) dx ă

ż b

a

g(x) dx+ ε and
ż b

a

f(x) dx ą

ż b

a

h(x) dx ´ ε .

Proof. We only prove the case of lower integral since the proof of the counter-part is similar.
Let ε ą 0 be given, and P =

␣

a = x0 ă x1 ă ¨ ¨ ¨ ă xn´1 ă xn = b
(

be a partition of

[a, b] such that L(f,P) ą

ż b

a
f(x)dx ´

ε

2
. Let s(x) be the step function given by

s(x) =
n´1
ÿ

k=1

(
inf

xP[xk´1,xk]
f(x)

)
1[xk´1,xk)(x) +

(
inf

xP[xn´1,b]
f(x)

)
1[xn´1,b](x)

which is a linear combination of characteristic functions. Then inf
xP[a,b]

f(x) ď s(x) ď f(x) for
all x P [a, b] and

ż b

a

f(x) dx ă

ż b

a

s(x) dx+
ε

2
(6.5.1)

since the integral of s on [a, b] is exactly the lower sum L(f,P). On the other hand, for such
a simple function s we can always find a continuous function g : [a, b] Ñ R (for example, g
can be a trapezoidal function) such that inf

xP[a,b]
f(x) ď g(x) ď s(x) for all x P [a, b] and

ż b

a

s(x) dx ă

ż b

a

g(x) dx+
ε

2
. (6.5.2)

•

•
a=x0

˝

•

•
x1

˝

•

•
x2

˝

•

•
x3

˝

•
x4

¨ ¨ ¨ •

•
xn´2

˝

•

•
xn´1

•

•
xn=b

s :
g :

Figure 6.3: One way of constructing g given simple function s

The combination of (6.5.1) and (6.5.2) then concludes the lemma. ˝

Lemma 6.64. Let hk : [a, b] Ñ R be continuous for each k P N, and hk(x) ě hk+1(x) for

each k P N and x P [a, b]. If lim
kÑ8

hk(x) = 0 for each x P [a, b], then lim
kÑ8

ż b

a
hk(x) dx = 0.
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Proof. For each k P N define ck = max
xP[a,b]

hk(x). Then tcku8
k=1 is a decreasing sequence of non-

negative real numbers, so lim
kÑ8

ck exists and is non-negative. Since
ż b

a
hk(x) dx ď ck(b ´ a),

it suffices to show that lim
kÑ8

ck = 0.
Suppose the contrary that lim

kÑ8
ck = 2δ for some δ ą 0. Then there exists N ą 0 such

that ck ě δ for all k ě N . Define Fk =
␣

x P [a, b]
ˇ

ˇhk(x) ě δ
(

. Then

1. Fk is closed for each k P N by Theorem 4.14.

2. Fk Ě Fk+1 for each k P N.

3. Fk ‰ H for each k ě N .

Therefore, by the nested set property we have
8
Ş

k=N

Fk ‰ H
(
or otherwise

8
Ť

k=N

F A
k is an

open cover of compact set [a, b] which, using the finite subcover property, implies that there
exists Fm Ď [a, b]A, a contradiction

)
. This then implies that there exists c P [a, b] such

that hk(c) ě δ for all k ě N which contradicts to the condition that lim
kÑ8

hk(x) = 0 for all
x P [a, b]. Therefore, lim

kÑ8
ck = 0. ˝

Theorem 6.65. Let tfku8
k=1 be a decreasing sequence of bounded functions on [a, b]; that is,

for each k P N, fk(x) ě fk+1(x) for all x P [a, b] and fk is bounded. If lim
kÑ8

fk(x) = 0 for all
x P [a, b], then

lim
kÑ8

ż b

a

fk(x) dx = 0
(
=

ż b

a

lim
kÑ8

fk(x) dx
)
.

Proof. Let ε ą 0 be given. By Lemma 6.63, for each k P N there exists a continuous function
gk : [a, b] Ñ R such that 0 ď gk ď fk and

ż b

a

fk(x) dx ă

ż b

a

gk(x) dx+
ε

2k+1
. (6.5.3)

Define hk = mintg1, ¨ ¨ ¨ , gku. Then hk is continuous on [a, b], hk ě hk+1 (that is, thku8
k=1 is

a decreasing sequence of funtions), 0 ď hk ď gk ď fk for all k P N, and lim
kÑ8

hk(x) = 0 for
all x P [a, b]. Therefore, Lemma 6.64 implies that there exists N ą 0 such that

ż b

a

hk(x) dx ă
ε

4
@ k ě N . (6.5.4)

On the other hand, for 1 ď ℓ ď k, maxtgℓ, ¨ ¨ ¨ , gku ď maxtfℓ, ¨ ¨ ¨ , fku = fℓ; thus
ż b

a

(
maxtgℓ, ¨ ¨ ¨ , gku(x) ´ gℓ(x)

)
dx ď

ż b

a

fℓ(x) dx ´

ż b

a

gℓ(x) dx ă
ε

2ℓ+1
.
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Moreover, for each 1 ď j ď k and x P [a, b],

0 ď gk(x) = gj(x) +
(
gk(x) ´ gj(x)

)
ď gj(x) +

(
max

␣

gj(x), ¨ ¨ ¨ , gk(x)
(

´ gj
)

ď gj(x) +
k´1
ÿ

ℓ=1

(
max

␣

gℓ, ¨ ¨ ¨ , gk
(

(x) ´ gℓ(x)
)
,

so minimizing the right-hand side over all 1 ď j ď k implies that

0 ď gk(x) ď hk(x) +
k´1
ÿ

ℓ=1

(
maxtgℓ, ¨ ¨ ¨ , gku(x) ´ gℓ(x)

)
@x P [a, b] .

As a consequence,

0 ď

ż b

a

gk(x) dx ď

ż b

a

hk(x) dx+
k´1
ÿ

ℓ=1

ε

2ℓ+1
ď

ż b

a

hk(x) dx+
ε

2
;

thus (6.5.3) and (6.5.4) imply that

0 ď

ż b

a

fk(x)dx ă ε @ k ě N . ˝

Example 6.66. Let tq1, q2, ¨ ¨ ¨ , qn, ¨ ¨ ¨ u denote the rational numbers in [0, 1], and fk :

[0, 1] Ñ R be defined by

fk(x) =

"

0 if x P QA Y tq1, q2, ¨ ¨ ¨ , qku ,

1 otherwise .

Then fk ě fk+1 and lim
kÑ8

fk(x) = 0 for all x P [0, 1]. Note that fk is not Riemann integrable

on [0, 1] but
ż 1

0
fk(x) dx = 0 for all k P N; thus

lim
kÑ8

ż 1

0

fk(x) dx = 0 .

Note that
ż 1

0
fk(x) dx = 1 for all k P N.

Corollary 6.67 (Monotone Convergence Theorem). Let fk, f : [a, b] Ñ R be Riemann
integrable on [a, b], and lim

kÑ8
fk(x) = f(x) for all x P [a, b]. Suppose that fk ď fk+1 for all

k P N. Then
ż b

a

f(x) dx = lim
kÑ8

ż b

a

fk(x) dx .
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Proof. Let gk = f ´fk. Then tgku8
k=1 is a decreasing sequence of bounded functions on [a, b]

(since 0 ď gk ď f ´ f1) and lim
kÑ8

gk(x) = 0 for all x P [a, b]. Therefore, the integrability of fk
and f , as well as Theorem 6.65, imply that

0 = lim
kÑ8

ż b

a

gk(x) dx = lim
kÑ8

ż b

a

(f ´ fk)(x) dx = lim
kÑ8

ż b

a

(f ´ fk)(x)dx

=

ż b

a

f(x) dx ´ lim
kÑ8

ż b

a

fk(x) dx . ˝

Corollary 6.68 (Arzelà’s Bounded Convergence Theorem). Let fk, f : [a, b] Ñ R be Rie-
mann integrable on [a, b], and lim

kÑ8
fk(x) = f(x) for all x P [a, b]. Suppose that there exists

a constant M ą 0 such that
ˇ

ˇfk(x)
ˇ

ˇ ď M for all x P [a, b] and k P N. Then
ż b

a

f(x) dx = lim
kÑ8

ż b

a

fk(x) dx .

Proof. Let ε ą 0 be given. For each k P N, define gk(x) = sup
ℓěk

ˇ

ˇfℓ(x) ´ f(x)
ˇ

ˇ. Then tgku8
k=1

is a decreasing sequence of bounded functions on [a, b] and lim
kÑ8

gk(x) = 0 for all x P [a, b].
Therefore, Theorem 6.65 implies that there exists N ą 0 such that

ż b

a

gk(x) dx ă ε @ k ě N .

Therefore, by observing that 0 ď
ˇ

ˇfk(x)´ f(x)
ˇ

ˇ ď gk(x) for all k P N, by the integrability of
fk and f we conclude that

ż b

a

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ dx =

ż b

a

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ dx ď

ż b

a

gk(x) dx ă ε @ k ě N . ˝

Theorem 6.69 (Monotone Convergence Theorem). Let A = [a1, b1] ˆ ¨ ¨ ¨ ˆ [an, bn] be a
rectangle in Rn, fk, f : A Ñ R be Riemann integrable on A and lim

kÑ8
fk(x) = f(x) for all

x P A. Suppose that tfku8
k=1 is a monotone sequence of functions; that is, fk ď fk+1 or

fk ě fk+1 for all k P N. Then

lim
kÑ8

ż

A

fk(x) dx =

ż

A

f(x) dx .

Proof. W.L.O.G. we assume that fk ě fk+1 for all k P N. We first prove the case n = 2

and write A = [a, b] ˆ [c, d]. Define gk(x) =
ż d

c

(
fk(x, y) ´ f(x, y)

)
dy . Then gk ě gk+1 for
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all k P N. Moreover, Theorem 6.65 implies that lim
kÑ8

gk(x) = 0, and the Fubini theorem
(Theorem 6.52) implies that gk is Riemann integrable on [a, b] for all k P N. Therefore, by
the monotone convergence theorem for functions of one variable (Corollary 6.67) we find
that

0 = lim
kÑ8

ż b

a

gk(x) dx = lim
kÑ8

ż b

a

( ż d

c

(
fk(x, y) ´ f(x, y)

)
dy

)
dx

= lim
kÑ8

ż

A

(
fk(x, y) ´ f(x, y)

)
d(x, y) .

Now suppose that the conclusion holds for the case n = N . Then for n = N + 1, write
A = R ˆ [c, d] for some rectangle R in RN , and define gk by

gk(x1, ¨ ¨ ¨ , xN) =

ż d

c

(
fk(x1, ¨ ¨ ¨ , xN+1) ´ f(x1, ¨ ¨ ¨ , xN+1)

)
dxN+1 .

Then Theorem 6.65 again implies that tgku8
k=1 converges monotonically to 0 on R, and the

Fubini theorem (Theorem 6.52) implies that gk is Riemann integrable on R for all k P N.
Write x1 = (x1, ¨ ¨ ¨ , xN). Then the validity of the monotone convergence theorem for N -tuple
integrals implies that

0 = lim
kÑ8

ż

R

gk(x
1) dx1 = lim

kÑ8

ż

R

( ż d

c

(
fk(x

1, xN+1) ´ f(x1, xN+1)
)
dxN+1

)
dx1

= lim
kÑ8

ż

A

(
fk(x) ´ f(x)

)
dx . ˝

Theorem 6.70 (Bounded Convergence Theorem). Let A = [a1, b1] ˆ ¨ ¨ ¨ ˆ [an, bn] be a
rectangle in Rn, fk, f : A Ñ R be Riemann integrable on A and lim

kÑ8
fk(x) = f(x) for all

x P A. Suppose that there exists a constant M ą 0 such that
ˇ

ˇfk(x)
ˇ

ˇ ď M for all x P A and
k P N. Then

lim
kÑ8

ż

A

fk(x) dx =

ż

A

f(x) dx .

Proof. For 1 ď j ď n, let Rj be the rectangle [aj, bj]ˆ ¨ ¨ ¨ ˆ [an, bn], and define g(j)k : Rj Ñ R
iteratively as follows:

1. g(1)k (x) = sup
ℓěk

ˇ

ˇfℓ(x) ´ f(x)
ˇ

ˇ;

2. for 1 ď j ď n ´ 1, g(j+1)

k (xj+1, ¨ ¨ ¨ , xn) =
ż bj

aj

g(j)

k (xj, xj+1 ¨ ¨ ¨ , xn) dxj .
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Then for each 1 ď j ď n,
␣

g(j)

k

(8

k=1
is a decreasing sequence of bounded functions; that is,

g(j)

k (xj, ¨ ¨ ¨ , xn) ě g(j)

k+1(xj, ¨ ¨ ¨ , xn) @ k P N, 1 ď j ď n, (xj, ¨ ¨ ¨ , xn) P Rj .

Moreover, for each 1 ď j ď n, lim
kÑ8

g(j)

k (x) = 0 for all x P Rj. To see this, we note that by
the fact that lim

kÑ8
fk(x) = f(x) for all x P A,

lim
kÑ8

g(1)

k (x) = lim
kÑ8

sup
ℓěk

ˇ

ˇfℓ(x) ´ f(x)
ˇ

ˇ = lim sup
kÑ8

ˇ

ˇfℓ(x) ´ f(x)
ˇ

ˇ = 0 .

Assume that for some 1 ď j ď n ´ 1 such that lim
kÑ8

g(j)

k (x) = 0 for all x P Rj. Then

lim
kÑ8

g(j+1)

k (xj+1, ¨ ¨ ¨ , xn) = lim
kÑ8

ż bj

aj

g(j)

k (xj, xj+1, ¨ ¨ ¨ , xn) dxj = 0

for all (xj+1, ¨ ¨ ¨ , xn) P Rj+1 which shows that lim
kÑ8

g(j+1)

k (x) = 0 for all x P Rj+1. By
induction we conclude that lim

kÑ8
g(j)

k (x) = 0 for all x P Rj; thus Theorem 6.65 and the Fubini
theorem (Theorem 6.52) imply that

0 = lim
kÑ8

ż bn

an

g(n)

k (xn) dxn = lim
kÑ8

ż bn

an

¨ ¨ ¨

ż b1

a1

sup
ℓěk

ˇ

ˇfℓ(x1, ¨ ¨ ¨ , xn) ´ f(x1, ¨ ¨ ¨ , xn)
ˇ

ˇ dx1 ¨ ¨ ¨ dxn

ě lim sup
kÑ8

ż bn

an

¨ ¨ ¨

ż b1

a1

ˇ

ˇfk(x1, ¨ ¨ ¨ , xn) ´ f(x1, ¨ ¨ ¨ , xn)
ˇ

ˇ dx1 ¨ ¨ ¨ dxn

ě lim sup
kÑ8

ż

A

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇdx = lim sup
kÑ8

ż

A

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇdx . ˝

Remark 6.71. 1. If A is a bounded set with volume, we can choose a rectangle S Ě A

and consider gk = f
A

k as well as g = f
A. Then gk, g : S Ñ R satisfy the assumptions

in Theorem 6.69 and 6.70; thus Proposition 6.41 implies that

lim
kÑ8

ż

A

fk(x) dx = lim
kÑ8

ż

R

gk(x) dx =

ż

R

g(x) dx =

ż

A

f(x) dx .

In other words, the Monotone Convergence Theorem and the Bounded Convergence
Theorem also hold for more general domain A, or to be more precise, for bounded set
A with volume.

2. The Monotone Convergence Theorem (MCT) can be viewed as a corollary of the
Bounded Convergence Theorem (BCT) since under the assumptions of MCT, we can
apply BCT

(
choose M = max

␣

sup
xPA

f(x), sup
xPA

f1(x)
()

directly to conclude the MCT.

Here we prove MCT without the help of BCT to demonstrate the power of the Fubini
Theorem.
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6.6 Improper Integrals
The Riemann integral deals with the “integrals” of bounded functions on bounded sets;
however, often times we need to integrate unbounded functions on unbounded sets, such
as finding the area under an unbounded function above x-axis. The improper integral is
an answer to this particular situation. We first consider improper integrals of non-negative
functions. Let A Ď Rn be a set and f : A Ñ R be a non-negative function. If f is bounded
but A is unbounded, to define the integral of f on A, it is natural to consider the limit

lim
kÑ8

ż

AXB(0,k)

f(x) dx .

We note that for this limit to make sense, it is required that the integral
ż

AXB(0,k)
f(x) dx

exists for all k P N. On the other hand, if A is bounded and f is unbounded, to define the
integral of f on A it is also natural to consider the limit

lim
kÑ8

ż

A

(f ^k)(x) dx , (6.6.1)

where (f ^ k)(x) = mintf(x), ku. Again, for the limit above to make sense, it is required
that the integral

ż

A
(f ^ k)(x) dx exists for all k P N. In both cases, we look for generic

conditions (independent of k) that f and A have to satisfy so that
ż

AXB(0,k)

f(x) dx and
ż

A

(f ^k)(x) dx

are well-defined for all k P N, and we have the following

Definition 6.72 (Riemann measurable sets and functions).

1. A set A Ď Rn is said to be Riemann measurable if BA has measure zero.

2. A function f : A Ď Rn Ñ R is said to be Riemann measurable if

the set
␣

x P A
ˇ

ˇ f is discontinuous at x
(

has measure zero in Rn.

Adopting this definition, the Lebesgue theorem shows that if A is bounded and Riemann
measurable, then f : A Ñ R is Riemann integrable on A if and only if f is bounded and
Riemann measurable. Since the improper integrals deal with integrals of possibly unbounded
functions on possibly unbounded sets, in view of the Lebesgue theorem it is quite natural
to consider removing the boundedness but keeping the Riemann measurability of A and f

in order to define the improper integrals. Observe that
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1. If A is Riemann measure, then AXB(0, k) is Riemann measurable for all k P N since

B(A X B(0, k)) Ď BA Y BB(0, k) .

2. If f is Riemann measure, then f ^ k is Riemann measurable for all k P N. In fact,
since the function F : R2 Ñ R defined by F (x, y) = maxtx, yu is continuous, if f is
continuous at x, then for all k P N,

lim
yÑx

(f ^k)(y) = lim
yÑx

F (f(y), k) = F (f(x), k) = (f ^k)(x) .

Therefore, for all k P N,
␣

x P A
ˇ

ˇ f ^k is discontinuous at x
(

Ď
␣

x P A
ˇ

ˇ f is discontinuous at x
(

.

In other words, if A Ď Rn is a Riemann measurable set and f : A Ñ R is a Riemann
measurable function.

1. If f is bounded, then
ż

AXB(0,k)
f(x) dx exists for all k P N.

2. If A is bounded, then
ż

A
(f ^k)(x) dx exists for all k P N.

How about the case that A is an unbounded set and f is an unbounded function? From
the discussion above, it is natural to consider the limit of

ż

AXB(0,k)
(f ^k)(x) dx as k Ñ 8.

We note that if A Ď Rn is a Riemann measurable set and f : A Ñ R is a Riemann measurable
function, then

ż

AXB(0,k)
(f ^k)(x) dx exists for all k P N. This motivates the following

Definition 6.73. Let A Ď Rn be a Riemann measurable set, and f : A Ñ R be a non-
negative Riemann measurable function. f is said to be integrable on A if the limit

ż

A

f(x) dx ” lim
kÑ8

ż

AXB(0,k)

(f ^k)(x) dx (6.6.2)

is finite, and in such a case
ż

A
f(x) dx is called the integral of f on A.

Remark 6.74. 1. For non-negative function f : A Ñ R (with f and A satisfying assump-

tions in Definition 6.73), if the limit
ż

AXB(0,k)
f(x) dx is infinite, we still call

ż

A
f(x) dx

the integral of f on A. However, in this case f is not integrable on A.
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2. Let A Ď Rn and f : A Ñ R be given in Definition 6.73. If F Ď A is a Riemann
measurable set with measure zero, then

ż

F

f(x) dx = lim
kÑ8

ż

FXB(0,k)

(f ^k)(x) dx = 0 ,

where Theorem 6.45 is used to evaluate the integral.

3. By the Monotone Convergence Theorem (Theorem 6.69), (6.6.2) always holds if f :

A Ñ R is Riemann integrable; thus Riemann integrable functions are integrable.
From now on, when talking about integrability, it could refer to Riemann
integrable functions as well.

Remark 6.75. When f : A Ñ R is unbounded, instead of (6.6.1) one might want to define
the improper integral of f on A as

lim
kÑ8

ż

A

fk(x) dx ,

where
fk(x) =

(
f1tfďku

)
(x) =

"

f(x) if f(x) ď k ,

0 otherwise .
The sequence tfku8

k=1 still monotonically converges to f ; however, it is not easy to see if the
collection of points of discontinuity of fk has measure zero since the set

␣

x P A
ˇ

ˇ f(x) = k
(

could be large. In other words, by defining fk in this way we do not know the integrability
of fk on A; thus it is meaningless to define the improper integral as the limit of

ż

A
fk(x) dx.

Example 6.76. Let f : [1,8) Ñ R be given by f(x) = xp for some p P R. If p ą 0, then f

is unbounded, and in this case

(f ^k)(x) =

#

xp if 1 ď x ď k
1
p ,

k if x ą k
1
p ;

thus for p ě 1

ż

[1,8)X(´k,k)

(f ^k)(x) dx =

ż k
1
p

1

xpdx+

ż k

k
1
p

kdx =
1

p+ 1
(k1+

1
p ´ 1) + k(k ´ k

1
p )

and for 0 ă p ă 1,
ż

[1,8)X(´k,k)

(f ^k)(x) dx =

ż k

1

xpdx =
1

p+ 1
(kp+1 ´ 1) .
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In both cases, the limit (as k Ñ 8) do not exist.
When p ď 0, f is bounded by 1 on [1,8). Therefore,

ż

[1,8)X(´k,k)

(f ^k)(x) dx =

ż k

1

f(x)dx =

$

&

%

1

p+ 1
(kp+1 ´ 1) if p ‰ ´1 ,

log k if p = ´1 .

It is easy to see that the limit (as k Ñ 8) exists only when p ă ´1. Therefore, f is
integrable on (0, 1) if and only if p ă ´1, and in this case

ż

[1,8)

f(x) dx = lim
kÑ8

1

p+ 1
(kp+1 ´ 1) = ´

1

p+ 1
.

Example 6.77. Let f : (0, 1) Ñ R be given by f(x) = xp for some p P R. If p ě 0, f is
continuous on (0, 1), so f is Riemann integrable on (0, 1). If p ă 0, f is unbounded on (0, 1),
so the Riemann integral of f no longer makes sense. Nevertheless, we can find the improper
integral of f using (6.6.2): for each k P N,

(f ^k)(x) =

#

xp if x ě k
1
p ,

k if 0 ă x ă k
1
p ;

thus
ż 1

0

(f ^k)(x) dx =

ż k
1
p

0

kdx+

ż 1

k
1
p

xpdx =

$

&

%

1

p+ 1
(pk1+

1
p + 1) if p ‰ ´1 ,

1 + log k if p = ´1 .

It is easy to see that the limit (as k Ñ 8) exists only when p ą ´1. Therefore, f is
integrable on (0, 1) if p ą ´1, and in this case

ż

(0,1]

f(x)dx = lim
kÑ8

1

p+ 1
(pk1+

1
p + 1) =

1

p+ 1
.

The following three propositions are generalization of corresponding results in Riemann
integrals.

Proposition 6.78.

1. Let A Ď Rn be a Riemann measurable set, and f, g : A Ñ R be non-negative, Riemann
measurable functions. If f ď g, then

ż

A

f(x) dx ď

ż

A

g(x) dx .
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2. Let A,B Ď Rn be Riemann measurable sets, and f : A Y B Ñ R be a non-negative,
Riemann measurable function. If A Ď B, then

ż

A

f(x) dx ď

ż

B

f(x) dx .

Proof. The first case follows from that
ż

AXB(0,k)
(f^k)(x) dx ď

ż

AXB(0,k)
(g^k)(x) dx, while

the second case follows from that
ż

AXB(0,k)
(f ^k)(x) dx ď

ż

BXB(0,k)
(f ^k)(x) dx. ˝

Corollary 6.79. Let A Ď Rn be a Riemann measurable set, and f : A Ñ R be a non-negative
Riemann measurable function. Then

ż

A

f(x) dx = lim
kÑ8

ż

AXB(0,k)

f(x) dx = lim
kÑ8

ż

A

(f ^k)(x) dx . (6.6.3)

Proof. For each k P N, Proposition 6.78 implies that
ż

AXB(0,k)

(f ^k)(x) dx ď

ż

AXB(0,k)

f(x) dx ď

ż

A

f(x) dx ,

ż

AXB(0,k)

(f ^k)(x) dx ď

ż

A

(f ^k)(x) dx ď

ż

A

f(x) dx .

The conclusion follows from passing to the limit as k Ñ 8. ˝

Corollary 6.80. Let A Ď Rn be a Riemann measurable set, and f : A Ñ R be a non-negative
Riemann measurable function. Then for all α ą 0,

ż

A

(αf)(x) dx = α

ż

A

f(x) dx .

Proof. By Corollary 6.79,
ż

A

(αf)(x) dx = lim
kÑ8

ż

AXB(0,αk)

[
(αf)^ (αk)

]
(x) dx = lim

kÑ8

ż

AXB(0,αk)

α(f ^k)(x) dx

= α lim
kÑ8

ż

AXB(0,αk)

(f ^k)(x) dx = α

ż

A

f(x) dx . ˝

Proposition 6.81. Let A,B Ď Rn be Riemann measurable sets, and f : A Y B Ñ R be a
non-negative, Riemann measurable function. If A X B has measure zero, then

ż

AYB

f(x) dx =

ż

A

f(x) dx+

ż

B

f(x) dx .
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Proof. To simplify the notation, for each k P N we let fk = f ^k, and Ak = A X B(0, k) as
well as Bk = B X B(0, k). Then

B(Ak Y Bk) = B
(
(A Y B) X B(0, k)

)
Ď B(A Y B) Y BB(0, k) Ď BA Y BB Y BB(0, k) ,

B(Ak X Bk) = B
(
(A X B) X B(0, k)

)
Ď B(A X B) Y BB(0, k) Ď BA Y BB Y BB(0, k) ;

thus under the assumptions of this proposition, Ak YBk and Ak XBk have volume for each
k P N. Therefore, Corollary 6.35 implies that for each k P N, fk1Ak

, fk1Bk
and fk1AkXBk

are all Riemann integrable on Ak YBk. Since Ak XBk has measure zero, Theorem 6.45 and
6.50 imply that

ż

(AYB)XB(0,k)

(f ^k) dx =

ż

AkYBk

fk(x) dx =

ż

Ak

fk(x) dx+

ż

Bk

fk(x) dx

=

ż

AXB(0,k)

(f ^k) dx+

ż

BXB(0,k)

(f ^k) dx ,

and the theorem is concluded by passing to the limit as k Ñ 8. ˝

Proposition 6.82. Let A Ď Rn be a Riemann measurable set, and f, g : A Ñ R be non-
negative, Riemann measurable functions. Then

ż

A

(f + g)(x) dx =

ż

A

f(x) dx+

ż

A

g(x) dx .

Proof. Note that if f, g are non-negative functions, then for all k P N,[
(f + g)^k

]
(x) ď (f ^k)(x) + (g^k)(x) ď

[
(f + g)^ (2k)

]
(x) @x P A .

Therefore, Proposition 6.78 implies that for all k P N,
ż

AXB(0,k)

[
(f + g)^k

]
(x) dx ď

ż

AXB(0,k)

[
(f ^k)(x) + (g^k)(x)

]
dx

ď

ż

AXB(0,2k)

[
(f ^k)(x) + (g^k)(x)

]
dx ď

ż

B(0,2k)

[
(f + g)^ (2k)

]
(x) dx .

By Theorem 6.44, we obtain that
ż

AXB(0,k)

[
(f + g)^k

]
(x) dx ď

ż

AXB(0,k)

(f ^k)(x) dx+

ż

AXB(0,k)

(g^k)(x) dx

ď

ż

B(0,2k)

[
(f + g)^ (2k)

]
(x) dx ,

and the conclusion follows from passing to the limit as k Ñ 8. ˝
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Those who are familiar with the improper integrals introduced in Calculus might be
confused with the way we compute the improper integrals in Example 6.76 and 6.77. In
fact, there are other ways of evaluating the improper integrals for functions of one variable,
and the following theorem is useful for this particular purpose.

Theorem 6.83. 1. Let f : [a,8) Ñ R be bounded, non-negative, and continuous except
perhaps on a set of measure zero. Then

ż

[a,8)

f(x) dx = lim
RÑ8

ż R

a

f(x) dx . (6.6.4)

2. Let a P R, f : (a, b] Ñ R be non-negative, bounded on [a + ε, b] for all ε ą 0, and
continuous except perhaps on a set of measure zero. Then

ż

(a,b]

f(x) dx = lim
εÑ0+

ż b

a+ε

f(x) dx . (6.6.5)

Proof. 1. Note that for k ě max
␣

|a|, supxP[a,8) f(x)
(

,
ż

[a,8)X(´k,k)

(f ^k)(x) dx =

ż k

a

f(x) dx ;

thus (6.6.4) is obtained by passing to the limit as k Ñ 8.

2. For each ε ą 0 sufficiently small,
ż b

a+ε

f(x) dx =

ż

(a,b]

(f1[a+ε,b])(x) dx ď

ż

(a,b]

f(x) dx ;

thus passing to the limit as ε Ñ 0+, we find that

lim
εÑ0+

ż b

a+ε

f(x) dx ď

ż

(a,b]

f(x) dx . (6.6.6)

On the other hand, note that the Monotone Convergence Theorem for Riemann inte-
grable sequence of functions (Theorem 6.69) implies that

ż b

a

(f ^k)(x) dx = lim
εÑ0+

ż b

a+ε

(f ^k)(x) dx ď lim
εÑ0+

ż b

a+ε

f(x) dx .

Passing to the limit as k Ñ 8, we find that
ż b

a

f(x) dx = lim
εÑ0+

ż

(a,b]X(´k,k)

(f ^k)(x) dx ď lim
εÑ0+

ż b

a+ε

f(x) dx . (6.6.7)

Combining (6.6.6) and (6.6.7), we concluded (6.6.5). ˝
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Corollary 6.84. Let a P R, f : (a,8) Ñ R be non-negative, bounded on [a + ε,8) for all
ε ą 0, and continuous except perhaps on a set of measure zero. Then

ż

(a,8)

f(x) dx = lim
RÑ8
εÑ0+

ż R

a+ε

f(x) dx . (6.6.8)

Proof. Let a ă b ă 8. Then Theorem 6.81 implies that
ż

(a,8)

f(x) dx =

ż

(a,b]

f(x) dx+

ż

[b,8)

f(x) dx ;

thus we conclude from Theorem 6.83 that
ż

(a,8)

f(x) dx = lim
εÑ0+

ż

[a+ε,b]

f(x) dx+ lim
RÑ8

ż

[b,R]

f(x) dx

= lim
RÑ8
εÑ0+

ż

[a+ε,b]

f(x) dx+ lim
RÑ8
εÑ0+

ż

[b,R]

f(x) dx

= lim
RÑ8
εÑ0+

( ż
[a+ε,b]

f(x) dx+

ż

[b,R]

f(x) dx
)
= lim

RÑ8
εÑ0+

ż R

a+ε

f(x) dx ,

where the sum of the limits of two integrals is the same as the limit of sums of integrals
since both integrals are increasing as R Ñ 8 and ε Ñ 0+. ˝

Remark 6.85. In view of (6.6.4) and (6.6.5), we also have the following notation for im-
proper integrals for functions of one variable:

ż 8

a

f(x) dx ”

ż

[a,8)

f(x) dx and
ż b

a

f(x) dx =

ż

(a,b]

f(x) dx .

Example 6.86. Let f(x) = xp as in Example 6.76 and 6.77. Since

ż R

1

xp dx =

$

&

%

1

p+ 1
(Rp+1 ´ 1) if p ‰ ´1 ,

logR if p = ´1 ,

and
ż 1

ε

xp dx =

$

&

%

1

p+ 1
(1 ´ ε1+p) if p ‰ ´1 ,

´ log ε if p = ´1 ,

by Theorem 6.83 we find that f is integrable on [1,8) if and only if p ă ´1 and f is
integrable on (0, 1] if and only if p ą ´1. These are the conclusions that we have obtained
in Example 6.76 and 6.77.
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Example 6.87 (The Gamma function). For each t ą 0, define Γ(t) =
ż 8

0
xt´1e´x dx.

1. For 1 ď t ă 8, the integrand is bounded and non-negative. In fact, xt´1e´x ď Mte
´x

2

for some constant Mt ą 0 (we can choose Mt = sup
xP[0,8)

xt´1e´x
2 ). Since

ż R

0

xt´1e´x dx ď

ż R

0

Mte
´x

2 dx ď ´2Mte
´x

2

ˇ

ˇ

ˇ

x=R

x=0
ď 2Mt ă 8 ;

we find that Γ(t) is well-defined for 1 ď t ă 8.

2. For 0 ă t ă 1, the integrand is unbounded near 0; thus by Theorem 6.81 we rewrite
ż 8

0

xt´1e´x dx =

ż 1

0

xt´1e´x dx+

ż 8

1

xt´1e´x
2 e´x

2 dx .

Since xt´1e´x ď xt´1 on (0, 1] and xt´1e´x ď e´x on [1,8), for ε ą 0 we have
ż 1

ε

xt´1e´xdx ď

ż 1

ε

xt´1dx =
1

t
xt
ˇ

ˇ

ˇ

1

x=ε
=

1

t
(1 ´ εt) ď

1

t

and for R ą 1,
ż R

1

xt´1e´xdx ď

ż R

1

e´xdx = ´e´x
ˇ

ˇ

ˇ

x=R

x=1
= e´1 ´ e´R ď e´1 .

Therefore, Γ(t) is also well-defined for 0 ă t ă 1.

The following theorem provides different ways of computing the improper (multiple)
integrals.

Theorem 6.88. Let A Ď Rn be a Riemann measurable set, and f : A Ñ R be a non-
negative, Riemann measurable function. Then f is integrable on A if and only if for each
sequence tBku8

k=1 Ď Rn of bounded sets with volume satisfying

1. Bk Ď Bk+1 for all k P N;

2. for all R ą 0 we have B(0, R) Ď Bk for sufficient large k P N;

the limit lim
kÑ8

ż

AXBk

(f ^k)(x) dx exists.

Proof. “ð” Simply choose Bk = B(0, k) to conclude the integrability of f on A.
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“ñ” For each ℓ P N, there exists N(ℓ) ě ℓ such that B(0, ℓ) Ď Bk for all k ě N(ℓ). Then
ż

AXB(0,ℓ)

(f ^ ℓ)(x) dx ď

ż

AXBk

(f ^ ℓ)(x) dx ď

ż

AXBk

(f ^k)(x) dx @ k ě N(ℓ) .

Since
ż

AXBk

(f ^ k)(x) dx =
ż

A

(
(f ^ k)1Bk

)
(x) dx ď

ż

A
f(x) dx, by the sandwich

lemma we conclude that
ż

A

f(x) dx = lim
ℓÑ8

ż

AXB(0,ℓ)

(f ^ ℓ)(x) dx = lim
kÑ8

ż

AXBk

(f ^k)(x) dx . ˝

In other words, as long as tBku8
k=1 “expands to the whole space”, one can evaluate the

improper integral using
ż

A

f(x) dx = lim
kÑ8

ż

AXBk

(f ^k)(x) dx .

One particular sequence of sets tBku8
k=1 is given by Bk = [´k, k] ˆ ¨ ¨ ¨ ˆ [´k, k].

Example 6.89. Consider the improper integral
ż 8

´8

e´x2 dx. Instead of evaluating this

improper integral directly, we consider the improper integral
ż

R2

e´(x2+y2) dA. Note that
Theorem 6.88 implies that

ż

R2

e´(x2+y2) dA = lim
kÑ8

ż

[´k,k]ˆ[´k,k]

e´(x2+y2) dA = lim
kÑ8

ż

B(0,k)

e´(x2+y2) dA .

By the Fubini theorem,

lim
kÑ8

ż

[´k,k]ˆ[´k,k]

e´(x2+y2) dA = lim
kÑ8

ż k

´k

( ż k

´k

e´(x2+y2)dy
)
dx =

( ż 8

´8

e´x2dx
)2

,

while the change of variables formula (with (x, y) = (r cos θ, r sin θ)) implies that

lim
kÑ8

ż

B(0,k)

e´(x2+y2) dA = lim
kÑ8

ż

[0,k]ˆ[0,2π]

e´r2rd(r, θ) = lim
kÑ8

ż 2π

0

( ż k

0

e´r2rdr
)
dθ

= lim
kÑ8

ż 2π

0

(e´r2

´2

ˇ

ˇ

ˇ

r=k

r=0

)
dθ = lim

kÑ8
π(1 ´ e´k2) = π .

Since
ż 8

´8

e´x2 dx ě 0, we must have
ż 8

´8

e´x2 dx =
?
π .
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Now we define the improper integrals for general functions. Let _ be an operation which
outputs the maximum of values from both sides of _; that is,

(f _g)(x) = max
␣

f(x), g(x)
(

.

Define the positive and negative parts, denoted by f+ and f´ respective, by f+ = f_0 and
f´ = (´f)_0. Since f+, f´ are non-negative and f = f+´f´, to defined the integral of f it
is natural to consider the difference of the integrals

ż

A
f+(x) dx and

ż

A
f´(x) dx. Note that

if the collection of discontinuities of f has measure zero, the collections of discontinuities of
both f+ and f´ are sets of measure zero; thus the integrals

ż

A
f˘(x) dx makes sense.

The discussion above motivates the following

Definition 6.90. Let A Ď Rn be a Riemann measurable set, and f : A Ñ R be a Riemann
measurable function. f is said to be integrable on A if both integrals

ż

A

f+(x) dx and
ż

A

f´(x) dx

are finite, where f+ and f´ are the positive and negative parts of f defined by

f+ = f _0 and f´ = (´f)_0 .

If f is integrable on A, the integral of f on A, denoted by
ż

A
f(x) dx, is the number

ż

A
f+(x) dx ´

ż

A
f´(x) dx.

Remark 6.91. 1. If f is integrable on A, then
ż

A

ˇ

ˇf(x)
ˇ

ˇ dx =

ż

A

f+(x) dx+

ż

A

f´(x) dx ă 8 ;

thus the integrability of f on A sometimes is also called the absolute integrability of
f on A or that the integral

ż

A
f(x) dx is absolutely convergent.

2. For integrable function f : A Ñ R, one can compute the integral of f on A by
ż

A

f(x) dx = lim
kÑ8

ż

AXB(0,k)

(f+^k)(x) dx ´ lim
kÑ8

ż

AXB(0,k)

(f´^k)(x) dx

= lim
kÑ8

ż

AXB(0,k)

f+(x) dx ´ lim
kÑ8

ż

AXB(0,k)

f´(x) dx

= lim
kÑ8

ż

AXB(0,k)

(
f+(x) ´ f´(x)

)
dx = lim

kÑ8

ż

AXB(0,k)

f(x) dx . (6.6.9)
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where (6.6.3) is used to conclude the third equality. In (6.6.9), the set B(0, k) can also
be replaced by increasing sequence of set tBku8

k=1 as introduced in Theorem 6.88.

By Proposition 6.78, 6.81, 6.82 and Corollary 6.80, we can also establish the following

Theorem 6.92. Let A Ď Rn be a Riemann measurable set, and f, g : A Ñ R be integrable
functions. If f ď g, then

ż

A

f(x) dx ď

ż

A

g(x) dx .

Theorem 6.93. Let A Ď Rn be a Riemann measurable set, and f : A Ñ R be an integrable
function. Then for all α P R,

ż

A

(αf)(x) dx = α

ż

A

f(x) dx .

Theorem 6.94. Let A,B Ď Rn be Riemann measurable sets, and f : A Y B Ñ R be an
integrable function. If A X B has measure zero, then

ż

AYB

f(x) dx =

ż

A

f(x) dx+

ż

B

f(x) dx .

Theorem 6.95. Let A Ď Rn be a Riemann measurable set, and f, g : A Ñ R be integrable
functions. Then

ż

A

(f + g)(x) dx =

ż

A

f(x) dx+

ż

A

g(x) dx .

The proofs for the theorems above are left to the readers as exercises.

Remark 6.96. 1. If f is not integrable on A but one of the integrals
ż

A
f+(x) dx or

ż

A
f´(x) dx is finite, the number

ż

A
f+(x) dx ´

ż

A
f´(x) dx is still well-understood,

and we still call this difference as the integral of f on A.

2. When at least one of the integrals
ż

A
f+(x) dx or

ż

A
f´(x) dx is finite,

ż

A

f(x) dx = lim
kÑ8

ż

AXB(0,k)

(f+ ^k)(x) dx ´ lim
kÑ8

ż

AXB(0,k)

(f´ ^k)(x) dx

= lim
kÑ8

( ż
AXB(0,k)

(f+ ^k)(x) dx ´

ż

AXB(0,k)

(f´ ^k)(x) dx
)

= lim
kÑ8

ż

AXB(0,k)

(´k)_ (f ^k)(x) dx .
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Therefore, it is tempting to define the integrability of f on A by the existence of the
limit

lim
kÑ8

ż

AXB(0,k)

[
(´k)_ (f ^k)

]
(x) dx .

However, this cannot be the correct definition since if we adapt this definition, then
the function f : R Ñ R defined by f(x) = 1

x
for x ‰ 0 (and f(0) is given arbitrarily)

will be integrable on R (and the integral is 0 by symmetry), while Theorem 6.94, a
should-have theorem for integrable functions, fails to hold for this particular function
since

0 =

ż

R
f(x) dx ‰

ż

[0,8)

f(x) dx+

ż

(´8,0]

f(x) dx .

Theorem 6.97 (Comparison Test). Let A Ď Rn be a Riemann measurable set, f, g : A Ñ R
be Riemann measurable functions. If |f | ď g on A and g is integrable on A, then f is
integrable on A.

Proof. Since |f | = f+ + f´, the condition that |f | ď g implies that f+ ď g and f´ ď g;
thus

ż

AXB(0,k)

(f˘ ^k)(x) dx ď

ż

AXB(0,k)

(g^k)(x) dx ď

ż

A

g(x) dx ă 8 .

Since
ż

AXB(0,k)
(f˘ ^k)(x) dx are increasing in k, both limits

lim
kÑ8

ż

AXB(0,k)

(f˘ ^k)(x) dx

must exist (and are finite). Therefore, f is integrable on A. ˝

Example 6.98. Let f : [0,8) Ñ R be given by f(x) = sinx

x2 + 1
. Then

ˇ

ˇf(x)
ˇ

ˇ ď
1

x2 + 1
and

the function y =
1

x2 + 1
is integrable on [0,8) since

lim
RÑ8

ż R

0

1

x2 + 1
dx = lim

RÑ8
tan´1 x

ˇ

ˇ

ˇ

x=R

x=0
= lim

RÑ8
tan´1R =

π

2
.

Let taku8
k=1 be a non-negative sequence. Then the series

8
ř

k=1

ak can be viewed as the

integral of the piecewise constant function

f(x) = ak if k ´ 1 ď x ă k (6.6.10)
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over the set R+ ” tx ě 0u. Now suppose that taku8
k=1 is a general sequence in R. Define

a+k = maxtak, 0u, a´
k = maxt´ak, 0u for each k P N, and let f : R+ Ñ R be defined by

(6.6.10). Recall that a series
8
ř

k=1

ak is absolutely convergent if
8
ř

k=1

|ak| ă 8 and this is
equivalent to that

8
ÿ

k=1

a+k ă 8 and
8
ÿ

k=1

a´
k ă 8 .

Since
ż

R+

f+(x) dx =
8
ř

k=1

a+k and
ż

R+

f´(x) dx =
8
ř

k=1

a´
k , we find that the series

8
ř

k=1

ak is

absolutely convergent if and only if f given by (6.6.10) is integrable on R+.
There is another concept of convergence of series, called the conditional convergence.

Recall that a series
8
ř

k=1

ak is said to be conditionally convergent if the limit lim
ℓÑ8

ℓ
ř

k=1

ak exists

but
8
ř

k=1

|ak| = 8. Let
8
ř

k=1

ak be a conditionally convergent series, and f : R+ Ñ R be given

by (6.6.10). Then
ż

R+

f+(x) dx =
8
ÿ

k=1

a+k = 8 and
ż

R+

f´(x) dx =
8
ÿ

k=1

a´
k = 8 ,

while the limit lim
ℓÑ8

ż ℓ

0
f(x) dx = lim

ℓÑ8

ℓ
ř

k=1

ak exists. The connection between the two kinds

of convergence of series and integrals motivates the following

Definition 6.99. Let A Ď R be a Riemann measurable set, and f : A Ñ R be a Rie-
mann measurable function. The improper integral

ż

A
f(x) dx is said to be conditionally

convergent if f is not integrable on A but the limit lim
k,ℓÑ8

ż

AX(´ℓ,k)
f(x) dx exists.

Remark 6.100. Suppose that the series
8
ř

k=1

ak is conditionally convergent. Then for each
r P R, there exists a permutation π : N Ñ N such that

r =
8
ÿ

k=1

aπ(k) = aπ(1) + aπ(2) + aπ(3) + ¨ ¨ ¨ .

In other words, the order of the summation matters in a conditional convergent series; thus
in general it will not be possible to talk about conditionally convergent integrals of functions
on subsets of Rn if n ě 2 since it usually requires the Fubini theorem to evaluate the multiple
integrals while the Fubini theorem involves evaluating integrals in different orders.
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Example 6.101. Let f : [0,8) Ñ R be given by f(x) =
sinx

x
. Then for all 0 ă r ă R,

using the integration by parts formula we obtain that
ˇ

ˇ

ˇ

ż R

r

sinx
x

dx
ˇ

ˇ

ˇ
=
ˇ

ˇ

ˇ

1 ´ cosx
x

ˇ

ˇ

ˇ

x=R

x=r
+

ż R

r

1 ´ cosx
x2

dx
ˇ

ˇ

ˇ
ď

2

R
+

2

r
+

ż R

r

2

x2
dx =

4

r
.

Let Ik =
ż k

0

sinx

x
dx. Then the inequality above implies that tIku8

k=1 is Cauchy in R, so the

limit
ż 8

0

sinx

x
dx = lim

kÑ8
Ik exists. However,

ż 8

0

f+(x) dx =
8
ÿ

k=1

ż (2k´1)π

(2k´2)π

sinx
x

dx ě

8
ÿ

k=1

1

(2k ´ 1)π

ż (2k´1)π

(2k´2)π

sinxdx =
2

π

8
ÿ

k=1

1

2k ´ 1
= 8

and
ż 8

0

f´(x) dx =
8
ÿ

k=1

ż 2kπ

(2k´1)π

´ sinx
x

dx ě

8
ÿ

k=1

1

2kπ

ż 2kπ

(2k´1)π

(´ sinx)dx =
1

π

8
ÿ

k=1

1

k
= 8 .

Therefore, the improper integral
ż 8

0

sinx

x
dx is conditionally convergent.

6.6.1 The monotone convergence theorem and the dominated con-
vergence theorem

In the remaining part of this section, we present some important theorems introduced in
Section 6.4 under the new settings of improper integrals.

Theorem 6.102 (Dominated Convergence Theorem). Let A Ď Rn be a Riemann measurable
set, and fk, f : A Ñ R be Riemann measurable functions such that lim

kÑ8
fk(x) = f(x) for all

x P A. Suppose that there exists an integrable function g such that |fk| ď g for all k P N.
Then f is integrable on A, and

ż

A

f(x) dx = lim
kÑ8

ż

A

fk(x) dx .

Proof. Since
ˇ

ˇfk(x)
ˇ

ˇ ď g(x) for all x P A and k P N,
ˇ

ˇf(x)
ˇ

ˇ ď g(x) for all x P A. By
the integrability of g, the comparison test (Theorem 6.97) implies that fk and f are also
integrable on A.

Let ε ą 0 be given. Since f, g are integrable on A, there exists L ą 0 such that

0 ď

ż

A

g(x) dx ´

ż

AXB(0,ℓ)

(g^ ℓ)(x) dx ă
ε

3
@ ℓ ě L (6.6.11)
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and
ˇ

ˇ

ˇ

ż

A

f(x) dx ´

ż

AXB(0,ℓ)

(
(´ℓ)_ (f ^ ℓ)

)
(x) dx

ˇ

ˇ

ˇ
ă
ε

3
@ ℓ ě L .

Moreover, since (´L)_ (fk ^L) Ñ (´L)_ (f ^L) p.w. as k Ñ 8 (due to the pointwise
convergence of tfku8

n=1 to f), and
ˇ

ˇ(´L) _ (fk ^ L)
ˇ

ˇ ď L on A X B(0, L), the Bounded
Convergence Theorem (Theorem 6.70) implies that there exists K ą 0 such that

ˇ

ˇ

ˇ

ż

AXB(0,L)

(
(´L)_ (fk ^L)

)
(x) dx ´

ż

AXB(0,L)

(
(´L)_ (f ^L)

)
(x) dx

ˇ

ˇ

ˇ
ă
ε

3
@ k ě K .

Note that Theorem 6.81 implies that
ˇ

ˇ

ˇ

ż

A

f(x) dx ´

ż

A

fk(x) dx
ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

ż

A

f(x) dx ´

ż

AXB(0,L)

(
(´L)_ (f ^L)

)
(x) dx

ˇ

ˇ

ˇ

+
ˇ

ˇ

ˇ

ż

AXB(0,L)

(
(´L)_ (f ^L)

)
(x) dx ´

ż

AXB(0,L)

(
(´L)_ (fk ^L)

)
(x) dx

ˇ

ˇ

ˇ

+
ˇ

ˇ

ˇ

ż

AXB(0,L)

(
(´L)_ (fk ^L)

)
(x) dx ´

ż

AXB(0,L)

fk(x) dx
ˇ

ˇ

ˇ
+
ˇ

ˇ

ˇ

ż

AXB(0,L)A

fk(x) dx
ˇ

ˇ

ˇ
,

and the fact that
ˇ

ˇfk
ˇ

ˇ ď g implies that
ˇ

ˇ

(
(´L)_ (fk ^L)

)
(x) ´ fk(x)

ˇ

ˇ ď g(x) ´ (g^L)(x) .

Therefore, for k ě K,
ˇ

ˇ

ˇ

ż

A

f(x) dx ´

ż

A

fk(x) dx
ˇ

ˇ

ˇ

ă
2ε

3
+

ż

AXB(0,L)

(
g(x) ´ (g^L)(x)

)
dx+

ż

AXB(0,L)A

g(x) dx

ď
2ε

3
+

ż

A

g(x) dx ´

ż

AXB(0,L)

(g^L)(x) dx ă ε . ˝

The Monotone Convergence Theorem for improper integrals, unlike the case in the Rie-
mann integrals, is no longer an immediate consequence of the Dominated Convergence
Theorem since the “integral” of the limit function might be infinite. It requires a little bit
more attention to get proved.

Theorem 6.103 (Monotone Convergence Theorem for Improper Integrals). Let A Ď Rn

be a Riemann measurable set, and fk, f : A Ñ R be non-negative, Riemann measurable
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functions such that lim
kÑ8

fk(x) = f(x) for all x P A. Suppose that tfku8
k=1 is a monotone

increasing sequence of functions; that is, fk ď fk+1 for all k P N. Then
ż

A

f(x) dx = lim
kÑ8

ż

A

fk(x) dx . (6.6.12)

Proof. By the Dominated Convergence Theorem (Theorem 6.102), we only need to consider
the case that

ż

A
f(x) dx = 8 and show that lim

kÑ8

ż

A
fk(x) dx = 8. We also assume the

non-trivial case that
ż

A
fk(x) dx ă 8 for all k P N.

Let M ą 0 be given. Since
ż

A
f(x) dx = 8, there exists L ą 0 such that

ż

AXB(0,ℓ)

(f ^ ℓ)(x) dx ě 2M @ ℓ ě L .

By the Monotone Convergence Theorem for Riemann integrals (Theorem 6.69), there exists
K ą 0 such that

´M ď

ż

AXB(0,L)

(fk ^L)(x) dx ´

ż

AXB(0,L)

(f ^L)(x) dx ď 0 @ k ě K .

Therefore, for all k ě K,
ż

A

fk(x) dx =

ż

A

fk(x) dx ´

ż

AXB(0,L)

(fk ^L)(x) dx+

ż

AXB(0,L)

(fk ^L)(x) dx

´

ż

AXB(0,L)

(f ^L)(x) dx+

ż

AXB(0,L)

(f ^L)(x) dx

ě

ż

A

fk(x) dx ´

ż

AXB(0,L)

(fk ^L)(x) dx+M ě M . ˝

When non-negativity of functions is removed from the condition, for (6.6.12) to hold it is
required that the sequence of functions has an integrable lower bound. To be more precise,
we have the following

Corollary 6.104. Let A Ď Rn be a Riemann measurable set, and fk, f : A Ñ R be Riemann
measurable functions such that lim

kÑ8
fk(x) = f(x) for all x P A. Suppose that there exists an

integrable function g : A Ñ R such that fk(x) ě g(x) for all x P A and k P N, and tfku8
k=1

is a monotone increasing sequence of functions; that is, fk ď fk+1 for all k P N. Then
ż

A

f(x) dx = lim
kÑ8

ż

A

fk(x) dx .
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Proof. Consider the new sequence of functions thku8
k=1 defined by hk = fk ´ g and apply

the Monotone Convergence Theorem (Theorem 6.103). ˝

For monotone decreasing sequences of functions, we have the following

Corollary 6.105. Let A Ď Rn be a Riemann measurable set, and fk, f : A Ñ R be Riemann
measurable functions such that lim

kÑ8
fk(x) = f(x) for all x P A. Suppose that f1 is integrable

on A and tfku8
k=1 is a monotone decreasing sequence of functions; that is, fk ě fk+1 for all

k P N. Then
ż

A

f(x) dx = lim
kÑ8

ż

A

fk(x) dx .

Proof. Consider the new sequence of functions thku8
k=1 defined by hk = f1 ´ fk and apply

the Monotone Convergence Theorem (Theorem 6.103). ˝

6.6.2 The Fubini theorem and the Tonelli theorem

In this section we present the Fubini theorem for improper integrals. The Fubini theorem
for improper integrals takes the form

ż

AˆB

f(x, y)d(x, y) =

ż

A

( ż
B

f(x, y)dy
)
dx

or
ż

AˆB

f(x, y)d(x, y) =

ż

B

( ż
A

f(x, y)dx
)
dy .

as long as f satisfies certain conditions. However, the iterated integrals on the right-hand
side will be meaningless if the functions F (x) ”

ż

B
f(¨, y)dy and G(y) ”

ż

A
f(x, ¨) dx are

not Riemann measurable; thus in general we need to impose the condition that F and G

are Riemann measurable. In fact, even if f : A ˆ B Ñ R is continuous, F might still be
discontinuous at some points. For example, let A = [´1, 1], B = [1,8) and f(x, y) =

|x|y´1´|x|. Then

F (x) =

"

0 if x = 0 ,

1 otherwise ,
which is discontinuous at x = 0. In other words, the collection of discontinuities of F might
not be empty even if f is continuous on A ˆ B since “partial integration” might produce
extra discontinuities; thus in general we do not know if F is Riemann measurable even if f
is continuous.

Before proceeding to the Fubini theorem, we first establish the following
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Theorem 6.106 (Tonelli). Let A Ď Rn and B Ď Rm be Riemann measurable sets such that
A ˆ B is Riemann measurable, and f : A ˆ B Ñ R be a non-negative Riemann measurable
function.

1. If for all x P A, f(x, ¨) is integrable on B and the function
ż

B
f(¨, y) dy : A Ñ R is

Riemann measurable, then
ż

AˆB

f(x, y)d(x, y) =

ż

A

( ż
B

f(x, y)dy
)
dx .

2. If for all y P B, f(¨, y) is integrable on A and the function
ż

A
f(x, ¨) dx : B Ñ R is

Riemann measurable, then
ż

AˆB

f(x, y)d(x, y) =

ż

B

( ż
A

f(x, y)dx
)
dy .

Proof. It suffices to show the first case since the proof of the other case is similar.
We show that for each k P N, the function gk : A Ñ R defined by

gk(x) =

ż

BX[´k,k]m
(f ^k)(x, y)dy

is Riemann measurable. We note that the fact that f(x, ¨) is integrable on B for each x P A

implies that gk is well-defined for all x P A.
For each ℓ P N, the Fubini theorem for Riemann integrals provides that
ż

(AX[´ℓ,ℓ]n)ˆ(BX[´k,k]m)

(f ^k)(x, y)d(x, y) =

ż

AX[´ℓ,ℓ]n
gk(x) dx =

ż

AX[´ℓ,ℓ]n
gk(x) dx .

Therefore, gk is Riemann integrable on A X [´ℓ, ℓ]n for all ℓ P N, and the Lebesgue theo-
rem (Theorem 6.32) implies that the collection of discontinuities of gk in A X [´ℓ, ℓ]n has
measure zero. By Theorem 6.26 and the fact that A =

8
Ť

ℓ=1

(A X [´ℓ, ℓ]n), the collection of

discontinuities of gk in A has measure zero; thus gk is Riemann measurable.
For each k P N, define fk(x, y) = 1[´k,k]n+m(x, y)(f^k)(x, y) and hk(x) = 1[´k,k]n(x)gk(x).

Then tfku8
k=1 and thku8

k=1 are non-negative monotone increasing sequences. Moreover, it is
clear that tfku8

k=1 converges pointwise to f (on A) and thku8
k=1 converges pointwise to the
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function
ż

B
f(¨, y) dy. By the Fubini theorem for Riemann integrals again,

ż

AˆB

fk(x, y)d(x, y) =

ż

(AX[´k,k]n)ˆ(BX[´k,k]m)

(f ^k)(x, y)d(x, y)

=

ż

AX[´k,k]n
gk(x) dx =

ż

A

hk(x) dx ;

thus the Monotone Convergence Theorem (Theorem 6.103) implies that
ż

AˆB

f(x, y)d(x, y) = lim
kÑ8

ż

AˆB

fk(x, y)d(x, y) = lim
kÑ8

ż

A

hk(x) dx

=

ż

A

( ż
B

f(x, y)dy
)
dx . ˝

Now we can present the Fubini theorem.

Theorem 6.107 (Fubini). Let A Ď Rn and B Ď Rm be Riemann measurable sets such that
A ˆ B is Riemann measurable, and f : A ˆ B Ñ R be an integrable function.

1. If for all x P A, f(x, ¨) is integrable on B, and the functions
ż

B
f(¨, y)dy : A Ñ R and

ż

B

ˇ

ˇf(¨, y)
ˇ

ˇdy : A Ñ R are Riemann measurable, then
ż

AˆB

f(x, y)d(x, y) =

ż

A

( ż
B

f(x, y)dy
)
dx .

2. If for all y P B, f(¨, y) is integrable on A, and the functions
ż

A
f(x, ¨)dx : B Ñ R and

ż

A

ˇ

ˇf(x, ¨)
ˇ

ˇdx : B Ñ R are Riemann measurable, then
ż

AˆB

f(x, y)d(x, y) =

ż

B

( ż
A

f(x, y)dx
)
dy .

Proof. It suffices to prove the first case.
Since f˘ =

1

2
(|f | + f), by assumption the functions

ż

B
f+(¨, y)dy : A Ñ R and

ż

B
f´(¨, y)dy : A Ñ R are Riemann measurable functions. Therefore, the Tonelli theo-

rem implies that
ż

AˆB

f˘(x, y)d(x, y) =

ż

A

( ż
B

f˘(x, y) dy
)
dx ;
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thus
ż

AˆB

f(x, y)d(x, y) =

ż

AˆB

f+(x, y)d(x, y) ´

ż

AˆB

f´(x, y)d(x, y)

=

ż

A

( ż
B

f+(x, y) dy
)
dx ´

ż

A

( ż
B

f´(x, y) dy
)
dx

=

ż

A

( ż
B

f+(x, y) dy ´

ż

A

ż

B

f´(x, y) dy
)
dx =

ż

A

( ż
B

f(x, y) dy
)
dx . ˝

Corollary 6.108. Let A Ď Rn and B Ď Rm be Riemann measurable sets such that A ˆ B

is Riemann measurable, and f : A Ñ R and g : B Ñ R be integrable functions. Then the
function h : A ˆ B Ñ R given by h(x, y) = f(x)g(y) is integrable, and

ż

AˆB

h(x, y)d(x, y) =
( ż

A

f(x) dx
)( ż

B

g(y) dy
)
.

Proof. By Theorem 6.28, |h| is Riemann measurable. Moreover, by the integrability of g we
find that for each x P A the function

ˇ

ˇh(x, ¨)
ˇ

ˇ : B Ñ R is Riemann measurable. Since |f | is
integrable on A and

ż

B

ˇ

ˇh(x, y)
ˇ

ˇ dy =
ˇ

ˇf(x)
ˇ

ˇ

ż

B

ˇ

ˇg(y)
ˇ

ˇ dy ,

the function
ż

B
|h(¨, y)|dy : A Ñ R is Riemann measurable. In other words, h satisfies

conditions in the Tonelli theorem (Theorem 6.106); thus we have
ż

AˆB

ˇ

ˇh(x, y)
ˇ

ˇd(x, y) =

ż

A

( ż
B

ˇ

ˇh(x, y)
ˇ

ˇdy
)
dx =

( ż
A

ˇ

ˇf(x)
ˇ

ˇ dx
)( ż

B

ˇ

ˇg(y)
ˇ

ˇ dy
)

ă 8 .

Therefore, h is integrable on AˆB. Since h(x, ¨) is integrable on B for all x P A and h(¨, y)
is integrable on A for all y P B, the Fubini theorem (Theorem 6.107) further implies that

ż

AˆB

h(x, y)d(x, y) =

ż

A

( ż
B

h(x, y)dy
)
dx =

( ż
A

f(x) dx
)( ż

B

g(y) dy
)
. ˝



Chapter 7

Uniform Convergence and the Space
of Continuous Functions

7.1 Pointwise Convergence and Uniform Convergence
（逐點收斂與均勻收斂）

Definition 7.1. Let (M,d) and (N, ρ) be two metric spaces, A Ď M be a set, and fk : A Ñ

N be a function for each k P N. The sequence of functions tfku8
k=1 is said to converge

pointwise if
␣

fk(a)
(8

k=1
converges for all a P A. In other words, tfku8

k=1 converges pointwise
if there exists a function f : A Ñ N such that

lim
kÑ8

ρ
(
fk(a), f(a)

)
= 0 @ a P A.

In this case, tfku8
k=1 is said to converge pointwise to f and is denoted by fk Ñ f p.w. or

fk
p.w.
Ñ f .
Let B Ď A be a subset. The sequence of functions tfku8

k=1 is said to converge uni-
formly on B if there exists f : B Ñ N such that

lim
kÑ8

sup
xPB

ρ
(
fk(x), f(x)

)
= 0 .

In this case, tfku8
k=1 is said to converge uniformly to f on B (or converge to f uniformly on

B) and is denoted by fk Ñ f unif. or fk unif.
Ñ f . In other words, tfku8

k=1 converges uniformly
to f on B if for every ε ą 0, there exists N ą 0 such that

ρ
(
fk(x), f(x)

)
ă ε @ k ě N and x P B .

The sequence of functions tfku8
k=1 is said to converge uniformly (to f) if tfku8

k=1 converges
uniformly (to f) on A.

210
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Example 7.2. Let fk, f : [0, 1] Ñ R be given by

fk(x) =

$

&

%

0 if 1

k
ď x ď 1 ,

´kx+ 1 if 0 ď x ă
1

k
.

and f(x) =

"

0 if x P (0, 1],
1 if x = 0.

Then tfku8
k=1 converges pointwise to f . To see this, fix x P [0, 1].

1. Case x ‰ 0: Let ε ą 0 be given, take N ě
1

x
. If k ě N , x ě

1

k
so that fk(x) = 0; thus

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ =
ˇ

ˇfk(x) ´ 0
ˇ

ˇ = |0 ´ 0| ă ε .

2. Case x = 0: For any ε ą 0, k = 1, 2, 3, . . . ,
ˇ

ˇfk(0) ´ f(0)
ˇ

ˇ = |1 ´ 1| = 0 ă ε.

However, tfku8
k=1 does not converge uniformly to f on [0, 1] because

lim
kÑ8

sup
xP[0,1]

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ = lim
kÑ8

sup
xP(0,1]

ˇ

ˇfk(x)
ˇ

ˇ = 1 ‰ 0 .

Nevertheless, if 0 ă a ă 1, then by the fact that fk is decreasing for each k P N and tfku8
k=1

converges pointwise to f ,

lim
kÑ8

sup
xP[a,1]

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ = lim
kÑ8

sup
xP[a,1]

ˇ

ˇfk(x)
ˇ

ˇ = lim
kÑ8

ˇ

ˇfk(a)
ˇ

ˇ =
ˇ

ˇf(a)
ˇ

ˇ = 0

which implies that tfku8
k=1 converges uniformly to f on [a, 1] for all a P (0, 1).

Example 7.3. Let fk : [0, 1] Ñ R be given by

fk(x) =

$

’

’

’

’

&

’

’

’

’

%

0 if 2

k
ď x ď 1 ,

´k2x+ 2k if 1

k
ď x ă

2

k
,

k2x if 0 ď x ă
1

k
.

Then similar to the previous example, we have

1. tfku8
k=1 converges pointwise to the zero function.

2. tfku8
k=1 does not converge uniformly to the zero function on [0, 1].

3. tfku8
k=1 converges uniformly to the zero function on [a, 1] for all a P (0, 1).
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Example 7.4. Let fk : [0, 1] Ñ R be given by fk(x) = xk. Then for each a P [0, 1), fk(a) Ñ 0

as k Ñ 8, while if a = 1, fk(a) = 1 for all k. Therefore, if f(x) =
"

0 if x P [0, 1) ,

1 if x = 1 ,
then

fk Ñ f p.w.. However, since

sup
xP[0,1]

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ = sup
xP[0,1)

ˇ

ˇfk(x)
ˇ

ˇ = 1 ,

we must have
lim
kÑ8

sup
xP[0,1]

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ = 1 ‰ 0 .

Therefore, tfku8
k=1 does not converge uniformly to f on [0, 1].

On the other hand, if 0 ă a ă 1, then the fact that fk is increasing for all k P N implies
that

sup
xP[0,a]

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ ď ak ;

thus by the Sandwich lemma,

lim
kÑ8

sup
xP[0,a]

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ = 0 .

Therefore, tfku8
k=1 converges to uniformly f on [0, a] if 0 ă a ă 1.

Example 7.5. Let fk : R Ñ R be given by fk(x) =
sinx

k
. Then for each x P R, |fk(x)| ď

1

k
which converges to 0 as k Ñ 8. By the Sandwich lemma,

lim
kÑ8

ˇ

ˇfk(x)
ˇ

ˇ = 0 @x P R .

Therefore, fk Ñ 0 p.w.. Moreover, since sup
xPR

ˇ

ˇfk(x)
ˇ

ˇ ď
1

k
, lim
kÑ8

sup
xPR

ˇ

ˇfk(x)
ˇ

ˇ = 0 . Therefore,
tfku8

k=1 converges uniformly to 0 on R.

Proposition 7.6. Let (M,d) and (N, ρ) be two metric spaces, A Ď M be a set, and
fk, f : A Ñ N be functions for k = 1, 2, ¨ ¨ ¨ . If tfku8

k=1 converges uniformly to f on A, then
tfku8

k=1 converges pointwise to f .

Proof. For each a P A, ρ
(
fk(a), f(a)

)
ď supxPA ρ

(
fk(x), f(x)

)
; thus the Sandwich lemma

shows that
lim
kÑ8

ρ
(
fk(a), f(a)

)
= 0

since tfku8
k=1 converges uniformly to f on A. ˝
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Proposition 7.7 (Cauchy criterion for uniform convergence). Let (M,d) and (N, ρ) be two
metric spaces, A Ď M be a set, and fk : A Ñ N be a sequence of functions. Suppose that
(N, ρ) is complete. Then tfku8

k=1 converges uniformly on B Ď A if and only if for every
ε ą 0, there exists N ą 0 such that

ρ
(
fk(x), fℓ(x)

)
ă ε @ k, ℓ ě N and x P B .

Proof. “ñ” Suppose that tfku8
k=1 converges uniformly to f on B. Let ε ą 0 be given. Then

there exists N ą 0 such that

ρ
(
fk(x), f(x)

)
ă
ε

2
@ k ě N and x P B .

Then if k, ℓ ě N and x P B,

ρ
(
fk(x), fℓ(x)

)
ď ρ

(
fk(x), f(x)

)
+ ρ(f(x), fℓ(x)

)
ă
ε

2
+
ε

2
= ε .

“ð” Let b P B. By assumption,
␣

fk(b)
(8

k=1
is a Cauchy sequence in (N, ρ); thus is conver-

gent by the completeness of (N, ρ). Therefore, we establish a map f : B Ñ N defined
by f(b) = lim

kÑ8
fk(b). We claim that tfku8

k=1 convergence uniformly to f on B.

Let ε ą 0 be given. Then there exists N ą 0 such that

ρ
(
fk(x), fℓ(x)

)
ă
ε

2
@ k, ℓ ě N and x P B .

Moreover, for each x P B there exists Nx ą 0 such that

ρ
(
fℓ(x), f(x)

)
ă
ε

2
@ ℓ ě Nx .

Then for all k ě N and x P B,

ρ
(
fk(x), f(x)

)
ď ρ

(
fk(x), fℓ(x)

)
+ ρ

(
fℓ(x), f(x)

)
ă
ε

2
+
ε

2
= ε

in which we choose ℓ ě maxtN,Nxu to conclude the inequality. ˝

Theorem 7.8. Let (M,d) and (N, ρ) be two metric spaces, A Ď M be a set, and fk : A Ñ N

be a sequence of continuous functions converging to f : A Ñ N uniformly on A. Then f is
continuous on A; that is,

lim
xÑa

f(x) = lim
xÑa

lim
kÑ8

fk(x) = lim
kÑ8

lim
xÑa

fk(x) = f(a) .
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Proof. Let a P A and ε ą 0 be given. Since tfku8
k=1 converges uniformly to f on A, there

exists N ą 0 such that

ρ
(
fk(x), f(x)

)
ă
ε

3
@ k ě N and x P A .

By the continuity of f
N

, there exists δ ą 0 such that

ρ
(
f
N
(x), f

N
(a)

)
ă
ε

3
whenever x P BM(a, δ) X A .

Therefore, if x P BM(a, δ) X A, by the triangle inequality

ρ
(
f(x), f(a)

)
ď ρ

(
f(x), f

N
(x)

)
+ ρ

(
f
N
(x), f

N
(a)

)
+ ρ

(
f
N
(a), f(a)

)
ă
ε

3
+
ε

3
+
ε

3
= ε ;

thus f is continuous at a. ˝

Example 7.9. Let fk : [0, 2] Ñ R be given by fk(x) =
xk

1 + xk
. Then

1. For each a P [0, 1), fk(a) Ñ 0 as k Ñ 8;

2. For each a P (1, 2], fk(a) Ñ 1 as k Ñ 8;

3. If a = 1, then fk(a) =
1

2
for all k.

Let f(x) =

$

’

’

&

’

’

%

0 if x P [0, 1) ,
1

2
if x = 1 ,

1 if x P (1, 2] .

Then tfku8
k=1 converges pointwise to f . However, tfku8

k=1

does not converge uniformly to f on [0, 2] since fk are continuous functions for all k P N but
f is not.

Remark 7.10. The uniform limit of sequence of continuous function might not be uniformly
continuous. For example, let A = (0, 1) and fk(x) =

1

x
for all k P N. Then tfku8

k=1 converges

uniformly to f(x) = 1

x
, but the limit function is not uniformly continuous on A.

Theorem 7.11. Let I Ď R be a finite interval, fk : I Ñ R be a sequence of differentiable
functions, and g : I Ñ R be a function. Suppose that

␣

fk(a)
(8

k=1
converges for some a P I,

and tf 1
ku8
k=1 converges uniformly to g on I. Then

1. tfku8
k=1 converges uniformly to some function f on I.
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2. The limit function f is differentiable on I, and f 1(x) = g(x) for all x P I; that is,

lim
kÑ8

f 1
k(x) = lim

kÑ8

d

dx
fk(x) =

d

dx
lim
kÑ8

fk(x) = f 1(x) .

Proof. 1. Let ε ą 0 be given. Since
␣

fk(a)
(8

k=1
converges to f(a),

␣

fk(a)
(8

k=1
is a Cauchy

sequence. Therefore, there exists N1 ą 0 such that
ˇ

ˇfk(a) ´ fℓ(a)
ˇ

ˇ ă
ε

2
@ k, ℓ ě N1 .

By the uniform convergence of tf 1
ku8
k=1 on I and Proposition 7.7, there exists N2 ą 0

such that
ˇ

ˇf 1
k(x) ´ f 1

ℓ (x)
ˇ

ˇ ă
ε

2|I|
@ k, ℓ ě N2 and x P I ,

where |I| is the length of the interval.

Let N = maxtN1, N2u. By the mean value theorem, for all k, ℓ ě N and x P I,
there exists ξ in between x and a such that

ˇ

ˇfk(x) ´ fℓ(x) ´ fk(a) + fℓ(a)
ˇ

ˇ = |f 1
k(ξ) ´ f 1

ℓ (ξ)||x ´ a| ď
ε|x ´ a|

2|I|
ď
ε

2
;

thus for all k, ℓ ě N and x P I,
ˇ

ˇfk(x) ´ fℓ(x)
ˇ

ˇ ď
ˇ

ˇfk(a) ´ fℓ(a)
ˇ

ˇ+
ε

2
ă
ε

2
+
ε

2
= ε.

Therefore, Proposition 7.7 implies that tfku8
k=1 converges uniformly on I.

2. Suppose that the uniform limit of tfku8
k=1 is f . For any given point c P I, define

ϕk(x) =

$

&

%

fk(x) ´ fk(c)

x ´ c
if x P I, x ‰ c ,

f 1
k(c) if x = c ,

and ϕ(x) =

$

&

%

f(x) ´ f(c)

x ´ c
if x P I, x ‰ c ,

g(c) if x = c .

Then ϕk is continuous on I for all k P N, and tϕku8
k=1 converges pointwise to ϕ.

Claim: tϕku8
k=1 converges uniformly to ϕ on I.

Proof of claim: Let ε ą 0 be given. Since tf 1
ku8
k=1 converges uniformly on I, there

exists N ą 0 such that

sup
sPI

ˇ

ˇf 1
k(s) ´ f 1

ℓ (s)
ˇ

ˇ ă ε @ k, ℓ ě N .
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Since

ˇ

ˇϕk(x) ´ ϕℓ(x)
ˇ

ˇ =

$

&

%

ˇ

ˇfk(x) ´ fk(c) ´ fℓ(x) + fℓ(c)
ˇ

ˇ

|x ´ c|
if x ‰ c, x P I ,

ˇ

ˇf 1
k(c) ´ f 1

ℓ (c)
ˇ

ˇ if x = c ,

by the mean value theorem we obtain that
ˇ

ˇϕk(x) ´ ϕℓ(x)
ˇ

ˇ ď sup
sPI

ˇ

ˇf 1
k(s) ´ f 1

ℓ (s)
ˇ

ˇ ă ε @ k, ℓ ě N and x P I .

Therefore, the Cauchy criterion shows that tϕku8
k=1 converges uniformly to ϕ on I,

and Theorem 7.8 further shows that ϕ is continuous on I; thus

f 1(c) = lim
xÑc

ϕ(x) = ϕ(c) = g(c) . ˝

Example 7.12. Assume that fk : I Ñ R is differentiable for all k P N, and tf 1
ku8
k=1 converges

uniformly to g on I. Then tfku8
k=1 might NOT converge. For example, consider fk(x) = k.

Then f 1
k ” 0 but tfku8

k=1 does not converge.

Example 7.13. For each k P N, let fk : [0, 1] Ñ R be defined by fk(x) =
sin(k2x)

k
. Then

tfku8
k=1 converges uniformly to the zero function on [0, 1] since

sup
xP[0,1]

ˇ

ˇfk(x) ´ 0
ˇ

ˇ = sup
xP[0,1]

ˇ

ˇ

sin(k2x)
k

ˇ

ˇ ď
1

k
ñ lim

kÑ8
sup
xP[0,1]

ˇ

ˇfk(x) ´ 0
ˇ

ˇ = 0 .

However, note that f 1
k(x) = k cos(k2x) so that tf 1

k(0) = k which diverges to 8 (so that
tf 1
ku8
k=1 does not even converge pointwise). Therefore, even if a differentiable sequence

tfku8
k=1 converges uniformly, it does not implies that tf 1

ku8
k=1 converges (pointwise).

Example 7.14. Assume that fk : I Ñ R is differentiable for all k P N, and tfku8
k=1

converges uniformly to f on I. Then f might NOT be differentiable. In fact, there are
differentiable functions fk : [a, b] Ñ R such that fk converges uniformly to f on [a, b] but f
is not differentiable. For example, consider

fk(x) =

$

’

&

’

%

k

2
x2 if

ˇ

ˇx
ˇ

ˇ ď
1

k
,

ˇ

ˇx
ˇ

ˇ ´
1

2k
if 1

k
ď
ˇ

ˇx
ˇ

ˇ ď 1.

Observe that fk(´x) = fk(x), so it suffices to consider x ě 0.
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1. Let f(x) = |x|. Then fk Ñ f uniformly:

sup
xP[´1,1]

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ

= sup
xP[0,1]

ˇ

ˇfk(x) ´ x
ˇ

ˇ = max
!

sup
xP[0, 1

k
]

ˇ

ˇfk(x) ´ x
ˇ

ˇ, sup
xP[ 1

k
,1]

ˇ

ˇfk(x) ´ x
ˇ

ˇ

)

= max
!

sup
xP[0, 1

k
]

ˇ

ˇ

kx2

2
´ x

ˇ

ˇ, sup
xP[ 1

k
,1]

ˇ

ˇx ´
1

2k
´ x

ˇ

ˇ

)

ď sup
xP[0, 1

k
]

ˇ

ˇ

kx2

2

ˇ

ˇ+
ˇ

ˇx
ˇ

ˇ ď
k

2
(
1

k
)2 +

1

k
=

3

2k
Ñ 0 as k Ñ 8 .

2. To see if fk are differentiable, it suffices to show f 1
k(

1

k
) exists.

f 1
k(
1

k
) = lim

hÑ0

fk(
1
k
+ h) ´ fk(

1
k
)

h
= lim

hÑ0

1

h

$

’

&

’

%

(1
k
+ h

)
´

1

2k
´

1

2k
if h ą 0

k

2
(
1

k
+ h)2 ´

1

2k
if h ă 0

= lim
hÑ0

1

h

#

h if h ą 0

h+
k

2
h2 if h ă 0

= 1 .

Example 7.15. Assume that fk : [´1, 1] Ñ R be given by

fk(x) =

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

0 if x P [´1, 0] ,

k2

2
x2 if x P

(
0,

1

k

]
,

1 ´
k2

2

(
x ´

2

k

)2 if x P
(1
k
,
2

k

]
,

1 if x P
(2
k
, 1
]
.

Then f 1
k(x) =

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

0 if x P [´1, 0] ,

k2x if x P
(
0,

1

k

]
,

´k2
(
x ´

2

k

)
if x P

(1
k
,
2

k

]
,

0 if x P
(2
k
, 1
]
,

and tf 1
ku8
k=1 converges pointwise to 0 but not

uniformly on [´1, 1]. We note that tfku8
k=1 converges to a discontinuous function

f(x) =

"

0 if x P [´1, 0] ,

1 if x P (0, 1] ,

so the convergence of tfku8
k=1 cannot be uniform on [´1, 1].
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Example 7.16. There are differentiable functions fk : [a, b] Ñ R such that fk converges
uniformly to f on [a, b] but lim

kÑ8
f 1
k ‰ ( lim

kÑ8
fk)

1. For example, take fk(x) =
x

1 + k2x2
on

[´1, 1]. Then f 1
k(x) =

1 ´ k2x2

(1 + k2x2)2
.

1. Since lim
kÑ8

sup
xP[´1,1]

ˇ

ˇ

x

1 + k2x2
´ 0

ˇ

ˇ = lim
kÑ8

1

2k
= 0, fk converges uniformly to 0 on [´1, 1].

2.
(

lim
kÑ8

fk(x)
) 1

= 0 1 = 0.

3. lim
kÑ8

f 1
k(x) = lim

kÑ8

1 ´ k2x2

(1 + k2x2)2
=

"

1 if x = 0,
0 if x ‰ 0,

ˇ

ˇx
ˇ

ˇ ă 1.
Note that f 1

k does not converge

uniformly.

Theorem 7.17. Let fk : A Ñ R be a sequence of Riemann integrable functions which
converges uniformly to f on A. Then f is Riemann integrable on A, and

lim
kÑ8

ż

A

fk(x) dx =

ż

A

lim
kÑ8

fk(x) dx =

ż

A

f(x) dx . (7.1.1)

Proof. Let R be a rectangle such that A Ď R and ν(R) ą 0, and ε ą 0 be given. Since
tfku8

k=1 converges uniformly to f on A, there exists N ą 0 such that

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ ă
ε

4ν(R)
@ k ě N and x P A . (7.1.2)

Since f
N

is Riemann integrable on A, by Riemann’s condition there exists a partition P of
A such that

U(f
N
,P) ´ L(f

N
,P) ă

ε

2
.

By Proposition 6.8, we find that

U(f,P) ´ L(f,P) = U(f ´ f
N
+ f

N
,P) ´ L(f ´ f

N
+ f

N
,P)

ď U(f ´ f
N
,P) + U(f

N
,P) ´ L(f ´ f

N
,P) ´ L(f

N
,P)

ď
ε

4ν(R)
ν(R) +

ε

4ν(R)
ν(R) + U(f

N
,P) ´ L(f

N
,P)

ă
ε

4
+
ε

4
+
ε

2
= ε ;

thus by Riemann’s condition f is Riemann integrable on A.
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Now, if k ě N , (7.1.2) implies that
ˇ

ˇ

ˇ

ż

A

fk(x)dx ´

ż

A

f(x)dx
ˇ

ˇ

ˇ
=
ˇ

ˇ

ˇ

ż

A

(
fk(x) ´ f(x)

)
dx

ˇ

ˇ

ˇ
ď

ż

A

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇdx

ď
ε

4ν(R)
ν(R) =

ε

4
ă ε

which shows (7.1.1). ˝

Example 7.18. In this example we provide a sequence of integrable functions converges
pointwise to a limit function which is not integrable. Let tqku8

k=1 be the rational numbers
in [0, 1], and

fk(x) =

"

0 if x P tq1, q2, ¨ ¨ ¨ , qku ,

1 otherwise .
Then fk converges pointwise to the Dirichlet function

f(x) =

"

0 if x P Q X [0, 1] ,

1 if x P [0, 1]zQ .

It is well-known that the Dirichlet function is not integrable. However, tfku8
k=1 does not

converge uniformly to f since fk are Riemann integrable on [0, 1] for all k P N but f is not.

7.2 Series of Functions and The Weierstrass M-Test
Definition 7.19. Let (M,d) be a metric space, (V , } ¨ }) be a normed space, A Ď M be a

subset, and gk, g : A Ñ V be functions. We say that the series
8
ř

k=1

gk converges pointwise if
the sequence of partial sum tsnu8

n=1 given by

sn =
n
ÿ

k=1

gk

converges pointwise. We use
8
ř

k=1

gk = g p.w. to denote that the series
8
ř

k=1

gk converges

pointwise to g. The series
8
ř

k=1

gk is said to converge uniformly on B Ď A if tsnu8
n=1 converges

uniformly on B.

Example 7.20. Consider the geometric series
8
ř

k=0

xk. The partial sum sn is given by

sn(x) =

$

&

%

1 ´ xn+1

1 ´ x
if x ‰ 1 ,

n+ 1 if x = 1 .

Then
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1.
8
ř

k=0

xk converges pointwise to g(x) = 1

1 ´ x
in (´1, 1).

2.
8
ř

k=0

xk does not converge pointwise in (´8,´1] Y [1,8).

3.
8
ř

k=0

xk converges uniformly on (´a, a) if 0 ă a ă 1 since

sup
xP(´a,a)

|sn(x) ´ g(x)| = sup
xP(´a,a)

|x|n+1

1 ´ x
ď

|a|n+1

1 ´ a
Ñ 0 as n Ñ 8.

4.
8
ř

k=0

xk does not converge uniformly on (´1, 1) since sup
xP(´1,1)

|sn(x) ´ g(x)| = 8.

The following two corollaries are direct consequences of Proposition 7.7 and Theorem
7.8.

Corollary 7.21. Let (M,d) be a metric space, (V , } ¨ }) be a complete normed vector space,
A Ď M be a subset, and gk : A Ñ V be functions. Then

8
ř

k=1

gk converges uniformly on A if
and only if

@ ε ą 0, DN ą 0 Q

›

›

›

n
ÿ

k=m+1

gk(x)
›

›

›
ă ε @n ą m ě N and x P A .

Corollary 7.22. Let (M,d) be a metric space, (V , } ¨ }) be a normed vector space, A Ď M

be a subset, and gk, g : A Ñ V be functions. If gk : A Ñ V is continuous for all k P N and
8
ř

k=1

gk(x) converges to g uniformly on A, then g is continuous.

Theorem 7.23. Let f : (a, b) Ñ R be an infinitely differentiable functions; that is, f (k)(x)

exists for all k P N and x P (a, b). Let c P (a, b) and suppose that for some 0 ă h ă 8,
ˇ

ˇf (k)(x)
ˇ

ˇ ď M for all x P (c ´ h, c+ h) Ď (a, b) and k P N. Then

f(x) =
8
ÿ

k=0

f (k)(c)

k!
(x ´ c)k @x P (c ´ h, c+ h)

and the convergence is uniform.

Proof. First, we claim that

f(x) =
n
ÿ

k=0

f (k)(c)

k!
(x ´ c)k + (´1)n

ż x

c

(y ´ x)n

n!
f (n+1)(y)dy @x P (a, b) . (7.2.1)
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By the fundamental theorem of Calculus it is clear that (7.2.1) holds for n = 0. Suppose
that (7.2.1) holds for n = m. Then

f(x) =
m
ÿ

k=0

f (k)(c)

k!
(x ´ c)k + (´1)m

[(y ´ x)m+1

(m+ 1)!
f (m+1)(y)

ˇ

ˇ

ˇ

y=x

y=c
´

ż x

c

(y ´ x)m+1

(m+ 1)!
f (m+2)(y)dy

]
=

m+1
ÿ

k=0

f (k)(c)

k!
(x ´ c)k + (´1)m+1

ż x

c

(y ´ x)m+1

(m+ 1)!
f (m+2)(y)dy

which implies that (7.2.1) also holds for n = m+1. By induction (7.2.1) holds for all n P N.

Define sn(x) =
n
ř

k=0

f (k)(c)

k!
(x´ c)k. Our goal is to show that tsnu8

n=1 converges uniformly

to f on (c ´ h, c+ h). Nevertheless, note that if x P (c ´ h, c+ h),
ˇ

ˇsn(x) ´ f(x)
ˇ

ˇ ď

ˇ

ˇ

ˇ

ż x

c

hn

n!
Mdy

ˇ

ˇ

ˇ
ď
hn+1

n!
M .

By the fact that lim
nÑ8

hn+1

n!
M = 0, we conclude that

lim
nÑ8

sup
xP(c´h,c+h)

ˇ

ˇsn(x) ´ f(x)
ˇ

ˇ = 0 . ˝

Remark 7.24. Assume the conditions in Theorem 7.23. Then applying Theorem 7.23 to
the function g = f 1 shows that

d

dx

8
ÿ

k=0

f (k)(c)

k!
(x ´ c)k =

8
ÿ

k=0

d

dx

[f (k)(c)

k!
(x ´ c)k

]
@x P (c ´ h, c+ h) .

This is a special case of Corollary 7.38.

Example 7.25. The series
8
ř

k=0

(´1)k
x2k+1

(2k + 1)!
converges to sin x uniformly on any bounded

subset of R.

Theorem 7.26 (Weierstrass M -test). Let (M,d) be a metric space, (V , } ¨ }) be a complete
normed vector space, A Ď M be a subset, and gk : A Ñ V be a sequence of functions. Suppose

that there exists Mk ą 0 such that sup
xPA

}gk(x)} ď Mk for all k P N and
8
ř

k=1

Mk converges.

Then
8
ř

k=1

gk converges uniformly and absolutely (that is,
8
ř

k=1

}gk} converges uniformly) on A.

Proof. We show that the partial sum sn =
n
ř

k=1

gk satisfies the Cauchy criterion. Let ε ą 0

be given. Since
8
ř

k=1

Mk converges (which means
n
ř

k=1

Mk converges as n Ñ 8), the Cauchy
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criterion for the convergence of series of vectors (Theorem 2.65) implies that there exists
N ą 0 such that

n
ÿ

k=m+1

Mk =
ˇ

ˇ

ˇ

n
ÿ

k=m+1

Mk

ˇ

ˇ

ˇ
ă ε @n ą m ě N .

Therefore,

›

›

›

n
ÿ

k=m+1

gk(x)
›

›

›
ď

n
ÿ

k=m+1

›

›gk(x)
›

› ď

n
ÿ

k=m+1

Mk ă ε @n ą m ě N and x P A

and the desired result follows from the Cauchy criterion for the uniform convergence of series
of functions (Corollary 7.21). ˝

Theorem 7.8 and 7.26 together imply the following

Corollary 7.27. Let (M,d) be a metric space, (V , } ¨ }) be a complete normed vector space,
A Ď M be a subset, and gk : A Ñ V be a sequence of continuous functions. Suppose that
there exists Mk ą 0 such that sup

xPA
}gk(x)} ď Mk for all k P N and

8
ř

k=1

Mk converges. Then
8
ř

k=1

gk is continuous on A.

Example 7.28. Consider the series f(x) =
8
ř

k=0

(
xk

k!

)2

. For all x P [´R,R],
(
xk

k!

)2

ď
R2k

(k!)2
.

Moreover,

lim sup
kÑ8

R2(k+1)

((k + 1)!)2
/ R2k

(k!)2
= lim sup

kÑ8

R2

(k + 1)2
= 0 ;

thus the ratio test and the Weierstrass M -test imply that the series
8
ř

k=0

(
xk

k!

)2

converges

uniformly on [´R,R]. Theorem 7.8 then shows that f is continuous on [´R,R]. Since R is
arbitrary, we find that f is continuous on R.

Example 7.29. Let taku8
k=0 be a bounded sequence. Then

8
ř

k=0

ak
k!
xk converges to a contin-

uous function.

Example 7.30. Consider the function f(x) = π

2
´

4

π

8
ř

k=0

cos(2k + 1)x

(2k + 1)2
. We can in fact show

(later) that f(x) = |x| for all x P [´π, π], and by the Weierstrass M -test it is easy to see
that the convergence is uniform on R.
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x

y

π ´π/2 O π/2 π

y = |x|
y = f0(x)
y = f1(x)
y = f2(x)

Figure 7.1: The graph of some partial sums

7.3 Integration and Differentiation of Series

The following two theorems are direct consequences of Theorem 7.11 and 7.17.

Theorem 7.31. Let gk : [a, b] Ñ R be a sequence of Riemann integrable functions. If
8
ř

k=1

gk

converges uniformly on [a, b], then
ż b

a

8
ÿ

k=1

gk(x)dx =
8
ÿ

k=1

ż b

a

gk(x)dx .

Theorem 7.32. Let gk : (a, b) Ñ R be a sequence of differentiable functions. Suppose that
8
ř

k=1

gk converges for some c P (a, b), and
8
ř

k=1

g 1
k converges uniformly on (a, b). Then

8
ÿ

k=1

g 1
k(x) =

d

dx

8
ÿ

k=1

gk(x) .

Definition 7.33. A series is called a power series about c or centered at c if it is of

the form
8
ř

k=0

ak(x ´ c)k for some sequence taku8
k=0 Ď R (or C) and c P R (or C).

Proposition 7.34. If a power series centered at c is convergent at some point b ‰ c, then
the power series converges pointwise on B(c, |b´c|), and converges uniformly on any compact
subsets of B(c, |b ´ c|).

Proof. Since the series
8
ř

k=0

ak(b´ c)k converges, |ak||b´ c|k Ñ 0 as k Ñ 8; thus there exists

M ą 0 such that |ak||b ´ c|k ď M for all k.
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1. x P B(c, |b ´ c|), the series
8
ř

k=0

ak(x ´ c)k converges absolutely since
8
ÿ

k=0

|ak(x ´ c)k| ď

8
ÿ

k=0

|ak||x ´ c|k =
8
ÿ

k=0

|ak||b ´ c|k
|x ´ c|k

|b ´ c|k
ď M

8
ÿ

k=0

(
|x ´ c|

|b ´ c|

)k
which converges (because of the geometric series test or ratio test).

2. Let K Ď B(c, |b ´ c|) be a compact set. Then

dist(K, BB(c, |b ´ c|)) ” inf
␣

|x ´ y|
ˇ

ˇx P K, |y ´ c| = |b ´ c|
(

ą 0 .

Define r = |b ´ c| ´ dist(K, BB(c, |b ´ c|))

|b ´ c|
. Then 0 ď r ă 1, and |x´ c| ď r|b´ c| for all

x P K. Therefore, |ak(x´ c)k| ď Mrk if x P K; thus the Weierstrass M -test implies

that the series
8
ř

k=0

ak(x ´ c)k converges uniformly on K. ˝

By the proposition above, we immediately conclude that the collection of all x at which
the power series converges must be connected and symmetric; thus is a disc or a point. This
observation induce the following

Definition 7.35. A non-negative number R is called the radius of convergence of the
power series

8
ř

k=0

ak(x´c)k if the series converges for all x P B(c, R) but diverges if x R B[c, R].

In other words,

R = sup
!

r ě 0
ˇ

ˇ

ˇ

8
ÿ

k=0

ak(x ´ c)k converges in B[c, R]
)

.

The interval of convergence or convergence interval of a power series is the collection
of all x at which the power series converges.

Remark 7.36. A power series converges pointwise on its interval of convergence.

Theorem 7.37. Let taku8
k=0 Ď C, c P C,

8
ř

k=0

ak(x ´ c)k be a power series with radius of

convergence R ą 0, and K Ď B(c, R) be a compact set. Then

1. The power series
8
ř

k=0

ak(x ´ c)k converges uniformly on K.

2. The power series
8
ř

k=0

(k+1)ak+1(x´ c)k converges pointwise on B(c, R), and converges
uniformly on K.
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Proof. 1. It is simply a restatement of Proposition 7.34.

2. By 1, it suffices to show that the power series
8
ř

k=0

(k+1)ak+1(x´c)k converges pointwise

on B(c, R). Clearly the series converges at x = c. Let x P B(c, R) and x ‰ c. Since
|x ´ c| ă R, there exists b P B(c, R) such that

|b ´ c| =
R + |x ´ c|

2
.

Then if r = |x ´ c|

|b ´ c|
, 0 ă r ă 1 and

8
ÿ

k=0

(k + 1)|ak+1||x ´ c|k ď

8
ÿ

k=0

(k + 1)|ak+1||b ´ c|k
( |x ´ c|

|b ´ c|

)k
ď M

8
ÿ

k=0

(k + 1)rk

for some M ą 0. Note that the ratio test implies that the series
8
ř

k=0

(k+1)rk converges

if 0 ă r ă 1; thus
8
ř

k=0

(k + 1)|ak+1||x ´ c|k converges by the comparison test. ˝

Corollary 7.38. Let taku8
k=0 Ď R and c P R, and

8
ř

k=0

ak(x ´ c)k be a power series with

radius of convergence R ą 0. Then
8
ř

k=0

ak(x ´ c)k is differentiable in (c ´ R, c + R) and is

Riemann integrable over any closed intervals [α, β] Ď (c ´ R, c+R). Moreover,

d

dx

8
ÿ

k=0

ak(x ´ c)k =
8
ÿ

k=1

kak(x ´ c)k´1 @x P (c ´ R, c+R)

and
ż β

α

8
ÿ

k=0

ak(x ´ c)kdx =
8
ÿ

k=0

ak

ż β

α

(x ´ c)kdx .

Example 7.39. Let taku8
k=0 be a bounded sequence. Then

d

dx

( 8
ÿ

k=0

ak
k!
xk
)
=

8
ÿ

k=1

ak
(k ´ 1)!

xk´1 =
8
ÿ

k=0

ak+1

k!
xk .

Example 7.40. We show
ż t

0
exdx = et ´ 1 as follows. By Theorem 7.23, ex =

8
ř

k=0

xk

k!
and

the convergence is uniform on any bounded sets of R; thus Corollary 7.38 implies that
ż t

0

exdx =

ż t

0

8
ÿ

k=0

xk

k!
dx =

8
ÿ

k=0

ż t

0

xk

k!
dx =

8
ÿ

k=0

tk+1

(k + 1)!
=

8
ÿ

k=1

tk

k!
= et ´ 1 .
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Example 7.41. d

dx

( 8
ř

k=1

xk

k

)
=

8
ř

k=1

xk´1 =
8
ř

k=0

xk for all x P (´1, 1); thus

d

dx

( 8
ÿ

k=1

xk

k

)
=

1

1 ´ x
@x P (´1, 1) .

As a consequence,
8
ÿ

k=1

tk

k
=

ż t

0

d

dx

( 8
ÿ

k=1

xk

k

)
dx = ´ log(1 ´ t) @ t P (´1, 1) . (7.3.1)

Using the alternating series test, it is clear that the left-hand side of (7.3.1) converges at
t = ´1. What is the value of

´

8
ÿ

k=1

(´1)k

k
= 1 ´

1

2
+

1

3
´

1

4
+

1

5
´

1

6
+ ¨ ¨ ¨ ?

Consider the partial sum d

dx

( n
ř

k=1

xk

k

)
=

n´1
ř

k=0

xk =
1 ´ xn

1 ´ x
=

1

1 ´ x
´

xn

1 ´ x
. Integrating both

sides over [´1, 0],
ˇ

ˇ

ˇ

n
ÿ

k=1

(´1)k

k
+ log 2

ˇ

ˇ

ˇ
ď

ż 0

´1

|x|n

1 ´ x
dx ď

ż 0

´1

(´x)ndx =
1

n+ 1
Ñ 0 as n Ñ 8;

thus
1 ´

1

2
+

1

3
´

1

4
+

1

5
´

1

6
+ ¨ ¨ ¨ = log 2 .

In other words,
8
ÿ

k=1

tk

k
= ´ log(1 ´ t) @ t P [´1, 1) .

Example 7.42. It is clear that 1

1 + x2
=

8
ř

k=0

(´x2)k =
8
ř

k=0

(´1)kx2k for all x P (´1, 1). So if

x P (´1, 1),

tan´1 x =

ż x

0

dt

1 + t2
=

ż x

0

8
ÿ

k=0

(´1)kt2kdt =
8
ÿ

k=0

ż x

0

(´1)kt2kdt

=
8
ÿ

k=0

(´1)k

2k + 1
t2k+1

ˇ

ˇ

ˇ

t=x

t=0
= x ´

x3

3
+
x5

5
´
x7

7
+ ¨ ¨ ¨ .

The right-hand side of the identity above converges at x = 1. What is the value of
8
ÿ

k=0

(´1)k

2k + 1
= 1 ´

1

3
+

1

5
´

1

7
+ ¨ ¨ ¨?
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Mimic the previous example, we consider

tan´1 x =

ż x

0

dt

1 + t2
=

ż x

0

1 ´ (´t2)n+1

1 + t2
dt+

ż x

0

(´t2)n+1

1 + t2
dt

=

ż x

0

n
ÿ

k=0

(´1)kt2kdt+

ż x

0

(´t2)n+1

1 + t2
dt

=
n
ÿ

k=0

ż x

0

(´1)kt2kdt+

ż x

0

(´t2)n+1

1 + t2
dt =

n
ÿ

k=0

(´1)k

2k + 1
x2k+1 +

ż x

0

(´t2)n+1

1 + t2
dt ;

thus plugging x = 1,
ˇ

ˇ

ˇ
tan´1 1 ´

n
ÿ

k=0

(´1)k

2k + 1

ˇ

ˇ

ˇ
ď

ż 1

0

t2(n+1)

1 + t2
dt ď

ż 1

0

t2(n+1)dt =
1

2n+ 3
Ñ 0 as n Ñ 8.

Therefore,
1 ´

1

3
+

1

5
´

1

7
+ ¨ ¨ ¨ = tan´1 1 =

π

4
.

7.4 The Space of Continuous Functions
Definition 7.43. Let (M,d) be a metric space, (V , } ¨ }) be a normed vector space, and
A Ď M be a subset. We define C (A;V) as the collection of all continuous functions on A

with value in V ; that is,

C (A;V) =
␣

f : A Ñ V
ˇ

ˇ f is continuous on A
(

.

Let Cb(A;V) be the subspace of C (A;V) which consists of all bounded continuous functions
on A; that is,

Cb(A;V) =
␣

f P C (A;V)
ˇ

ˇ f is bounded
(

.

Every f P Cb(A;V) is associated with a non-negative real number }f}8 given by

}f}8 = sup
␣

}f(x)}
ˇ

ˇx P A
(

= sup
xPA

}f(x)} .

The number }f}8 is called the sup-norm of f .

Proposition 7.44. Let (M,d) be a metric space, (V , } ¨ }) be a normed vector space, A Ď M

be a subset.

1. C (A;V) and Cb(A;V) are vector spaces.
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2.
(
Cb(A;V), } ¨ }8

)
is a normed vector space.

3. If K Ď M is compact, then C (K;V) = Cb(K;V).

Proof. 1 and 2 are trivial, and 3 is concluded by Theorem 4.25. ˝

Remark 7.45. In general } ¨ }8 is not a “norm” on C (A;V). For example, the function
f(x) =

1

x
belongs to C ((0, 1);R) and }f}8 = 8. Note that to be a norm }f}8 has to take

values in R, and 8 R R.

Proposition 7.46. Let (M,d) be a metric space, (V , } ¨ }) be a normed vector space, A Ď M

be a subset, and fk P Cb(A;V) for all k P N. Then tfku8
k=1 converges uniformly on A if and

only if tfku8
k=1 converges in

(
Cb(A;V), } ¨ }8

)
.

Proof. (ð) Suppose that tfku8
k=1 converges in

(
Cb(A;V), } ¨ }8

)
. Then there exists f P(

Cb(A;V), } ¨ }8

)
such that lim

kÑ8
}fk ´ f}8 = 0 , and by the definition of the sup-norm,

lim
kÑ8

sup
xPA

}fk(x) ´ f(x)} = 0 .

Therefore, tfku8
k=1 converges to f uniformly on A.

(ñ) Suppose that tfku8
k=1 converges uniformly on A. Then there exists a function f : A Ñ

V such that
lim
kÑ8

sup
xPA

}fk(x) ´ f(x)} = 0 .

By the definition of the sup-norm, it suffices to show that f P Cb(A;V) in order to
conclude the proposition. By Theorem 7.8, we obtain that f P C (A;V). Moreover,
the uniform convergence implies that there exists N ą 0 such that

}fk(x) ´ f(x)} ă 1 @ k ě N and x P A .

In particular, the boundedness of f
N

provides M ą 0 such that }f
N
(x)} ď M for all

x P A; thus

}f(x)} ď }f
N
(x)} + }f(x) ´ f

N
(x)} ď M + 1 @x P A .

This implies that f is bounded; thus f P Cb(A;V). ˝

Theorem 7.47. Let (M,d) be a metric space, (V , }¨}) be a normed vector space, and A Ď M

be a subset. If (V , } ¨ }) is complete, so is
(
Cb(A;V), } ¨ }8

)
.



§7.4 The space of Continuous Functions 229

Proof. Let tfku8
k=1 be a Cauchy sequence in

(
Cb(A;V), } ¨ }8

)
. Then

@ ε ą 0, DN ą 0 Q }fk ´ fℓ}8 ă ε whenever k, ℓ ě N .

By the definition of the sup-norm, the statement above implies that

@ ε ą 0, DN ą 0 Q }fk(x) ´ fℓ(x)} ă ε whenever k, ℓ ě N and x P A

which shows that tfku8
k=1 converges uniformly on A because of the Cauchy criterion. Propo-

sition 7.46 then implies that tfku8
k=1 converges in

(
Cb(A;V), } ¨ }8

)
. ˝

Example 7.48. In this example we try to visualize a ball in Cb(A,V). Note that if f P

Cb(A,V) and ε ą 0. Then

B(f, ε) =
␣

g P Cb(A,V)
ˇ

ˇ }f ´ g}8 ă ε
(

.

In particular, if A = [a, b] and V = R, then g P B(f, ε) if and only if |f(x) ´ g(x)| ă ε for
all x P [a, b] which means that the graph of g lies between the graph of y = f(x) + ε and
y = f(x) ´ ε.

x

y

y=f(x)

O

y=f(x)+ε

y=f(x)´ε

Figure 7.2: g P B(f, ε) if the graph of g lies in between the two red dash lines

Example 7.49. The set B =
␣

f P C ([0, 1];R)
ˇ

ˇ f(x) ą 0 for all x P [0, 1]
(

is open in(
C ([0, 1];R), } ¨ }8

)
.

Reason: Let f P B be given. Since [0, 1] is compact and f is continuous, by the extreme
value theorem there exists x0 P [0, 1] so that inf

xP[0,1]
f(x) = f(x0) ą 0. Take ε = f(x0)

2
. Now

if g is such that }g ´ f}8 = sup
xP[0,1]

ˇ

ˇg(x) ´ f(x)
ˇ

ˇ ă ε =
f(x0)

2
, we have for any y P [0, 1],

ˇ

ˇg(y) ´ f(y)
ˇ

ˇ ď sup
xP[0,1]

ˇ

ˇg(x) ´ f(x)
ˇ

ˇ ă
f(x0)

2
;
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thus
g(y) ě f(y) ´

f(x0)

2
ě f(x0) ´

f(x0)

2
=
f(x0)

2
ą 0 .

Therefore, g P B; thus B(f, ε) Ď B.

Example 7.50. Find the closure of B given in the previous example.

Proof. Claim: cl(B) =
␣

f P C ([0, 1],R)
ˇ

ˇ f(x) ě 0
(

.
Proof of claim: We show that for every f P

␣

f P C ([0, 1],R)
ˇ

ˇ f(x) ě 0
(

, there exists fk P B

such that }fk ´ f}8 Ñ 0 as k Ñ 8. Take fk(x) = f(x)+
1

k
, then fk P B (7 fk(x) ą 0), and

}fk ´ f}8 = sup
xP[0,1]

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ ď sup
xP[0,1]

1

k
=

1

k
Ñ 0 as k Ñ 8 . ˝

7.5 The Arzelà-Ascoli Theorem

在這一節中，我們將研究一般情況下，連續函數列的逐點收斂與均勻收斂之間的具體差

異為何。更具體地說，我們希望能找到一個條件，使得逐點收斂的連續函數列，其均勻

收斂性等價於該條件成立。這個條件，刻劃了均勻收斂與逐點收斂的真實差異，而這個

特別的條件，也將提供額外（且有效）的判斷法，幫助我們判斷在連續函數空間裡面的集

合是否緊緻。

7.5.1 Equi-continuous family of functions

The first part of this section is devoted to the investigation of the difference between the
pointwise convergence and the uniform convergence of sequence of continuous functions.

Definition 7.51. Let (M,d) be a metric space, (V , } ¨ }) be a normed vector space, and
A Ď M be a subset. A subset B Ď Cb(A;V) is said to be equi-continuous（等度連續）if

@ ε ą 0, D δ ą 0 Q }f(x1) ´ f(x2)} ă ε whenever d(x1, x2) ă δ, x1, x2 P A, and f P B .

Remark 7.52. 1. If B Ď Cb(A;V) is equi-continuous, and C is a subset of B, then C is
also equi-continuous.

2. In an equi-continuous set of functions B, every f P B is uniformly continuous.
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Remark 7.53. For a uniformly continuous function f , let δf (ε) (we have defined this
number in Remark 4.47) denote the largest δ that can be used in the definition of the
uniform continuity; that is, δf (ε) has the property that

}f(x) ´ f(y)} ă ε whenever d(x, y) ă δ, x, y P A ô 0 ă δ ď δf (ε) .

Suppose that every element in B Ď Cb(A;V) is uniformly continuous on A. Then B is
equi-continuous if and only if inf

fPB
δf (ε) ą 0.

Example 7.54. Let B =
␣

f P Cb((0, 1);V)
ˇ

ˇ |f 1(x)| ď 1 for all x P (0, 1)
(

. Then B is equi-
continuous (by choosing δ = ϵ for any given ϵ, and applying the mean value theorem).

Example 7.55. Let fk : [0, 1] Ñ R be a sequence of functions given by

fk(x) =

$

’

’

’

’

’

&

’

’

’

’

’

%

kx if 0 ď x ď
1

k
,

2 ´ kx if 1

k
ď x ď

2

k
,

0 if x ě
2

k
,

and B = tfku8
k=1. Then B is not equi-continuous since the largest δ for each k is ε

k
which

converges to 0.

Lemma 7.56. Let (M,d) be a metric space, (V , } ¨ }) be a normed vector space, and K Ď M

be a compact subset. If B Ď C (K;V) is pre-compact, then B is equi-continuous.

Proof. Suppose the contrary that B is not equi-continuous. Then there exists ε ą 0 such
that

@ k P N, D xk, yk P K and fk P B Q d(xk, yk) ă
1

k
but }fk(xk) ´ fk(yk)} ě ε .

Since B is pre-compact in
(
C (K;V), } ¨ }8

)
and K is compact in (M,d), there exists a

subsequence
␣

fkj
(8

j=1
and txkju

8
j=1 such that

␣

fkj
(8

j=1
converges uniformly to some function

f P
(
C (K;V), } ¨ }8

)
and txkju

8
j=1 converges to some a P K. We must also have tykju

8
j=1

converges to a since d(xkj , ykj) ă
1

kj
.

Since f is continuous at a,

D δ ą 0 Q }f(x) ´ f(a)} ă
ε

5
if x P B(a, δ) X K.
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Moreover, since
␣

fkj
(8

j=1
converges to f uniformly on K and xkj , ykj Ñ a as j Ñ 8, there

exists N ą 0 such that

}fkj(x) ´ f(x)} ă
ε

5
if j ě N and x P K

and
d(xkj , a) ă δ and d(ykj , a) ă δ if j ě N .

As a consequence, for all j ě N ,

ε ď
›

›fkj(xkj) ´ fkj(ykj)
›

› ď
›

›fkj(xkj) ´ f(xkj)
›

›+
›

›f(xkj) ´ f(a)
›

›

+
›

›f(ykj) ´ f(a)
›

›+
›

›f(ykj) ´ fkj(ykj)
›

› ă
4ε

5

which is a contradiction. ˝

Alternative proof of Lemma 7.56. Suppose the contrary thatB is not equi-continuous. Then
there exists ε ą 0 such that

@ k P N, D xk, yk P K and fk P B Q d(xk, yk) ă
1

k
but }fk(xk) ´ fk(yk)} ě ε .

Since B is pre-compact in
(
C (K;V), } ¨ }8

)
, there exists a subsequence

␣

fkj
(8

j=1
converges

to some function f in
(
C (K;V), } ¨ }8

)
. By Proposition 7.46,

␣

fkj
(8

j=1
converges uniformly

to f on K; thus there exists N1 ą 0 such that
›

›fkj(x) ´ f(x)
›

› ă
ε

4
@ j ě N1 and x P K .

Since f P C (K;V), by Theorem 4.49, f is uniformly continuous on K; thus

D δ ą 0 Q }f(x) ´ f(y)} ă
ε

4
if d(x, y) ă δ and x, y P K .

Let N = max
␣

N1,
[1
δ

]
+ 1

(

, and j ě N . Then d(xkj , ykj) ă δ and this further implies that

εď
›

›fkj(xkj)´fkj(ykj)
›

›ď
›

›fkj(xkj)´f(xkj)
›

›+
›

›f(xkj)´f(ykj)
›

›+
›

›f(ykj)´fkj(ykj)
›

›ă
3ε

4
,

a contradiction. ˝

Corollary 7.57. Let (M,d) be a metric space, (V , }¨}) be a normed vector space, and K Ď M

be a compact subset. If tfku8
k=1 converges uniformly on K, then tfku8

k=1 is equi-continuous.
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Example 7.58. Corollary 7.57 fails to hold if the compactness of K is removed. For
example, let tfku8

k=1 be a sequence of identical functions fk(x) =
1

x
on (0, 1). Then tfku8

k=1

converges uniformly on (0, 1) but tfku8
k=1 is not equi-continuous since none of fk is uniformly

continuous on (0, 1) which violates Remark 7.52.

We have just shown that if tfku8
k=1 converges uniformly on a compact set K, then tfku8

k=1

must be equi-continuous. The inverse statement, on the other hand, cannot be true. For
example, taking tfku8

k=1 to be a sequence of constant functions fk(x) = k. Then tfku8
k=1

obviously does not converge, not even any subsequence. Therefore, we would like to study
under what additional conditions, equi-continuity of a sequence of functions (defined on
a compact set K) indeed converges uniformly. The following lemma is an answer to the
question.

Lemma 7.59. Let (M,d) be a metric space, (V , } ¨ }) be a Banach space, K Ď M be a
compact set, and tfku8

k=1 Ď C (K;V) be a equi-continuous sequence of functions. If tfku8
k=1

converges pointwise on a dense subset E of K (that is, E Ď K Ď cl(E)), then tfku8
k=1

converges uniformly on K.

Proof. Let ε ą 0 be given. By the equi-continuity of tfku8
k=1,

D δ ą 0 Q }fk(x) ´ fk(y)} ă
ε

3
if d(x, y) ă δ, x, y P K and k P N .

Since K is compact, K is totally bounded; thus

Dty1, ¨ ¨ ¨ , ymu Ď K Q K Ď

m
ď

j=1

B
(
yj,

δ

2

)
.

By the denseness of E in K, for each j = 1, ¨ ¨ ¨ ,m, there exists zj P E such that d(zj, yj) ă
δ

2
.

Moreover, B
(
yj,

δ

2

)
Ď B(zj, δ); thus K Ď

m
Ť

j=1

B(zj, δ). Since tfku8
k=1 converges pointwise on

E, tfk(zj)u
8
k=1 converges as k Ñ 8 for all j = 1, ¨ ¨ ¨ ,m. Therefore,

DNj ą 0 Q }fk(zj) ´ fℓ(zj)} ă
ε

3
@ k, ℓ ě Nj .

Let N = maxtN1, ¨ ¨ ¨ , Nmu, then

}fk(zj) ´ fℓ(zj)} ă
ε

3
@ k, ℓ ě N and j = 1, ¨ ¨ ¨ ,m .
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Now we are in the position of concluding the lemma. If x P K, there exists zj P E such
that d(x, zj) ă δ; thus if we further assume that k, ℓ ě N ,

}fk(x) ´ fℓ(x)} ď }fk(x) ´ fk(zj)} + }fk(zj) ´ fℓ(zj)} + }fℓ(zj) ´ fℓ(x)} ă ε .

By Proposition 7.7, tfku8
k=1 converges uniformly on K. ˝

Remark 7.60. Corollary 7.57 and Lemma 7.59 imply that “a sequence tfku8
k=1 Ď C (K;V)

converges uniformly on K if and only if tfku8
k=1 is equi-continuous and pointwise convergent

(on a dense subset of K)”.

7.5.2 Compact sets in C (K;V)

The next subject in this section is to obtain a (useful) criterion of determining the compact-
ness (or pre-compactness) of a subset B Ď C (K;V) which guarantees the existence of a
convergent subsequence

␣

fkj
(8

j=1
of a given sequence tfku8

k=1 Ď B in
(
C (K;V), } ¨ }8

)
.

Lemma 7.61 (Cantor’s Diagonal Process). Let E be a countable set, (V , } ¨ }) be a Banach
space, and fk : E Ñ V be a sequence of functions. Suppose that for each x P E,

␣

fk(x)
(8

k=1

is pre-compact in V. Then there exists a subsequence of tfku8
k=1 that converges pointwise on

E.

Proof. Since E is countable, E = txℓu
8
ℓ=1.

1. Since
␣

fk(x1)
(8

k=1
is pre-compact in (V , } ¨ }), there exists a subsequence

␣

fkj
(8

j=1
such

that
␣

fkj(x1)
(8

j=1
converges in (V , } ¨ }).

2. Since
␣

fk(x2)
(8

k=1
is pre-compact in (V , } ¨ }), the sequence

␣

fkj(x2)
(8

j=1
Ď
␣

fk(x2)
(8

k=1

has a convergent subsequence
␣

fkjℓ (x2)
(8

ℓ=1
.

Continuing this process, we obtain a sequence of sequences S1, S2, ¨ ¨ ¨ such that

1. Sk consists of a subsequence of tfku8
k=1 which converges at xk, and

2. Sk Ě Sk+1 for all k P N.

Let gk be the k-th element of Sk. Then the sequence tgku8
k=1 is a subsequence of tfku8

k=1

and tgku8
k=1 converges at each point of E. ˝
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The condition that “
␣

fk(x)
(8

k=1
is pre-compact in V for each x P E” in Lemma 7.61

motivates the following

Definition 7.62. Let (M,d) be a metric space, (V , } ¨ }) be a normed vector space, and

A Ď M be a subset. A subset B Ď Cb(A;V) is said to be pointwise
compact

pre-compact
bounded

if the

set Bx ”
␣

f(x)
ˇ

ˇ f P B
(

is
compact

pre-compact
bounded

in (V , } ¨ }) for all x P A.

Example 7.63. Let fk : [0, 1] Ñ R be given in Example 7.55, and B = tfku8
k=1. Then B

is pointwise compact: for each x P [0, 1], Bx is a finite set since if fk(0) = 0 for all k P N,
while if x ą 0, fk(x) = 0 for all k large enough which implies that #Bx ă 8.

是時候可以來看 C (K;V) 裡面的 compact sets 有什麼等價條件了。首先我們先看何
時 B Ď C (K;V) 是 compact set。給定一個函數列 tfku8

k=1 Ď B，我們想知道能不能找到

一個在 sup-norm 下收斂的 subsequence
␣

fkj
(8

j=1
（即 sequentially compact）。由 Diagonal

Process (Lemma 7.61) 知，我們得在 K 中找一個稠密的子集合 E 使得 tfku8
k=1 在 E 上

是 pointwise pre-compact（這個部份只保證了可以找到 subsequence 逐點收斂），然後加
上 Lemma 7.59 的幫助，馬上知道加上 equi-continuity 的條件之後，逐點收斂會變均勻收
斂。因此，很自然地我們會要求 B 滿足 pointwise pre-compact 還有 equi-continuous 這兩
個條件來證出 B 是 C (K;V) 中的 compact set。而在一個 compact set K 中能不能找到
一個稠密子集合則是由下面這個 Lemma 所提供。

Lemma 7.64. A compact set K in a metric space (M,d) is separable; that is, there exists
a countable subset E of K such that cl(E) = K.

Proof. Since K is compact, K is totally bounded; thus @n P N, there exists En Ď K such
that

#En ă 8 and K Ď
ď

yPEn

B
(
y,

1

n

)
.

Let E =
8
Ť

n=1

En. Then E is countable by Theorem 0.20. We claim that cl(E) = K.

To see this, first by the definition of the closure of a set, cl(E) Ď K (since K is closed).
Let x P K. Since K Ď

Ť

yPEn

B
(
y,

1

n

)
, x P B

(
y,

1

n

)
for some y P En. Therefore, B

(
x,

1

n

)
XE ‰

H for all n P N. This implies that x P sE = cl(E). ˝
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Theorem 7.65. Let (M,d) be a metric space, (V , } ¨ }) be a Banach space, K Ď M be a
compact set, and B Ď C (K;V) be equi-continuous and pointwise pre-compact. Then B is
pre-compact in

(
C (K;V), } ¨ }8

)
.

Proof. We show that every sequence tfku8
k=1 in B has a convergent subsequence. Since K is

compact, there is a countable dense subset E of K (Lemma 7.64), and the diagonal process
(Lemma 7.61) implies that there exists

␣

fkj
(8

j=1
that converges pointwise on E. Since E is

dense in K, by Lemma 7.59
␣

fkj
(8

j=1
converges uniformly on K; thus

␣

fkj
(8

j=1
converges in(

C (K;V), } ¨ }8

)
by Proposition 7.46. ˝

Remark 7.66. Lemma 7.56 and Theorem 7.65 imply that “a set B Ď C (K;V) is pre-
compact if and only if B is equi-continuous and pointwise pre-compact”. (That B is pre-
compact implies that B is pointwise pre-compact is left as an exercise).

Corollary 7.67. Let (M,d) be a metric space, and K Ď M be a compact set. Assume that
B Ď C (K;R) is equi-continuous and pointwise bounded on K. Then every sequence in B

has a uniformly convergent subsequence.

Proof. By the Bolzano-Weierstrass theorem the boundedness of
␣

fk(x)
(8

k=1
implies that

␣

fk(x)
(8

k=1
is pre-compact for all x P E. Therefore, we can apply Theorem 7.65 under the

setting (V , } ¨ }) = (R, | ¨ |) to conclude the corollary. ˝

The following theorem provides how compact sets look like in C (K;V).

Theorem 7.68 (The Arzelà-Ascoli Theorem). Let (M,d) be a metric space, (V , } ¨ }) be
a Banach space, K Ď M be a compact set, and B Ď C (K;V). Then B is compact in(
C (K;V), } ¨ }8

)
if and only if B is closed, equi-continuous, and pointwise compact.

Proof. “ð” This direction is conclude by Theorem 7.65 and the fact that B is closed.

“ñ” By Lemma 7.56 and the fact that compact sets are closed, it suffices to shows that
B is pointwise compact. Let x P K and

␣

fk(x)
(8

k=1
be a sequence in Bx. Since

B is compact, there exists a subsequence
␣

fkj
(8

j=1
that converges uniformly to some

function f P B. In particular,
␣

fkj(x)
(8

j=1
converges to f(x) P Bx. In other words, we

find a subsequence
␣

fkj(x)
(8

j=1
of

␣

fk(x)
(8

k=1
that converges to a point in Bx. This

implies that Bx is sequentially compact; thus Bx is compact. ˝

Example 7.69. Let fk : [0, 1] Ñ R be a sequence of functions such that
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(1) |fk(x)| ď M1 for all k P N and x P [0, 1]; (2) |f 1
k(x)| ď M2 for all k P N and x P [0, 1].

Then tfku8
k=1 is clearly pointwise bounded. Moreover, by the mean value theorem

ˇ

ˇfk(x) ´ fk(y)
ˇ

ˇ ď M2|x ´ y| @x, y P [0, 1], k P N

which implies that tfku8
k=1 is equi-continuous. Therefore, by Corollary 7.67 there exists a

subsequence
␣

fkj
(8

j=1
that converges uniformly on [0, 1].

Question: If assumption (1) of Example 7.69 is omitted, can tfku8
k=1 still have a convergent

subsequence?
Answer: No! Take fk(x) = k, then tfku8

k=1 does not have a convergent subsequence (note
that fk is continuous and f 1

k(x) = 0; that is, Assumption (2) is fulfilled).

Example 7.70. We show that Assumption (1) of Example 7.69 can be replaced by fk(0) = 0

for all k P N.

Proof. (a) If fn(0) = 0, then by the mean value theorem we have for all x P (0, 1] and k P N,
fk(x) ´ fk(0) = f 1

k(ck)(x ´ 0). Then Assumption (2) of Example 7.69 implies that
ˇ

ˇfk(x) ´ fk(0)
ˇ

ˇ =
ˇ

ˇf 1
k(ck)

ˇ

ˇ

ˇ

ˇx
ˇ

ˇ ď M2|x| ď M2

which shows that tfku8
k=1 is uniformly bounded by M2.

(b) tfku8
k=1 are equi-continuous (same proof as in Example 7.69). ˝

7.6 The Stone-Weierstrass Theorem
Theorem 7.71 (Weierstrass). Let f : [0, 1] Ñ R be continuous. Then for every ε ą 0, there
exists a polynomial p : [0, 1] Ñ R such that }f ´ p}8 ă ε. In other words, the collection of
all polynomials is dense in the space

(
C ([0, 1];R), } ¨ }8

)
.

Proof. For a fixed n P N, let rk(x) = Cn
k x

k(1 ´ x)n´k. By looking at the partial derivatives
with respect to x of the identity (x+ y)n =

n
ř

k=0

Cn
k x

kyn´k, we find that

1.
n
ř

k=0

rk(x) = 1; 2.
n
ř

k=0

krk(x) = nx; 3.
n
ř

k=0

k(k ´ 1)rk(x) = n(n ´ 1)x2.

As a consequence,
n
ÿ

k=0

(k ´ nx)2rk(x) =
n
ÿ

k=0

[
k(k ´ 1) + (1 ´ 2nx)k + n2x2

]
rk(x) = nx(1 ´ x) .
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Let ε ą 0 be given. Since f : [0, 1] Ñ R is continuous on a compact [0, 1], f is uniformly
continuous on [0, 1] (by Theorem 4.49); thus there exists δ ą 0 such that

ˇ

ˇf(x) ´ f(y)
ˇ

ˇ ă
ε

2
whenever |x ´ y| ă δ, x, y P [0, 1] .

Choose n P N such that }f}8

nδ2
ă ε, and define the Bernstein polynomial p(x) =

n
ř

k=0

f
(k
n

)
rk(x). Then p is a polynomial. Moreover, for x P [0, 1] we have

ˇ

ˇf(x) ´ p(x)
ˇ

ˇ =
ˇ

ˇ

ˇ

n
ÿ

k=0

(
f(x) ´ f

(k
n

))
rk(x)

ˇ

ˇ

ˇ
ď

n
ÿ

k=0

ˇ

ˇ

ˇ
f(x) ´ f

(k
n

)ˇ
ˇ

ˇ
rk(x)

ď

(
ÿ

|k´nx|ăδn

+
ÿ

|k´nx|ěδn

)ˇ
ˇ

ˇ
f(x) ´ f

(k
n

)ˇ
ˇ

ˇ
rk(x)

ă
ε

2
+ 2}f}8

ÿ

|k´nx|ěδn

(k ´ nx)2

(k ´ nx)2
rk(x)

ď
ε

2
+

2}f}8

n2δ2

n
ÿ

k=0

(k ´ nx)2rk(x) ď
ε

2
+

2}f}8

nδ2
x(1 ´ x) .

Since sup
xP[0,1]

x(1 ´ x) =
1

4
, we find that

}f ´ p}8 = sup
xP[0,1]

ˇ

ˇf(x) ´ p(x)
ˇ

ˇ ď
ε

2
+

}f}8

2nδ2
ă ε . ˝

Remark 7.72. A polynomial of the form pn(x) =
n
ř

k=0

βkrk(x) is called a Bernstein poly-
nomial of degree n, and the coefficients βk are called Bernstein coefficients.

x

y

O

Figure 7.3: Using a Bernstein polynomial of degree 350 (the red curve) to approximate a
“saw-tooth” function (the blue curve)

Corollary 7.73. The collection of polynomials on [a, b] is dense in
(
C ([a, b];R), } ¨ }8

)
.
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Proof. Let g P C ([a, b];R). Define f(x) = g(x(b´ a) + a). Then f P C ([0, 1];R); thus there
exists a sequence pn P C ([0, 1];R) such that

lim
nÑ8

sup
yP[0,1]

ˇ

ˇf(y) ´ pn(y)
ˇ

ˇ = 0 .

Therefore, with the change of variable y =
x ´ a

b ´ a
(or x = y(b ´ a) + a),

lim
nÑ8

sup
xP[a,b]

ˇ

ˇ

ˇ
g(x) ´ pn

(x ´ a

b ´ a

)ˇ
ˇ

ˇ
= lim

nÑ8
sup
yP[0,1]

ˇ

ˇf(y) ´ pn(y)
ˇ

ˇ = 0 ;

thus by the fact pn
(x ´ a

b ´ a

)
is a polynomial in x for all n P N we conclude that there exists

a sequence of polynomials converging to g uniformly on [a, b]. ˝

Definition 7.74. Let (M,d) be a metric space, and E Ď M be a subset. A family A of
real-valued functions defined on E is called an algebra if

1. f + g P A for all f, g P A;

2. f ¨ g P A for all f, g P A;

3. αf P A for all f P A and α P R.

In other words, A is an algebra if A is closed under addition, multiplication, and scalar
multiplication.

Example 7.75. A function g : [a, b] Ñ R is called simple if we can divide up [a, b] into
sub-intervals on which g is constant except perhaps at the end-points. In other words, g is
called simple if there is a partition P = tx0, x1, ¨ ¨ ¨ , xNu of [a, b] such that

g(x) = g
(xi´1 + xi

2

)
if x P (xi´1, xi) .

Then the collection of all simple functions is an algebra.

Proposition 7.76. Let (M,d) be a metric space, and A Ď M be a subset. If A Ď Cb(A;R)
is an algebra, so is sA.

Proof. Let f, g P sA. Then there exists tfku8
k=1, tgku8

k=1 Ď A such that tfku8
k=1 converges

uniformly to f on A, and tgku8
k=1 converges uniformly to g on A. Since A is an algebra,

fk + gk, fk ¨ gk and αfk belong to A for all k P N. By Theorem 2.48 and Proposition 7.46,
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the limit of tfk + gku8
k=1 and tαfku8

k=1 belong to sA which implies that f + g and αf belong
to sA. Moreover,

}fk ¨ gk ´ f ¨ g}8 ď }fk ´ f}8}gk}8 + }f}8}gk ´ g}8

which converges to 0 as k Ñ 8; thus f ¨ g is the limit of tfk ¨ gku8
k=1 so that f ¨ g P sA.

Therefore, sA is an algebra. ˝

Corollary 7.77. Let (M,d) be a metric space, K Ď M be a compact set, and A Ď C (K;R)
be an algebra.

1. If f P sA, so is |f |.

2. If f1, ¨ ¨ ¨ , fn P sA, then maxtf1, ¨ ¨ ¨ , fnu P sA and mintf1, ¨ ¨ ¨ , fnu P sA, where

maxtf1, ¨ ¨ ¨ , fnu(x) = maxtf1(x), ¨ ¨ ¨ , fn(x)u ,

mintf1, ¨ ¨ ¨ , fnu(x) = mintf1(x), ¨ ¨ ¨ , fn(x)u .

Proof. 1. Let f P sA. Then f is bounded so that M = sup
xPK

|f(x)| P R. By Corollary 7.73,

there exists a sequence of polynomial tpnu8
n=1 such that lim

nÑ8
sup

yP[´M,M ]

ˇ

ˇpn(y) ´ |y|
ˇ

ˇ = 0.

Since A is an algebra, sA is also an algebra; thus gn ” pn(f) P sA. Moreover,

sup
xPK

ˇ

ˇgn(x) ´ |f(x)|
ˇ

ˇ = sup
xPK

ˇ

ˇpn(f(x)) ´ |f(x)|
ˇ

ˇ ď sup
yP[´M,M ]

ˇ

ˇpn(y) ´ |y|
ˇ

ˇ

which shows that tgnu8
n=1 converges uniformly to |f | on K; thus |f | P s

sA = sA.

2. It suffices to show that maxtf, gu and mintf, gu both belong to sA since

maxtf1, ¨ ¨ ¨ , fnu = maxtmaxtf1, ¨ ¨ ¨ , fn´1u, fnu ,

mintf1, ¨ ¨ ¨ , fnu = mintmintf1, ¨ ¨ ¨ , fn´1u, fnu .

Nevertheless, note that maxtf, gu =
f + g

2
+

|f ´ g|

2
and mintf, gu =

f + g

2
´

|f ´ g|

2
,

we find that if f, g P sA then maxtf, gu P sA and mintf, gu P sA. ˝

Definition 7.78. Let (M,d) be a metric space, and E Ď M be a subset. A family F of
real-valued functions defined on E is said to

1. separate points on E if for all x, y P E and x ‰ y, there exists f P F such that
f(x) ‰ f(y).

2. vanish at no point of E if for each x P E there is f P F such that f(x) ‰ 0.
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Example 7.79. Let P([a, b]) denote the collection of polynomials defined on [a, b] is an
algebra. Moreover, P([a, b]) separates points on [a, b] since p(x) = x does the separation,
and P([a, b]) vanishes at no point of [a, b].

Example 7.80. Let Peven([a, b]) denote the collection of all polynomials p(x) of the form

p(x) =
n
ÿ

k=0

akx
2k = anx

2n + an´1x
2n´2 + ¨ ¨ ¨ + a0 .

Then Peven([a, b]) is an algebra. Moreover, Peven([a, b]) vanishes at no point of [a, b] since the
constant functions are polynomials (since constant functions belongs to P([a, b]). However,
if ab ă 0, Peven([a, b]) does not separate points on [a, b]. On the other hand, if ab ě 0, then
Peven([a, b]) separates points on [a, b] since p(x) = x2 does the job.

Lemma 7.81. Let (M,d) be a metric space, and E Ď M be a subset. Suppose that
A Ď Cb(E;R) is an algebra, A separates points on E, and A vanishes at no point of E.
Then for all x1, x2 P E, x1 ‰ x2, and c1, c2 P R (c1, c2 could be the same), there exists f P A
such that f(x1) = c1 and f(x2) = c2.

Proof. Since A separates points on E, there exists g P A such that g(x1) ‰ g(x2), and since
A vanishes at no point of E, there exists h, k P A such that h(x1) ‰ 0 and k(x2) ‰ 0. Then

f(x) = c1

[
g(x) ´ g(x2)

]
h(x)[

g(x1) ´ g(x2)
]
h(x1)

+ c2

[
g(x) ´ g(x1)

]
k(x)[

g(x2) ´ g(x1)
]
k(x2)

has the desired property. ˝

Theorem 7.82 (Stone). Let (M,d) be a metric space, K Ď M be a compact set, and
A Ď C (K;R) satisfying

1. A is an algebra. 2. A separates points on K. 3. A vanishes at no point of K.

Then A is dense in C (K;R); that is, for every f P C (K;R) and ε ą 0, there exists g P A
such that }f ´ g}8 ă ε.

Proof. We first show that for any given f P C (K;R), a P K and ε ą 0, there exists a
function ga P sA such that

ga(a) = f(a) and ga(x) ą f(x) ´ ε @x P K . (7.6.1)
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Let f P C (K;R), a P K and ε ą 0 be given. Since A is an algebra, so is sA; thus Lemma 7.81
implies that there exists hb P sA such that hb(a) = f(a) and hb(b) = f(b). Note that every
function in sA is continuous (by Theorem 7.8); thus the continuity of hb provides δ = δb ą 0

such that
hb(x) ą f(x) ´ ε @x P

[
B
(
b, δb

)
Y B

(
a, δb

)]
X K .

Let Ub = B
(
b, δb

)
YB

(
a, δb

)
. Then Ub is open. Since K Ď

Ť

bPK
b‰a

Ub and K is compact, there ex-

ists a finite set tb1, ¨ ¨ ¨ , bmu Ď Kztau such that K Ď
n
Ť

j=1

Ubj . Define ga = max
␣

hb1 , ¨ ¨ ¨hbm
(

.

Then ga(a) = f(a), and Corollary 7.77 implies that ga P sA. Moreover, if x P K, x P Ubj for
some j; thus

ga(x) ě hbj(x) ą f(x) ´ ε

which implies that g satisfies (7.6.1).
Let f P C (K;R) and ε ą 0 be given. For any a P K, let ga P sA be a function satisfying

ga(a) = f(a) and ga(x) ą f(x) ´
ε

2
@x P K . (7.6.2)

By the continuity of ga, there exists δ = δa ą 0 such that

ga(x) ă f(x) +
ε

2
@x P B(a, δa) X K . (7.6.3)

By the compactness of K, there exists ta1, ¨ ¨ ¨ , anu Ď K such that

K Ď

m
ď

j=1

B
(
aj, δaj

)
.

Define h = min
␣

ga1 , ¨ ¨ ¨ , gan
(

. Corollary 7.77 implies that h P sA, and (7.6.2) shows that

h(x) ą f(x) ´
ε

2
@x P K.

Moreover, if x P K, there exists j such that x P B
(
aj, δaj

)
and (7.6.3) further shows that

h(x) ď gaj(x) ă f(x) +
ε

2
;

thus
h(x) ă f(x) +

ε

2
@x P K.

Therefore, we establish the existence of h P sA such that
ˇ

ˇh(x) ´ f(x)
ˇ

ˇ ă
ε

2
@x P K .
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On the other hand, since h P sA, there exists p P A such that
ˇ

ˇp(x) ´ h(x)
ˇ

ˇ ă
ε

2
@x P K ;

thus
ˇ

ˇp(x) ´ f(x)
ˇ

ˇ ď
ˇ

ˇp(x) ´ h(x)
ˇ

ˇ+
ˇ

ˇh(x) ´ f(x)
ˇ

ˇ ă ε @x P K

which concludes the theorem. ˝

Example 7.83. Let K = [´1, 1]ˆ [´1, 1] Ď R2. Consider the set P(K) of all polynomials
p(x, y) in two variables (x, y) P K. Then P(K) is dense in C (K;R).
Reason: Since K is compact, and P(K) is definitely an algebra and the constant function
p(x, y) = 1 P P(K) vanishes at no point of K, it suffices to show that P(K) separates
points. Let (a1, b1) and (a2, b2) be two different points in K. Then the polynomial

p(x, y) = (x ´ a1)
2 + (y ´ b1)

2

has the property that p(a1, b1) ‰ p(a2, b2). Therefore, P(K) separates points in K,

Example 7.84. Consider Peven([0, 1]) =
!

p(x) =
n
ř

k=0

akx
2k
ˇ

ˇ

ˇ
ak P R

)

(see Example 7.80).

Then A = Peven([0, 1]) satisfies all the conditions in the Stone theorem, so Peven([0, 1]) is
dense in C ([0, 1];R).

On the other hand, if K = [´1, 1], then Peven([´1, 1]) does not separate points on K

since if p P Peven([´1, 1]), p(x) = p(´x); thus the Stone theorem cannot be applied to
conclude the denseness of Peven([´1, 1]) in C ([´, 1];R). In fact, Peven([´1, 1]) is not dense
in C ([´1, 1];R) since polynomials in Peven([´1, 1]) are all even functions and f(x) = x

cannot be approximated by even functions.

Corollary 7.85. Let C (T) be the collection of all 2π-periodic continuous real-valued func-
tions, and Pn(T) be the collection of all real-valued trigonometric polynomials of degree n;
that is,

Pn(T) =
!

c0
2
+

n
ÿ

k=1

ck cos kx+ sk sin kx
ˇ

ˇ

ˇ
tckunk=0, tskunk=1 Ď R

)

.

Then P(T) ”
8
Ť

n=0

Pn(T) is dense in C (T). In other words, if f P C (T) and ε ą 0 is given,

there exists p P P(T) such that
ˇ

ˇf(x) ´ p(x)
ˇ

ˇ ă ε @x P R .
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Proof. We note that C (T) can be viewed as the collection of all continuous functions defined
on the unit circle S1 in the sense that every f P C (T) corresponds to a unique F P C (S1;R)
such that f(x) = F (cosx, sinx), and vice versa. Since S1 Ď [´1, 1] ˆ [´1, 1] is compact,
Example 7.83 provides that P(S1), the collection of all polynomials defined on S1, is an
algebra that separates points of S1 and vanishes at no point on S1. The Stone-Weierstrass
Theorem then implies that there exists P P P(S1) such that

ˇ

ˇF (x, y) ´ P (x, y)
ˇ

ˇ ă ε @ (x, y) P S1 (that is, x2 + y2 = 1).

Let p(x) = P (cosx, sinx). Note that

cosn x =
(eix + e´ix

2

)n
=

n
ÿ

k=0

1

2n
Cn
k e

ikxe´i(n´k)x =
n
ÿ

k=0

1

2n
Cn
k e

i(2k´n)x

=
n
ÿ

k=0

1

2n
Cn
k

(
cos(2k ´ n)x+ i sin(2k ´ n)x

)
=

n
ÿ

k=0

1

2n
Cn
k cos(2k ´ n)x P Pn(T) ,

and similarly, sinm x P Pm(T). Therefore, if P (x, y) =
n
ř

k,ℓ=0

ak,ℓx
kyℓ, then P (cosx, sinx) P

P2n(T) because of the product-to-sum formulas

cos θ cosφ =
1

2

[
cos(θ ´ φ) + cos(θ + φ)

]
,

sin θ cosφ =
1

2

[
sin(θ + φ) + sin(θ ´ φ)

]
,

sin θ sinφ =
1

2

[
cos(θ ´ φ) ´ cos(θ + φ)

]
.

As a consequence, we conclude that
ˇ

ˇf(x) ´ p(x)
ˇ

ˇ =
ˇ

ˇF (cosx, sinx) ´ P (cosx, sinx)
ˇ

ˇ ă ε @x P R . ˝

7.7 Exercises
§7.1 Pointwise and Uniform Convergence

Problem 7.1. Let (M,d) and (N, ρ) be metric spaces, A Ď M , and fk : A Ñ N be a
sequence of functions such that for some function f : A Ñ N , we have that for all x P A, if
txku8

k=1 Ď A and xk Ñ x as k Ñ 8, then

lim
kÑ8

fk(xk) = f(x) .

Show that
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1. tfku8
k=1 converges pointwise to f .

2. If
␣

fkj
(8

j=1
is a subsequence of tfku8

k=1, and txju
8
j=1 Ď A is a convergent sequence

satisfying that lim
jÑ8

xj = x, then

lim
jÑ8

fkj(xj) = f(x) .

3. Show that if in addition A is compact and f is continuous on A, then tfku8
k=1 converges

uniformly f on A.

Remark. Using the inequality

ρ
(
fk(xk), f(x)

)
ď ρ

(
f(xk), f(x)

)
+ sup

xPA
ρ
(
fk(x), f(x)

)
,

we find that if tfku8
k=1 converges uniformly to a continuous function f , then lim

kÑ8
fk(xk) =

f(x) as long as lim
kÑ8

xk = x. Together with the conclusion in 3, we conclude that

Let (M,d), (N, ρ) be metric spaces, K Ď M be a compact set, fk : K Ñ N be
a function for each k P N, and f : K Ñ N be continuous. The sequence tfkuk=1

converges uniformly to f if and only if lim
kÑ8

fk(xk) = f(x) whenever sequence
txku8

k=1 Ď K converges to x.

Problem 7.2. Let (M,d) be a metric space, A Ď M , (N, ρ) be a complete metric space,
and fk : A Ñ N be a sequence of functions (not necessary continuous) which converges
uniformly on A. Suppose that a P cl(A) and

lim
xÑa

fk(x) = Lk

exists for all k P N. Show that tLku8
k=1 converges, and

lim
xÑa

lim
kÑ8

fk(x) = lim
kÑ8

lim
xÑa

fk(x) .

Problem 7.3. Prove the Dini theorem:

Let K be a compact set, and fk : K Ñ R be continuous for all k P N such that
tfkuk=1 converges pointwise to a continuous function f : K Ñ R. Suppose that
fk ď fk+1 for all k P N. Then tfku8

k=1 converges uniformly to f on K.

Hint: Mimic the proof of showing that tcku8
k=1 converges to 0 in Lemma 6.64.
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Problem 7.4. Let (M,d) and (N, ρ) be metric spaces, A Ď M , and fk : A Ñ N be
uniformly continuous functions, and tfku8

k=1 converges uniformly to f : A Ñ N on A. Show
that f is uniformly continuous on A.

Problem 7.5. Let (M,d) be a metric space, (V , } ¨ }) be a norm space, B Ď A Ď M ,
fk : A Ñ V be bounded for each k P N, and tgnu8

n=1 be the Cesàro mean of tfku8
k=1; that is,

gn =
1

n

n
ř

k=1

fk. Show that if tfku8
k=1 converges uniformly to f on B, then tgnu8

n=1 converges

uniformly to f on B.

Problem 7.6. Complete the following.

1. Suppose that fk, f, g : [0,8) Ñ R are functions such that

(a) @R ą 0, fk and g are Riemann integrable on [0, R];

(b) |fk(x)| ď g(x) for all k P N and x P [0,8);

(c) @R ą 0, tfku8
k=1 converges to f uniformly on [0, R];

(d)
ż 8

0
g(x)dx ” lim

RÑ8

ż R

0
g(x)dx ă 8.

Show that lim
kÑ8

ż 8

0
fk(x)dx =

ż 8

0
f(x)dx; that is,

lim
kÑ8

lim
RÑ8

ż R

0

fk(x)dx = lim
RÑ8

lim
kÑ8

ż R

0

fk(x)dx .

2. Let fk(x) be given by fk(x) =
"

1 if k ´ 1 ď x ă k ,

0 otherwise.
Find the (pointwise) limit f of

the sequence tfku8
k=1, and check whether lim

kÑ8

ż 8

0
fk(x)dx =

ż 8

0
f(x)dx or not. Briefly

explain why one can or cannot apply 1.

3. Let fk : [0,8) Ñ R be given by fk(x) =
x

1 + kx4
. Find lim

kÑ8

ż 8

0
fk(x)dx.

§7.2 Series of Functions and The Weierstrass M-Test

Problem 7.7. Show that the series
8
ÿ

k=1

(´1)k
x2 + k

k2

converges uniformly on every bounded interval.
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Problem 7.8. Consider the function

f(x) =
8
ÿ

k=1

1

1 + k2x
.

On what intervals does it converge uniformly? On what intervals does it fail to converge
uniformly? Is f continuous wherever the series converges? If f bounded?

Problem 7.9. Determine which of the following real series
8
ř

k=1

gk converge (pointwise or

uniformly). Check the continuity of the limit in each case.

1. gk(x) =
"

0 if x ď k ,
(´1)k if x ą k .

2. gk(x) =

$

’

&

’

%

1

k2
if |x| ď k ,

1

x2
if |x| ą k .

3. gk(x) =
(´1)k

?
k

cos(kx) on R.

§7.3 Integration and Differentiation of Series

Problem 7.10. In the following series of functions defined on R, find its domain of con-
vergence (classify it into domain of absolute and conditional convergence). If the series is
a power series, find its radius of convergence. Also discuss whether the series is uniformly
convergent in every compact subsets of its domain of convergence. Determine which series
can be differentiated or integrated term by term in its domain of convergence.

(1)
8
ř

k=1

x

kα + kβx2
, α ě 0, β ą 0;

(2)
8
ř

k=1

1

2k

?
1 ´ x2k;

(3)
8
ř

k=1

1 ¨ 3 ¨ ¨ ¨ (2k ´ 1)

2 ¨ 4 ¨ ¨ ¨ (2k)

(
1 +

1

2
+ ¨ ¨ ¨ +

1

k

)
x2k;

(4)
8
ř

k=1

(´1)k´1

k log(k + 1)
xk!;
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(5)
8
ř

k=1

akx
k, where taku8

k=1 is defined by the recursive relation ak = 3ak´1 ´ 2ak´2 for

k ě 2, and a0 = 1, a1 = 2.

Also find the sum of the series in (5).

Problem 7.11. In this problem we investigate the differentiability of a complex power

series. This requires a new proof of d

dx

8
ř

k=0

akx
k =

8
ř

k=1

kakx
k´1 instead of making use of

Theorem 7.11.
Let taku8

k=0 Ď R be a real sequence, and f(x) =
8
ř

k=0

akx
k be a (real) power series with

radius of convergence R ą 0. Let sn(x) =
n
ř

k=0

akx
k be the n-th partial sum, Rn(x) =

f(x) ´ sn(x), and g(x) =
8
ř

k=1

kakx
k´1. For x, x0 P (´ρ, ρ) Ĺ (´R,R), where x ‰ x0, write

f(x) ´ f(x0)

x ´ x0
´g(x) =

sn(x) ´ sn(x0)

x ´ x0
´s 1

n(x0)+
(
s 1
n(x0)´g(x0)

)
+
Rn(x) ´ Rn(x0)

x ´ x0
. (7.7.1)

1. Show that
ˇ

ˇ

ˇ

Rn(x) ´ Rn(x0)

x ´ x0

ˇ

ˇ

ˇ
ď

8
ÿ

k=n+1

k|ak|ρk´1 ,

and use the inequality above to show that lim
xÑx0

f(x) ´ f(x0)

x ´ x0
= g(x0).

2. Generalize the conclusion to complex power series; that is, show that if taku8
k=0 Ď C

and the power series
8
ř

k=0

akz
k has radius of convergence R ą 0, then

d

dz

8
ÿ

k=0

akz
k =

8
ÿ

k=1

kakz
k´1 @ |z| ă R .

Assume that you have known d

dz

n
ř

k=0

akz
k =

n
ř

k=1

kakz
k´1 for all n P N Y t0u (this can

be proved using the definition of differentiability of functions with values in normed
vector spaces provided in Chapter 5).

Problem 7.12. Suppose that the series
8
ř

n=0

an = 0, and f(x) =
8
ř

n=0

anx
n for ´1 ă x ď 1.

Show that f is continuous at x = 1 by complete the following.
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1. Write sn = a0 + a1 + ¨ ¨ ¨ + an and Sn(x) = a0 + a1x+ ¨ ¨ ¨ + anx
n. Show that

Sn(x) = (1 ´ x)(s0 + s1x+ ¨ ¨ ¨ + sn´1x
n´1) + snx

n

and f(x) = (1 ´ x)
8
ř

n=0

snx
n.

2. Using the representation of f from above to conclude that lim
xÑ1´

f(x) = 0.

3. What if
8
ř

n=0

an is convergent but not zero?

Problem 7.13. Construct the function g(x) by letting g(x) = |x| if x P
[

´
1

2
,
1

2

]
and

extending g so that it becomes periodic (with period 1). Define

f(x) =
8
ÿ

k=1

g(4k´1x)

4k´1
.

1. Use the Weierstrass M -test to show that f is continuous on R.

2. Prove that f is differentiable at no point.

(So there exists a continuous which is nowhere differentiable!)

Hint: Google Blancmange function!

§7.4 The Space of Continuous Functions

Problem 7.14. Let δ : (C ([´1, 1];R), } ¨ }8) Ñ R be defined by δ(f) = f(0). Show that δ
is linear and uniformly continuous.

Problem 7.15. Let (M,d) be a metric space, and K Ď M be a compact subset.

1. Show that the set U =
␣

f P C (K;R)
ˇ

ˇ a ă f(x) ă b for all x P K
(

is open in(
C (K;R), } ¨ }8

)
for all a, b P R.

2. Show that the set F =
␣

f P C (K;R)
ˇ

ˇ a ď f(x) ď b for all x P K
(

is closed in(
C (K;R), } ¨ }8

)
for all a, b P R.

3. Let A Ď M be a subset, not necessarily compact. Prove or disprove that the set
B =

␣

f P Cb(A;R)
ˇ

ˇ f(x) ą 0 for all x P A
(

is open in
(
Cb(A;R), } ¨ }8

)
.
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§7.5 The Arzelà-Ascoli Theorem

Problem 7.16. Which of the following set B of continuous functions are equi-continuous
in the metric space M? Are the closure sB compact in M?

1. B =
␣

sin kx
ˇ

ˇ k = 0, 1, 2, ¨ ¨ ¨
(

, M = C ([0, π];R).

2. B =
␣

sin
?
x+ 4k2π2

ˇ

ˇ k = 0, 1, 2, ¨ ¨ ¨
(

, M = Cb([0,8);R).

3. B =
!

x2

x2 + (1 ´ kx)2

ˇ

ˇ

ˇ
k = 0, 1, 2, ¨ ¨ ¨

)

, M = C ([0, 1];R).

4. B =
␣

(k + 1)xk(1 ´ x)
ˇ

ˇ k P N
(

, M = C ([0, 1];R).

Problem 7.17. Let (M,d) be a metric space, (V , } ¨ }) be a normed space, and A Ď M be
a subset. Suppose that B Ď Cb(A;V) be equi-continuous. Prove or disprove that cl(B) is
equi-continuous.

Problem 7.18. Let fk : [a, b] Ñ R be a sequence of differentiable functions such that fk(a)
is bounded and |f 1

k(x)| ď M for all x P [a, b] and k P N. Show that tfku8
k=1 contains an

uniformly convergent subsequence. Must the limit function differentiable?

Problem 7.19. Let C 0,α([0, 1];R) denote the “space”

C 0,α([0, 1];R) ”

!

f P C ([0, 1];R)
ˇ

ˇ

ˇ
sup

x,yP[0,1]

|f(x) ´ f(y)|

|x ´ y|α
ă 8

)

,

where α P (0, 1]. For each f P C 0,α([0, 1];R), define

}f}C 0,α = sup
xP[0,1]

|f(x)| + sup
x,yP[0,1]

x‰y

|f(x) ´ f(y)|

|x ´ y|α
.

1. Show that
(
C 0,α([0, 1];R), } ¨ }C 0,α

)
is a complete normed space.

2. Show that the set B =
␣

f P C ([0, 1];R)
ˇ

ˇ }f}C 0,α ă 1
(

is equi-continuous.

3. Show that cl(B) is compact in
(
C ([0, 1];R), } ¨ }8

)
.

Problem 7.20. Given f : R Ñ R a continuous periodic function of period 1; that is,
f(x + 1) = f(x) for all x P R, and x1, ¨ ¨ ¨ , xm P [0, 1] arbitrary m points, define a new
function

I(f ; x1, ¨ ¨ ¨ , xm)(x) =
1

m

[
f(x+ x1) + ¨ ¨ ¨ + f(x+ xm)

]
@x P R .
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Prove that the set

B =
␣

I(f ; x1, ¨ ¨ ¨ , xm)
ˇ

ˇx1, ¨ ¨ ¨ , xm P [0, 1],m P N
(

is uniformly bounded and equi-continuous in the space C ([0, 1];R). Moreover, show that the

derived set B1 =
!

ż 1

0
f(x)dx

)

; that is, the derived set of B consists of one single function

which is a constant function y =
ż 1

0
f(x)dx.

Problem 7.21. Let (M,d) be a metric space, (V , } ¨ }) be a Banach space, K Ď M be
compact, and tfku8

k=1 Ď C (K;V) be a sequence of continuous functions. Suppose that
for all x P K, if txku8

k=1, tyku8
k=1 Ď K and lim

kÑ8
xk = lim

kÑ8
yk = x, the limits lim

kÑ8
fk(xk) and

lim
kÑ8

fk(yk) exist and are identical. Show that tfku8
k=1 converges uniformly on K. How about

if K is not compact?

Problem 7.22. Assume that tfku8
k=1 is a sequence of monotone increasing functions on R

with 0 ď fk(x) ď 1 for all x P R and k P N.

1. Show that there is a subsequence tfkju
8
j=1 which converges pointwise to a function f

(This is usually called the Helly selection theorem).

2. If the limit f is continuous, show that tfkju
8
j=1 converges uniformly to f on any

compact set of R.

§7.6 The Stone-Weierstrass Theorem

Problem 7.23. Define B to be the set of all even functions in the space C ([´1, 1];R); that
is, f P B if and only if f is continuous on [´1, 1] and f(x) = f(´x) for all x P [´1, 1].
Prove that B is closed but not dense in C ([´1, 1];R). Hence show that even polynomials
are dense in B, but not in C ([´1, 1];R).

Problem 7.24. Let f : [0, 1] Ñ R be a continuous function.

1. Suppose that
ż 1

0

f(x)xndx = 0 @n P N Y t0u .

Show that f = 0 on [0, 1].
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2. Suppose that for some m P N,
ż 1

0

f(x)xndx = 0 @n P t0, 1, ¨ ¨ ¨ ,mu .

Show that f(x) = 0 has at least (m+1) distinct real roots around which f(x) change
signs.

Problem 7.25. Let f : [0, 1] Ñ R be continuous. Show that

lim
nÑ8

ż 1

0

f(x) cos(nx) dx = 0 and lim
nÑ8

ż 1

0

f(x) sin(nx) dx = 0 .

Problem 7.26. Put p0 = 0 and define

pk+1(x) = pk(x) +
x2 ´ p2k(x)

2
@ k P N Y t0u .

Show that tpku8
k=1 converges uniformly to |x| on [´1, 1].

Hint: Use the identity

|x| ´ pk+1(x) =
[
|x| ´ pk(x)

][
1 ´

|x| + pk(x)

2

]
(7.7.2)

to prove that 0 ď pk(x) ď pk+1(x) ď |x| if |x| ď 1, and that

|x| ´ pk(x) ď |x|

(
1 ´

|x|

2

)k
ă

2

k + 1

if |x| ď 1.

Problem 7.27. Let f : [0, 1] Ñ R be continuous and ε ą 0. Prove that there is a simple
function g (defined in Example 7.75) such that }f ´ g}8 ă ε.

Problem 7.28. Suppose that pn is a sequence of polynomials converging uniformly to f on
[0, 1] and f is not a polynomial. Prove that the degrees of pn are not bounded.
Hint: An Nth-degree polynomial p is uniquely determined by its values at N + 1 points
x0, ¨ ¨ ¨ , xN via Lagrange’s interpolation formula

p(x) =
N
ÿ

k=0

πk(x)
p(xk)

πk(xk)
,

where πk(x) = (x ´ x0)(x ´ x1) ¨ ¨ ¨ (x ´ xN)/(x ´ xk) =
ś

1ďjďN
j‰k

(x ´ xj).
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Problem 7.29. Consider the set of all functions on [0, 1] of the form

h(x) =
n
ÿ

j=1

aje
bjx ,

where aj, bj P R. Is this set dense in C ([0, 1];R)?

Problem 7.30 (True or False). Determine whether the following statements are true or
false. If it is true, prove it. Otherwise, give a counter-example.

1. Let fn : [a, b] Ñ R be an uniformly convergent sequence of continuous functions. Then
the sequence of the indefinite integrals gn(x) defined by

gn(x) =

ż x

a

fn(t) dt @x P [a, b]

converges uniformly to a continuously differentiable function.

2. Let fn : [0, 1] Ñ R be a equi-continuous sequence of functions such that the sequence
␣

fn(
1

2
)
(8

n=1
is bounded in R. Then tfnu8

n=1 contains a convergent subsequence.



Chapter 8

Fourier Series

讓我們回顧一下之前已經有的一些結論。在 §7.6 中我們學到了 Stone-Weierstrass 定理，
它告訴我們定義在 [0, 1] 上的連續函數 f 可以用多項式（例如 Bernstein 多項式）去逼近
（在均勻收斂的意義下），而我們也注意到 Bernstein 多項式，在取不同次數 n 的多項式做

逼近時，每一個單項式 xk 前面的係數都跟 n 和 k 有關。但是從定理 7.23 中我們又發現，
對某些擁有很好性質的函數 f（叫做解析函數 Analytic functions），即使取不同次數 n 的

多項式做逼近時，每個單項式 xk 前面的係數可以取成只跟函數 f 的 k 次導數有關（跟 n

無關）。這給了我們一個很粗略的概念，知道想用多項式去逼近連續函數時，多項式的係

數有些時候會跟多項次的次數有關，有時則無關。

在這一章中，我們在前四節特別關注在週期為 2π 的連續函數。由 Corollary 7.85 我們
知道這樣的函數可用形如

pn(x) =
c
(n)
0

2
+

n
ÿ

k=1

(c
(n)
k cos kx+ s

(n)
k sin kx)

的三角多項式 (trigonometric polynomials) 所逼近（在均勻收斂的意義下），其中上標 (n)

代表的是係數可能與用來逼近的三角多項式的次數 n 有關係。跟前一段所述的經驗類似，

在數學理論上我們想知道下面問題的答案：

1. 什麼樣的函數，可以用係數與逼近次數無關的三角多項式去逼近。對這樣的函數，
三角多項式要怎麼挑？

2. 對於實在沒辦法用係數與逼近次數無關的三角多項式去逼近的連續週期函數，有什
麼好的方法逼近？而上面所挑出來的那個係數跟逼近次數無關的三角多項式，在次

數接近無窮大時出了什麼問題？

上述的問題解決之後，我們用變數變換，也可以得到對於週期為 2L 的函數的相關理論。

254
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另外，由於在進行的過程中，我們發現我們所關心用來逼近連續函數的三角多項式

（叫富氏級數），其係數的定法只要求函數可積分即可，因此，一個自然衍生的問題則是：

對不連續（但可積分）的函數來說，有沒有什麼收斂理論可以說明？這個部份的研究則是

第四、五節的主要重點。在第六節中，我們則提供了一個快速傅利葉變換 (FFT) 的演算
法可供電腦去計算富氏級數（的係數）。

8.1 Basic Properties of the Fourier Series

Let f P C (T) be given. We first assume that the trigonometric polynomials used to approx-
imate f can be chosen in such a way that the coefficients does not depend on the degree of
approximation; that is, c(n)k = ck and s

(n)
k = sk. In this case, if pn Ñ f uniformy on [´π, π],

by Theorem 7.17 we must have

lim
nÑ8

ż π

´π

pn(x) cos kx dx =

ż π

´π

f(x) cos kx dx @ k P t0, 1, ¨ ¨ ¨ , nu

and
lim
nÑ8

ż π

´π

pn(x) sin kx dx =

ż π

´π

f(x) sin kx dx @ k P t1, ¨ ¨ ¨ , nu .

Since
ż π

´π

cos kx cos ℓx dx =

ż π

´π

sin kx sin ℓx dx = πδkℓ @ k, ℓ P N

and
ż π

´π

sin kx cos ℓx dx = 0 @ k P N, ℓ P N Y t0u ,

we find that

ck =
1

π

ż π

´π

f(x) cos kx dx and sk =
1

π

ż π

´π

f(x) sin kx dx . (8.1.1)

This induces the following

Definition 8.1. For a Riemann integrable function f : [´π, π] Ñ R, the Fourier series
of f , denoted by s(f, ¨), is given by

s(f, x) =
c0
2
+

8
ÿ

k=1

(ck cos kx+ sk sin kx)
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whenever the sum makes sense, where sequences tcku8
k=0 and tsku8

k=1 given by (8.1.1) are
called the Fourier coefficients associated with f . The n-th partial sum of the Fourier
series to f , denoted by sn(f, ¨), is given by

sn(f, x) =
c0
2
+

n
ÿ

k=1

(ck cos kx+ sk sin kx) .

We note that for the Fourier series s(f, x) to be defined, f is not necessary continuous.
Our goal is to establish the convergence of Fourier series in various senses.

Remark 8.2. Because of the Euler identity eiθ = cos θ + i sin θ, we can write

ck =
1

2π

ż π

´π

f(y)(eiky + e´iky)dy and sk =
1

2πi

ż π

´π

f(y)(eiky ´ e´iky)dy

thus

sn(f, x) =
c0
2
+

n
ÿ

k=1

(
ck
eikx + e´ikx

2
+ sk

eikx ´ e´ikx

2i

)
=

1

2

[
c0 +

n
ÿ

k=1

(
(ck ´ isk)e

ikx + (ck + isk)e
´ikx

)]
=

1

2

[
c0 +

n
ÿ

k=1

(ck ´ isk)e
ikx +

´1
ÿ

k=´n

(c´k + is´k)e
ikx

]
=

1

2

[
c0 +

1

π

n
ÿ

k=1

ż π

´π

f(y)e´ikydyeikx +
1

π

´1
ÿ

k=´n

ż π

´π

f(y)e´ikydyeikx
]
.

Define pfk =
1

2π

ż π

´π
f(y)e´iky dy. Then pfk =

c|k| + is|k|

2
(here we treat s0 = 0), and

sn(f, x) =
n
ÿ

k=´n

pfke
ikx .

The sequence t pfku8
k=´8 is also called the Fourier coefficients associated with f , and one can

write the Foruier series of f as
8
ř

k=´8

pfke
ikx.

Remark 8.3. Given a continuous function g with period 2L (or a function g which is
Riemann integrable on [´L,L]), let f(x) = g

(Lx
π

)
. Then f is a continuous function with
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period 2π (or f is a Riemann integrable function on [´π, π]), and the Fourier series of f is
given by

s(f, x) =
c0
2
+

n
ÿ

k=1

(ck cos kx+ sk sin kx) ,

where ck and sk are given by (8.1.1). Now, define the Fourier series of g by s(g, x) = s
(
f,

πx

L

)
.

Then the Fourier series of g is given by

s(g, x) =
c0
2
+

8
ÿ

k=1

(
ck cos kπx

L
+ sk sin kπx

L

)
,

where tcku8
k=0 and tsku8

k=1 is also called the Fourier coefficients associated with g and are
given by

ck =
1

π

ż π

´π

f(x) cos kx dx =
1

π

ż π

´π

g
(Lx
π

)
cos kx dx =

1

L

ż L

´L

g(x) cos kπx
L

dx

and similarly, sk =
1

L

ż L

´L
g(x) sin kπx

L
dx. Similar to Remark 8.2, the Fourier series of g can

also be written as 8
ÿ

k=´8

pgke
iπkx
L ,

where pgk =
1

2L

ż L

´L
g(y)e

´iπky
L dy.

Example 8.4. Consider the periodic function f : R Ñ R defined by

f(x) =

"

x if 0 ď x ď π ,

´x if ´π ă x ă 0 ,

and f(x + 2π) = f(x) for all x P R. To find the Fourier representation of f , we compute
the Fourier coefficients by

sk =
1

π

ż π

´π

f(x) sin kx dx =
1

π

( ż π

0

x sin kx dx ´

ż 0

´π

x sin kx dx
)
= 0

and

ck =
1

π

ż π

´π

f(x) cos kx dx =
1

π

( ż π

0

x cos kx dx ´

ż 0

´π

x cos kx dx
)
=

2

π

ż π

0

x cos kx dx .

If k = 0, then c0 =
2

π

ż π

0
x dx = π, while if k P N,

ck =
2

π

(x sin kx
k

ˇ

ˇ

ˇ

π

0
´

ż π

0

sin kx
k

dx
)
=

2

π

cos kx
k2

ˇ

ˇ

ˇ

π

0
=

2((´1)k ´ 1)

πk2
.
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Therefore, c2k = 0 and c2k´1 = ´
4

π(2k ´ 1)2
for all k P N. Therefore, the Fourier series of f

is given by

s(f, x) =
π

2
´

4

π

8
ÿ

k=1

cos(2k ´ 1)x

(2k ´ 1)2
.

Example 8.5. Consider the periodic function f : R Ñ R defined by

f(x) =

$

&

%

1 if ´
π

2
ď x ď

π

2
,

0 if ´π ď x ă ´
π

2
or π

2
ă x ď π ,

and f(x+ 2π) = f(x) for all x P R. We compute the Fourier coefficients of f and find that
sk = 0 for all k P N and c0 = 1, as well as

ck =
1

π

ż π
2

´π
2

cos kx dx =
2

π

ż π
2

0

cos kx dx =
2 sin kπ

2

πk
.

Therefore, c2k = 0 and c2k´1 =
2(´1)k+1

π(2k ´ 1)
for all k P N; thus the Fourier series of f is given

by

s(f, x) =
1

2
´

2

π

8
ÿ

k=1

(´1)k

2k ´ 1
cos(2k ´ 1)x .

Example 8.6. Consider the periodic function f : R Ñ R defined by

f(x) = x if ´ π ă x ď π

and f(x + 2π) = f(x) for all x P R. Then the Fourier coefficients of f are computed as
follows: ck = 0 for all k P N Y t0u since f is (more or less) an odd function, and

sk =
1

π

ż π

´π

x sin kx dx =
2

π

ż π

0

x sin kx dx =
2

π

(
´
x cos kx

k

ˇ

ˇ

ˇ

π

0
+

ż π

0

cos kx
k

dx
)

=
2(´1)k+1

k
.

Therefore, the Fourier series of f is given by

s(f, x) = 2
8
ÿ

k=1

(´1)k+1

k
sin kx .
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8.2 Uniform Convergence of the Fourier Series

Before proceeding, we note that Remark 8.2 implies that

sn(f, x) =
n
ÿ

k=´n

1

2π

ż π

´π

f(y)eik(x´y) dy =

ż π

´π

f(y)
( 1

2π

n
ÿ

k=´n

eik(x´y)
)
dy .

Define Dn(x) =
1

2π

n
ř

k=´n

eikx. Then Dn is 2π-periodic, and

sn(f, x) =

ż π

´π

f(y)Dn(x ´ y) dy .

For 2π-periodic Riemann integrable functions f and g, we define the convolution of f and
g on the circle by

(f ‹ g)(x) =

ż π

´π

f(y)g(x ´ y) dy .

Then sn(f, x) = (Dn ‹ f)(x).

Note that Dn(0) =
2n+ 1

2π
, and if eix ‰ 1,

Dn(x) =
1

2π

e´inx
[
ei(2n+1)x ´ 1

]
eix ´ 1

=
1

2π

ei(n+1/2)x ´ e´i(n+1/2)x

eix/2 ´ e´ix/2
=

sin(n+ 1
2
)x

2π sin x
2

so that we have the following

Definition 8.7. The function Dn : R Ñ R defined by

Dn(x) =

$

’

’

&

’

’

%

sin(n+ 1
2)x

2π sin x
2

if x R t2kπ | k P Zu ,

2n+ 1

2π
if x P t2kπ | k P Zu ,

(8.2.1)

is called the Dirichlet kernel.

By the fact that Dn(x) =
1

2π

n
ř

k=´n

eikx, we immediately conclude the following

Lemma 8.8. For each n P N and x P R,
ż π

´π
Dn(x ´ y) dy = 1.

In the following, we first consider the uniform convergence of the Fourier series of 2π-
periodic continuously differentiable functions.
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Definition 8.9. The normed vector space
(
C 1(T), } ¨ }C 1(T)

)
is a vector space over R con-

sisting of all 2π-periodic real-valued continuously differentiable functions and is equipped
with a norm

}f}C 1(T) = }f}8 + }f 1}8 = max
xPR

ˇ

ˇf(x)
ˇ

ˇ+ max
xPR

ˇ

ˇf 1(x)
ˇ

ˇ @ f P C 1(T) .

Theorem 8.10. For any f P C 1(T),the Fourier series of f converges uniformly to f on R;
that is, the sequence tsn(f, ¨)u

8
n=1 converges uniformly to f on R.

Proof. By Lemma 8.8, we find that for all x P R,

sn(f, x) ´ f(x) = (Dn ‹ f ´ f)(x) =

ż π

´π

Dn(x ´ y)
(
f(y) ´ f(x)

)
dy

=

ż π

´π

Dn(y)
(
f(x ´ y) ´ f(x)

)
dy .

We break the integral into two parts: one is the integral on |y| ď δ and the other is the
integral on δ ă |y| ď π. Since f P C 1(T),

|f(x ´ y) ´ f(x)| ď }f 1}8|y| ;

thus by the fact that x

sinx
ď

π

2
for 0 ă x ă

π

2
, we obtain that

ˇ

ˇ

ˇ

ż

|y|ďδ

Dn(y)
(
f(x ´ y) ´ f(x)

)
dy
ˇ

ˇ

ˇ

ď

ż δ

´δ

ˇ

ˇf(x ´ y) ´ f(x)
ˇ

ˇ

2π
ˇ

ˇ sin y
2

ˇ

ˇ

dy ď
}f 1}8

2π

ż δ

´δ

y

sin y
2

dy ď }f 1}8δ . (8.2.2)

Now we take care of the integral on δ ă |y| ď π by first looking at the integral on δ ă y ă π.
Integrating by parts,

ż π

δ

Dn(y)
(
f(x ´ y) ´ f(y)

)
dy =

1

2π

ż π

δ

sin
(
n+

1

2

)
y
f(x ´ y) ´ f(x)

sin y
2

dy

= ´
1

2π

cos
(
n+ 1

2

)
y

n+ 1
2

f(x ´ y) ´ f(x)

sin y
2

ˇ

ˇ

ˇ

y=π

y=δ
+

1

2π

ż π

δ

cos
(
n+ 1

2

)
y

n+ 1
2

d

dy

f(x ´ y) ´ f(x)

sin y
2

dy .

For the first term on the right-hand side,
ˇ

ˇ

ˇ

1

2π

cos
(
n+ 1

2

)
y

n+ 1
2

f(x ´ y) ´ f(x)

sin y
2

ˇ

ˇ

ˇ

y=π

y=δ

ˇ

ˇ

ˇ
ď

2}f}8

2πn sin δ
2

ď
}f}8

n sin δ
2

@x P R .
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For the second term on the right-hand side,
ˇ

ˇ

ˇ

1

2π

ż π

δ

cos
(
n+ 1

2

)
y

n+ 1
2

d

dy

f(x ´ y) ´ f(x)

sin y
2

dy
ˇ

ˇ

ˇ

ď
1

2π

[
ˇ

ˇ

ˇ

ż π

δ

cos
(
n+ 1

2

)
y

n+ 1
2

f 1(x ´ y)

sin y
2

dy
ˇ

ˇ

ˇ
+
ˇ

ˇ

ˇ

ż π

δ

cos
(
n+ 1

2

)
y

n+ 1
2

cos y2
(
f(x ´ y) ´ f(x)

)
2 sin2 y

2

dy
ˇ

ˇ

ˇ

]
ď

1

2π

[
}f 1}8

π ´ δ(
n+ 1

2

)
sin δ

2

+ }f}8

π ´ δ(
n+ 1

2

)
sin2 δ

2

]
ď

}f}C 1(T)

n sin2 δ
2

.

Similarly,
ˇ

ˇ

ˇ

ż ´δ

´π

Dn(y)
(
f(x ´ y) ´ f(x)

)
dy
ˇ

ˇ

ˇ
ď

}f}8

n sin δ
2

+
}f}C 1(T)

n sin2 δ
2

;

thus for all x P R,

ˇ

ˇsn(f, x) ´ f(x)
ˇ

ˇ ď

ˇ

ˇ

ˇ

( ż δ

´δ

+

ż π

δ

+

ż ´δ

´π

)
Dn(y)

(
f(x ´ y) ´ f(x)

)
dy
ˇ

ˇ

ˇ

ď }f 1}8δ +
2}f}8

n sin δ
2

+
2}f}C 1(T)

n sin2 δ
2

ď }f 1}8δ +
4}f}C 1(T)

n sin2 δ
2

.

Let ε ą 0 be given. Choose a fixed δ ą 0 such that }f 1}8δ ă
ε

2
. For this fixed δ, choose

N ą 0 such that
4}f}C 1(T)

N sin2 δ
2

ă
ε

2
.

Then if n ě N and x P R, we have
ˇ

ˇsn(f, x) ´ f(x)
ˇ

ˇ ă
ε

2
+

4}f}C 1(T)

n sin2 δ
2

ď
ε

2
+

4}f}C 1(T)

N sin2 δ
2

ă ε . ˝

Next we consider the convergence of the Fourier series of less regular functions. The
functions of which we prove the convergence of the Fourier series belong to the so-called
Hölder class continuous functions.

Definition 8.11. A function f P C (T) is said to be Hölder continuous with exponent

α P (0, 1], denoted by f P C 0,α(T), if sup
x,yPR
x‰y

ˇ

ˇf(x) ´ f(y)
ˇ

ˇ

|x ´ y|α
ă 8 . Let } ¨ }C 0,α(T) be defined by

}f}C 0,α(T) = sup
xPT

ˇ

ˇf(x)
ˇ

ˇ+ sup
x,yPR
x‰y

ˇ

ˇf(x) ´ f(y)
ˇ

ˇ

|x ´ y|α
.

Then } ¨ }C 0,α(T) is a norm on C 0,α(T), and

C 0,α(T) =
␣

f P C (T)
ˇ

ˇ }f}C 0,α(T) ă 8
(

.
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In particular, when α = 1, a function in C 0,1(T) is said to be Lipschitz continuous on T;
thus C 0,1(T) consists of Lipschitz continuous functions on T.

The uniform convergence of sn(f, ¨) to f for f P C 0,α(T) with α P (0, 1) requires a lot
more work. The idea is to estimate

›

›f ´ sn(f, ¨)
›

›

8
in terms of the quantity inf

pPPn(T)
}f ´ p}8.

Since sn(f, ¨) P Pn(T), it is obvious that

inf
pPPn(T)

}f ´ p}8 ď
›

›f ´ sn(f, ¨)
›

›

8
.

The goal is to show the inverse inequality
›

›f ´ sn(f, ¨)
›

›

8
ď Cn inf

pPPn(T)
}f ´ p}8 (8.2.3)

for some constant Cn, and pick a suitable p P Pn(T) which gives a good upper bound for
›

›f ´ sn(f, ¨)
›

›

8
. The inverse inequality is established via the following

Proposition 8.12. The Dirichlet kernel Dn satisfies that for all n P N,
ż π

´π

ˇ

ˇDn(x)
ˇ

ˇdx ď 2 + logn . (8.2.4)

Proof. The validity of (8.2.4) for the case n = 1 is left to the reader, and we provide the

proof for the case n ě 2 here. Recall that Dn(x) =
sin(n+ 1

2)x

2π sin x
2

if x P (0, π]. Therefore,

ż π

´π

ˇ

ˇDn(x)
ˇ

ˇdx = 2

ż π

0

ˇ

ˇDn(x)
ˇ

ˇdx =

ż 1
n

0

2
ˇ

ˇDn(x)
ˇ

ˇdx+

ż π

1
n

ˇ

ˇ

ˇ

sin(n+ 1
2
)x

π sin x
2

ˇ

ˇ

ˇ
dx .

Since |Dn(x)| ď
2n+ 1

2π
for all 0 ă x ď

1

n
, the first integral can be estimated by

ż 1
n

0

2
ˇ

ˇDn(x)
ˇ

ˇdx ď
1

π

2n+ 1

n
. (8.2.5)

Since 2x

π
ď sinx for 0 ď x ď

π

2
, the second integral can be estimated by

ż π

1
n

ˇ

ˇ

ˇ

sin(n+ 1
2
)x

π sin x
2

ˇ

ˇ

ˇ
dx ď

ż π

1
n

1

x
dx = log π + logn . (8.2.6)

We then conclude (8.2.4) from (8.2.5) and (8.2.6) by noting that log π +
2n+ 1

nπ
ď 2 for all

n ě 2. ˝
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Remark 8.13. A more subtle estimate can be done to show that
ż π

´π

ˇ

ˇDn(x)
ˇ

ˇdx ě c1 + c2 logn @n P N

for some positive constants c1 and c2. Therefore, the integral of |Dn| on [´π, π] blows up as
n Ñ 8.

With the help of Proposition 8.12, we are able to prove the inverse inequality (8.2.3).
The following theorem is a direct consequence of Proposition 8.12.

Theorem 8.14. Let f P C (T); that is, f is a continuous function with period 2π. Then
›

›f ´ sn(f, ¨)
›

›

8
ď (3 + logn) inf

pPPn(T)
}f ´ p}8 . (8.2.7)

Proof. For n P N and x P T,
ˇ

ˇsn(f, x)
ˇ

ˇ ď

ż π

´π

ˇ

ˇDn(y)|
ˇ

ˇf(x ´ y)
ˇ

ˇdy ď (2 + logn)}f}8 .

Given ε ą 0, let p P Pn(T) such that

}f ´ p}8 ď inf
pPPn(T)

}f ´ p}8 + ε.

Then by the fact that sn(p, x) = p(x) if p P Pn(T), we obtain that
›

›f ´ sn(f, ¨)
›

›

8
ď
›

›f ´ p
›

›

8
+
›

›p ´ sn(f, ¨)
›

›

8
ď
›

›f ´ p
›

›

8
+
›

›sn(f ´ p, ¨)
›

›

8

ď
›

›f ´ p
›

›

8
+ (2 + logn)}f ´ p}8

ď (3 + logn)
[

inf
pPPn(T)

}f ´ p}8 + ε
]
,

and (8.2.7) is obtained by passing to the limit as ε Ñ 0. ˝

Having established Theorem 8.14, the study of the uniform convergence of sn(f, ¨) to f
then amounts to the study of the quantity inf

pPPn(T)
}f´p}8. The estimate of inf

pPPn(T)
}f´p}8

for f P C 0,α(T), where α P (0, 1), is more difficult, and requires a clever choice of p. We
begin with the following

Lemma 8.15. If f is a continuous function on [a, b], then for all δ1, δ2 ą 0,

sup
|x´y|ďδ1

ˇ

ˇf(x) ´ f(y)
ˇ

ˇ ď

(
1 +

δ1
δ2

)
sup

|x´y|ďδ2

ˇ

ˇf(x) ´ f(y)
ˇ

ˇ .
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The proof of Lemma 8.15 is not very difficult, and is left to the readers.
Now we are in position to prove the theorem due to D. Jackson.

Theorem 8.16 (Jackson). There exists a constant C ą 0 such that

inf
pPPn(T)

}f ´ p}8 ď C sup
|x´y|ď 1

n

|f(x) ´ f(y)| @ f P C (T) .

Proof. Let p(x) = 1+ c1 cosx+ ¨ ¨ ¨+ cn cosnx be a positive trigonometric function of degree
n with coefficients tciu

n
i=1 determined later. Define an operator K on C (T) by

(Kf)(x) = 1

2π

ż π

´π

p(y)f(x ´ y) dy .

Then Kf P Pn(T). Lemma 8.15 then implies
ˇ

ˇ(Kf)(x) ´ f(x)
ˇ

ˇ ď
1

2π

ż π

´π

p(y)
ˇ

ˇf(x ´ y) ´ f(x)
ˇ

ˇdy

ď
1

2π

ż π

´π

p(y)
(
1 + n|y|

)
sup

|x´y|ď 1
n

ˇ

ˇf(x) ´ f(y)
ˇ

ˇdy

=
[
1 +

n

2π

ż π

´π

|y|p(y) dy
]

sup
|x´y|ď 1

n

ˇ

ˇf(x) ´ f(y)
ˇ

ˇ .

Since y2 ď
π2

2
(1 ´ cos y) for y P [´π, π], by the Cauchy-Schwarz inequality (Corollary 2.27)

we find that
1

2π

ż π

´π

|y|p(y) dy ď

[ 1

2π

ż π

´π

y2p(y) dy
] 1

2
[ 1

2π

ż π

´π

p(y) dy
] 1

2

ď

[π
4

ż π

´π

(1 ´ cos y)p(y) dy
] 1

2
=
π

2

?
2 ´ c1 .

Therefore,
}Kf ´ f}8 ď

(
1 +

nπ

2

?
2 ´ c1

)
sup

|x´y|ď 1
n

ˇ

ˇf(x) ´ f(y)
ˇ

ˇ .

To conclude the theorem, we need to show that the number n
?
2 ´ c1 can be made bounded

by choosing p properly. Nevertheless, let

p(x) = c
ˇ

ˇ

ˇ

n
ÿ

k=0

sin (k + 1)π

n+ 2
eikx

ˇ

ˇ

ˇ

2

= c
n
ÿ

k=0

n
ÿ

ℓ=0

sin (k + 1)π

n+ 2
sin (ℓ+ 1)π

n+ 2
ei(k´ℓ)x

= c
n
ÿ

k=0

sin2 (k + 1)π

n+ 2
+ 2c

n
ÿ

k,ℓ=0
kąℓ

sin (k + 1)π

n+ 2
sin (ℓ+ 1)π

n+ 2
cos(k ´ ℓ)x
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and choose c so that p(x) = 1 + c1 cosx+ ¨ ¨ ¨ + cn cosnx. Then

c´1 =
n
ÿ

k=0

sin2 (k + 1)π

n+ 2
=

1

2

n
ÿ

k=0

[
1 ´ cos 2(k + 1)π

n+ 2

]
=
n+ 1

2
´

sin (2n+3)π
n+2

´ sin π
n+2

4 sin π
n+2

=
n+ 2

2
,

and

c1 = 2c
n
ÿ

k=1

sin (k + 1)π

n+ 2
sin kπ

n+ 2
= c

n
ÿ

k=1

[
cos π

n+ 2
´ cos (2k + 1)π

n+ 2

]
= c

[
n cos π

n+ 2
´

sin (2n+2)π
n+2

´ sin 2π
n+2

2 sin π
n+2

]
= c

[
n cos π

n+ 2
+

sin 2π
n+2

sin π
n+2

]
= c(n+ 2) cos π

n+ 2
= 2 cos π

n+ 2
.

As a consequence,

n
?
2 ´ c1 = n

(
2 ´ 2 cos π

n+ 2

) 1
2
= 2n sin π

2(n+ 2)

= 2(n+ 2) sin π

2(n+ 2)
´ 4 sin π

2(n+ 2)

= π
2(n+ 2)

π
sin π

2(n+ 2)
´ 4 sin π

2(n+ 2)

which is bounded by π; thus

inf
pPPn(T)

}f ´ p}8 ď }Kf ´ f}8 ď
(
1 +

π2

2

)
sup

|x´y|ď 1
n

ˇ

ˇf(x) ´ f(y)
ˇ

ˇ . ˝

Finally, since lim
nÑ8

n´α logn = 0 for all α P (0, 1] , we conclude the following

Theorem 8.17. For any f P C 0,α(T) with α P (0, 1], the Fourier series of f converges
uniformly to f on R.

Remark 8.18. The converse of Theorem 8.16 is the Bernstein theorem which states that
if f is a 2π-periodic function with the property that there exist a constant C (independent
of n) and α P (0, 1) such that

inf
pPPn(T)

}f ´ p}8 ď Cn´α @n P N , (8.2.8)

then f P C 0,α(T). In other words, (8.2.8) is an equivalent condition to the Hölder continuity
with exponent α of 2π-periodic continuous functions.
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8.3 Cesàro Mean of Fourier Series
While Corollary 7.85 shows that the collection of trigonometric polynomials

!c0
2
+

n
ÿ

k=1

(ck cos kx+ sk sin kx)
ˇ

ˇ

ˇ
tckunk=0, tskunk=1 Ď R

)

is dense in C (T), Theorem 8.17 only implies the uniform convergence of the Fourier se-
ries of Hölder continuous functions. To approximate continuous functions uniformly, the
coefficients of the trigonometric polynomials should depend on the order of approximation.

The motivation of the discussion below is due to the following observation. Let taku8
k=1

be a sequence. Define a new sequence tbnu8
n=1, called the Cesàro mean of the sequence

taku8
k=1, by

bn =
a1 + ¨ ¨ ¨ + an

n
=

1

n

n
ÿ

k=1

ak .

If taku8
k=1 converges to a, then tbnu8

n=1 converges to a as well. Even though the convergence
of a sequence cannot be guaranteed by the convergence of its Cesàro mean, it is worthwhile
investigating the convergence behavior of the Cesàro mean.

Let σn(f, ¨) denote the Cesàro mean of the Fourier series of f given by

σn(f, ¨) ”
1

n+ 1

n
ÿ

k=0

sk(f, ¨) =
1

n+ 1

n
ÿ

k=0

(Dk ‹ f) =
( 1

n+ 1

n
ÿ

k=0

Dk

)
‹ f .

We note that the coefficients of the Cesàro mean σn(f, ¨) depend on the order of approxima-
tion n since

σn(f, x) =
c0
2
+

n
ÿ

k=1

(
n+ 1 ´ k

n+ 1
ck

looooomooooon

” c
(n)
k

cos kx+ n+ 1 ´ k

n+ 1
sk

looooomooooon

” s
(n)
k

sin kx
)
.

Recall that Dk(x) =
sin(k + 1

2)x

2π sin x
2

. By the product-to-sum formula, we find that if x P

(0, π),
n
ÿ

k=0

Dk(x) =
1

2π sin x
2

n
ÿ

k=0

sin(k + 1

2
)x =

1

4π sin2 x
2

n
ÿ

k=0

2 sin x
2

sin(k + 1

2
)x

=
1

4π sin2 x
2

n
ÿ

k=0

(
cos kx ´ cos(k + 1)x

)
=

1

4π sin2 x
2

(
1 ´ cos(n+ 1)x

)
=

sin2 n+1
2
x

2π sin2 x
2

.

This induces the following
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Definition 8.19. The Fejér kernel is the Cesàro mean of the Dirichlet kernel given by

Fn(x) =
1

n+ 1

n
ÿ

k=0

Dk(x) =
1

2π(n+ 1)

sin2 (n+1)x
2

sin2 x
2

.

We note that σn(f, ¨) = Fn‹f , where Fn ě 0 and has the property that
ż π

´π
Fn(x) dx = 1

(since the integral of the Dirichlet kernel is 1). Moreover, for any δ ą 0,

lim
nÑ8

ż

δď|x|ďπ

Fn(x) dx = 0 (8.3.1)

since
ˇ

ˇFn(x)
ˇ

ˇ ď
1

2π(n+ 1) sin2 δ
2

if δ ď |x| ď π. Inequality (8.3.1) allows us to show that
␣

σn(f, ¨)
(8

n=1
converges uniformly to f .

Theorem 8.20. For any f P C (T), the Cesàro mean
␣

σn(f, ¨)
(8

n=1
of the Fourier series of

f converges uniformly to f .

Proof. Let ε ą 0 be given. Since f P C (T), f is uniformly continuous on R; thus there
exists δ ą 0 such that

ˇ

ˇf(x) ´ f(y)
ˇ

ˇ ă
ε

2
whenever |x ´ y| ă δ .

Therefore, by the fact that
ż π

´π
Fn(x)dx = 1 and Fn ě 0,

ˇ

ˇσn(f, x) ´ f(x)
ˇ

ˇ =
ˇ

ˇ

ˇ

ż π

´π

Fn(y)f(x ´ y) dy ´

ż π

´π

Fn(y)f(x) dy
ˇ

ˇ

ˇ

ď

ż π

´π

Fn(y)
ˇ

ˇf(x ´ y) ´ f(x)
ˇ

ˇ dy

=

ż

|y|ăδ

Fn(y)
ˇ

ˇf(x ´ y) ´ f(x)
ˇ

ˇ dy +

ż

δď|y|ďπ

Fn(y)
ˇ

ˇf(x ´ y) ´ f(x)
ˇ

ˇ dy

ď ε

ż

|y|ăδ

Fn(y) dy + 2}f}8

ż

δď|y|ďπ

Fn(y) dy

ď
ε

2
+ 2}f}8

ż

δď|y|ďπ

Fn(y) dy .

Using (8.3.1), there exists N ą 0 such that

2}f}8

ż

δď|y|ďπ

Fn(y) dy ă
ε

2
whenever n ě N .

Therefore,
ˇ

ˇσn(f, x) ´ f(x)
ˇ

ˇ ă ε whenever n ě N and x P R; thus we conclude that the
Cesàro mean

␣

σn(f, ¨)
(8

n=1
converges uniformly to f . ˝
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8.4 Convergence of Fourier Series for Functions with
Jump Discontinuity

In previous sections we discussed the convergence of the Fourier series of continuous func-
tions. However, since the Fourier series can be defined for bounded Riemann integrable
functions, it is natural to ask what happen if the function under consideration is not con-
tinuous. We note that in this case we cannot apply Corollary 7.85 at all so no uniform
convergence is expected.

In this section, we focus on the convergence behavior of Fourier series of functions with
only jump discontinuities.

Definition 8.21. A function f : [´π, π] Ñ R is said to have jump discontinuity at a P

(´π, π) if

1. lim
xÑa+

f(x) and lim
xÑa´

f(x) both exist.

2. lim
xÑa+

f(x) ‰ lim
xÑa´

f(x).

Now suppose that f : [´π, π] Ñ R is piecewise Hölder continuous with exponent α P

(0, 1]; that is, there exists ta1, ¨ ¨ ¨ , amu Ď (´π, π) such that f P C 0,α((aj, aj+1);R) for all
j P t0, ¨ ¨ ¨ ,mu, where a0 = ´π and am+1 = π, and f P C 0,α(I;R) if and only if

sup
x,yPI,x‰y

ˇ

ˇf(x) ´ f(y)
ˇ

ˇ

|x ´ y|α
ă 8 .

Then for all a P (´π, π), the limits lim
xÑa+

f(x) and lim
xÑa´

f(x) exist since if txku8
k=1 is a

sequence in (´π, π) which approaches to a from the right/left, then for some 0 ď j ď m we
must have xk P (aj, aj+1) for all large k so that the Hölder continuity implies that

ˇ

ˇf(xk) ´ f(xℓ)
ˇ

ˇ ď M |xk ´ xℓ|
α @ k, ℓ large

which shows that tf(xku8
k=1 is a Cauchy sequence

(
converging to lim

xÑa˘
f(x)

)
. In other words,

if f : [´π, π] Ñ R is piecewise Hölder continuous and a P (´π, π) is a discontinuity of f ,
then f has either removable discontinuity at a

(
which means lim

xÑa+
f(x) = lim

xÑa´
f(x) ‰ f(a)

)
or jump discontinuity at a. In the following, we always assume that f is piecewise Hölder
continuous with exponent α P (0, 1] and has only jump discontinuities at ta1, ¨ ¨ ¨ , amu in
(´π, π).
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Let f(a+j ) = lim
xÑa+j

f(x), f(a´
j ) = lim

xÑa´
j

f(x), and define ϕ : R Ñ R by

ϕ(x) =
1

2π
(x ´ π) @x P [0, 2π) (8.4.1)

and ϕ(x+ 2π) = ϕ(x) for all x P R. Since f has jump discontinuities at ta1, ¨ ¨ ¨ , amu, with
a´
0 denoting a´

m+1 the function g : [´π, π] Ñ R defined by

g(x) ”

$

’

’

’

’

&

’

’

’

’

%

f(x) +
m
ÿ

j=0

(
f(a+j ) ´ f(a´

j )
)
ϕ(x ´ aj) if x‰ak for all k,

f(a+k ) + f(a´
k )

2
+

ÿ

0ďjďm
j‰k

(
f(a+j ) ´ f(a´

j )
)
ϕ(ak ´ aj) if x=ak for some k,

(8.4.2)

is Hölder continuous with exponent α and g(a+0 ) = g(a´
0 ) = g(´π). Let G be the 2π-

periodic extension of g; that is, G = g on [´π, π] and G(x+2π) = G(x) for all x P R. Then
G P C 0,α(T); thus Theorem 8.17 implies that sn(G, ¨) Ñ G uniformly on R. In particular,
sn(g, ¨) Ñ g uniformly on [´π, π].

Using the identity
ż π

´π
ϕ(x ´ a)e´ikx dx = e´ika

ż π

´π
ϕ(x)e´ikx dx = pϕke

´ika ,

we obtain that
sn(ϕ(¨ ´ a), x) =

n
ÿ

k=´n

pϕke
ik(x´a) = sn(ϕ, x ´ a) ; (8.4.3)

thus (8.4.2) implies that the Fourier series of f is given by

sn(f, x) = sn(g, x) ´

m
ÿ

j=0

(
f(a+j ) ´ f(a´

j )
)
sn(ϕ(¨ ´ aj), x)

= sn(g, x) ´

m
ÿ

j=0

(
f(a+j ) ´ f(a´

j )
)
sn(ϕ, x ´ aj) . (8.4.4)

Therefore, to understand the convergence of the Fourier series of f , without loss of generality
it suffices to consider the convergence of sn(ϕ, ¨).

8.4.1 Uniform convergence on compact subsets

In this sub-section, we show that the Fourier series of a piecewise Hölder continuous func-
tion whose discontinuities are all jump discontinuities converges uniformly on each compact
subset containing no jump discontinuities.
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Based on the discussion above, we first study the convergence of sn(ϕ, ¨). Since ϕ is an
odd function, for k P N,

sk =
1

π

ż π

´π

ϕ(x) sin kx dx =
1

π2

ż π

0

(x ´ π) sin kx dx

=
1

π2

[´(x ´ π) cos kx
k

ˇ

ˇ

ˇ

x=π

x=0
+

ż π

0

cos kx
k

dx
]
= ´

1

πk
.

Therefore, the n-th partial sum of the Fourier series of ϕ is given by

sn(ϕ, x) = ´
1

π

n
ÿ

k=1

sin kx
k

. (8.4.5)

Lemma 8.22. The series
8
ř

k=1

sin kx

k
converges uniformly on [´π,´δ]Y [δ, π] for all 0 ă δ ă

π.

Proof. Let 0 ă δ ă π be given, and Sn(x) denote the sum
n
ř

k=1

sin kx. Using the identity

n
ÿ

k=1

sin kx =
cos(n+ 1

2
)x ´ cos x

2

2 sin x
2

@x P [´π,´δ] Y [δ, π] ,

we find that |Sn| ď M ă 8 for some fixed constant M . For m ą n,
m
ÿ

k=n+1

1

k
sin kx =

1

m
(Sm ´ Sm´1) +

1

m ´ 1
(Sm´1 ´ Sm´2) + ¨ ¨ ¨ +

1

n+ 1
(Sn+1 ´ Sn)

=
Sm
m

´
Sn
n+ 1

+
1

m(m ´ 1)
Sm´1 +

1

(m ´ 1)(m ´ 2)
Sm´2 + ¨ ¨ ¨

1

(n+ 2)(n+ 1)
Sn+1 ;

thus
ˇ

ˇ

ˇ

m
ÿ

k=n+1

1

k
sin kx

ˇ

ˇ

ˇ
ď M

(
1

m
+

1

n+ 1
+

m
ÿ

k=n+2

1

k(k ´ 1)

)
ď 2M

(
1

m
+

1

n

)
.

Since the right-hand side converges to 0 as n,m Ñ 8, the Cauchy criterion (for the conver-
gence of series of functions) implies that the series

8
ÿ

k=1

sin kx
k

converges uniformly on [´π,´δ] Y [δ, π]. ˝

Lemma 8.22 provides the uniform convergence of sn(ϕ, ¨) in [´π,´δ] Y [δ, π]. To see the
limit is exactly ϕ, we consider an anti-derivative Φ of ϕ and establish that Φ 1 = s(ϕ, ¨).
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Let Ψ : R Ñ R be 2π-periodic and Ψ(x) =
x2

4π
for x P [´π, π]. Then Ψ P C 0,1(T) is an

even function and the Fourier coefficients of Ψ is

pΨ0 =
1

2π

ż π

´π

x2

4π
dx =

π

12

and for k ‰ 0,

pΨk =
1

2π

ż π

´π

x2

4π
e´ikx dx =

1

8π2

ż π

´π

x2(cos kx+ i sin kx) dx =
(´1)k

2k2π
.

Therefore, using (8.4.3) we find that the Fourier series of Φ ” Ψ(¨ ´ π) is

s(Φ, x) = s(Ψ, x ´ π) =
π

12
+

ÿ

kPZ,k‰0

pΨke
ik(x´π) =

π

12
+

1

2π

ÿ

kPZ,k‰0

eikx

k2

=
π

12
+

1

π

8
ÿ

k=1

cos kx
k2

.

Since Φ P C 0,1(T), sn(Φ, ¨) converges uniformly to Φ on R. Moreover, sn(Φ, ¨) 1 = sn(ϕ, ¨)

which converges uniformly on [´π,´δ]Y [δ, π]. Therefore, Theorem 7.11 implies that s(ϕ, ¨),
the uniform limit of sn(ϕ, ¨), must equal Φ 1 on [´π,´δ]Y [δ, π]. Finally, we note that ϕ = Φ 1

on [´π,´δ] Y [δ, π], so we establish that sn(ϕ, ¨) Ñ ϕ uniformly on [´π,´δ] Y [δ, π].
Since a discontinuity of a piecewise Hölder continuous function f is either removable

or a jump discontinuity, and the value of the function at removable discontinuities does
not change the value of the Fourier series of f , the uniform convergence of sn(ϕ, ¨) to ϕ on
[´π,´δ] Y [δ, π] for all 0 ă δ ă π implies the following

Theorem 8.23. Let f : (´π, π) Ñ R be piecewise Hölder continuous with exponent α P (0, 1].
If f is continuous on (a, b), then the Fourier series of f converges uniformly to f on any
compact subsets of (a, b).

By Remark 8.3, we can also conclude the following

Corollary 8.24. Let f : (´L,L) Ñ R be piecewise Hölder continuous with exponent α P

(0, 1]. If f is continuous on (a, b), then the Fourier series of f converges uniformly to f

on any compact subsets of (a, b) (where the Fourier series of f is given in Remark 8.3). In
particular, lim

nÑ8
sn(f, x0) = f(x0) if f is continuous at x0. In other words, the Fourier series

of f converges pointwise to f except the discontinuities.
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8.4.2 Gibbs phenomenon

In this sub-section, we show that the Fourier series evaluated at the jump discontinuity
converges to the average of the limits from the left and the right. Moreover, the convergence
of the Fourier series is never uniform in the domain including these jump discontinuities due
to the famous Gibbs phenomenon: near the jump discontinuity the maximum difference
between the limit of the Fourier series and the function itself is at least 8% of the jump. To
be more precise, we have the following

Theorem 8.25. Let f : R Ñ R be 2L-periodic piecewise Hölder continuous with exponent
α P (0, 1]. Then

lim
nÑ8

sn(f, x0) =
f(x+0 ) + f(x´

0 )

2
@x0 P R . (8.4.6)

Moreover, if x0 is a jump discontinuity of f so that

f(x+0 ) ´ f(x´
0 ) = a ‰ 0 ,

then there exists a constant c ą 0, independent of f , x0 and L (in fact, c = 1

π

ż π

0

sinx

x
dx´

1

2
«

0.089490), such that

lim
nÑ8

sn
(
f, x0 +

L

n

)
= f(x+0 ) + ca , (8.4.7a)

lim
nÑ8

sn
(
f, x0 ´

L

n

)
= f(x´

0 ) ´ ca . (8.4.7b)

Proof. By Remark 8.3, W.L.O.G. we can assume that L = π. Let ta1, ¨ ¨ ¨ , amu Ď (´π, π) be
the collection of jump discontinuities of f in (´π, π), a0 = ´π, am+1 = π (so by periodicity
f(a´

0 ) = f(a´
m+1) automatically), and define g by (8.4.2). Then g P C 0,α(T). Suppose that

x0 is a jump discontinuity of f in [´π, π) (so a0 could be a possible jump discontinuity of
f). Then x0 = ak for some k P t0, 1, ¨ ¨ ¨ ,mu. Therefore, by the fact that ϕ is continuous at
x0 ´ aj if j ‰ k and sn(ϕ, 0) = 0 for all n P N, Corollary 8.24 implies that

m
ÿ

j=0

(
f(a+j ) ´ f(a´

j )
)

lim
nÑ8

sn(ϕ, x0 ´ aj)

=
ÿ

0ďjďm
j‰k

(
f(a+j ) ´ f(a´

j )
)

lim
nÑ8

sn(ϕ, x0 ´ aj) =
ÿ

0ďjďm
j‰k

(
f(a+j ) ´ f(a´

j )
)
ϕ(x0 ´ aj) .

On the other hand,

lim
nÑ8

sn(g, x0) = g(x0) =
f(x+0 ) + f(x´

0 )

2
+

ÿ

0ďjďm
j‰k

(
f(a+j ) ´ f(a´

j )
)
ϕ(x0 ´ aj) .
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Identity (8.4.6) is then concluded using (8.4.4).
Now we focus on (8.4.7a). Since g P C 0,α(T), sn(g, ¨) Ñ g uniformly on R; thus

lim
nÑ8

sn
(
g, x0 +

π

n

)
= g(x0) .

Similarly, since sn(ϕ, ¨) Ñ ϕ uniformly on [´π,´δ] Y [δ, π] for all δ ą 0, if j ‰ k,

lim
nÑ8

sn
(
ϕ, x0 +

π

n
´ aj

)
= ϕ(x0 ´ aj) .

On the other hand,

sn
(
ϕ,
π

n

)
= ´

n
ÿ

k=1

1

πk
sin kπ

n
= ´

1

π

n
ÿ

k=1

n

kπ
sin kπ

n

π

n
Ñ ´

1

π

ż π

0

sinx
x

dx ” ´
(
c+

1

2

)
.

As a consequence,

lim
nÑ8

sn
(
f, x0 +

π

n

)
= lim

nÑ8

[
sn
(
g, x0 +

π

n

)
´

m
ÿ

j=0

(
f(a+j ) ´ f(a´

j )
)
sn
(
ϕ, x0 +

π

n
´ aj

)]
= g(x0) ´

ÿ

0ďjďm
j‰k

(
f(a+j ) ´ f(a´

j )
)
ϕ(x0 ´ aj) +

(
c+

1

2

)(
f(x+0 ) ´ f(x´

0 )
)

= f(x+0 ) + c
(
f(x+0 ) ´ f(x´

0 )
)
.

Identity (8.4.7b) can be proved in the same fashion, and is left as an exercise. ˝

Remark 8.26. Let f be a function given in Theorem 8.25, x0 be a jump discontinuity of
f , and I = (x0, x0 + r) for some r ą 0 so that f is continuous on I. By the definition of the
right limit, there exists 0 ă δ ă r such that

ˇ

ˇf(x) ´ f(x+0 )
ˇ

ˇ ă
c|a|

2
@x P (x0, x0 + δ) .

Choose N ą 0 such that L

N
ă δ. Then x0 +

L

N
P (x0, x0 + δ) for all n ě N ; thus if n ě N ,

sup
xPI

ˇ

ˇsn(f, x) ´ f(x)
ˇ

ˇ ě
ˇ

ˇsn(f, x0 +
L

N
) ´ f(x0 +

L

N
)
ˇ

ˇ

ě
ˇ

ˇsn(f, x0 +
L

N
) ´ f(x+0 )

ˇ

ˇ ´
ˇ

ˇf(x0 +
L

N
) ´ f(x+0 )

ˇ

ˇ

ě
ˇ

ˇsn(f, x0 +
L

N
) ´ f(x+0 )

ˇ

ˇ ´
c|a|

2
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which implies that

lim inf
nÑ8

sup
xPI

ˇ

ˇsn(f, x) ´ f(x)
ˇ

ˇ ě c|a| ´
c|a|

2
=
c|a|

2
.

Therefore,
␣

sn(f, ¨)
(8

n=1
does not converge uniformly (to f) on I, while Corollary 8.24 shows

that
␣

sn(f, ¨)
(8

n=1
converges pointwise to f on I. Similarly, if x0 is a jump discontinuity of

f and f is continuous on (x0 ´ r, x0) for some r ą 0, then
␣

sn(f, ¨)
(8

n=1
converge pointwise

but not uniformly on (x0 ´ r, x0).
For a function f given in Theorem 8.25, let rf be defined by

rf(x) =

$

&

%

f(x) if f is continuous at x ,
f(x+) + f(x´)

2
if x is a discontinuity of f .

Then sn( rf, ¨) = sn(f, ¨) for all n P N, and Corollary 8.24 and Theorem 8.25 together imply
that

␣

sn(f, ¨)
(8

n=1
converges pointwise to rf . However, the discussion above shows that

␣

sn(f, ¨)
(8

n=1
cannot converge uniformly on I as long as I contains jump discontinuities of

f .

8.5 The Inner-Product Point of View
除了逐點收斂或均勻收斂的觀點之外，還有一個更自然（就數學而言）的觀點可以用來看

Fourier series。我們可以把定義在 [´π, π] 的所有 square integrable 函數（定義在下）所
形成的集合看成一個向量空間，然後在上面定義一個內積的結構。一個可積分函數（也

可視為一個向量）的 Fourier series 可以看成這個向量在一組正交基底向量的線性組合。
Let L2(T) denote the collection of Riemann measurable, square integrable function on

[´π, π] modulo the relation that f „ g if f ´ g = 0 except on a set of measure zero (or
f = g almost everywhere). In other words,

L2(T) =
!

f : [´π, π] Ñ C
ˇ

ˇ

ˇ
f is Riemann measurable and

ż π

´π
|f(x)|2 dx ă 8

)/
„ .

Here we abuse the use of notation L2(T) for that it indeed denotes a more general space.
We also note that the domain [´π, π] can be replaced by any intervals with ´π, π as end-
points for we can easily modify functions defined on those domains to functions defined on
[´π, π] without changing the square integrability.



§8.5 The Inner-Product Point of View 275

Define a bilinear function x¨, ¨y on L2(T) ˆ L2(T) by

xf, gy =
1

2π

ż π

´π
f(x)g(x) dx .

Then x¨, ¨y is an inner product on L2(T). Indeed, if f, g belong to L2(T), then the product fsg
is also Riemann measurable, and the Cauchy-Schwartz inequality as well as the monotone
convergence theorem imply that

ˇ

ˇxf, gy
ˇ

ˇ = lim
kÑ8

1

2π

ż π

´π

ˇ

ˇ(f ^k)(x)
ˇ

ˇ

ˇ

ˇ(g^k)(x)
ˇ

ˇ dx

ď lim
kÑ8

1

2π

( ż π

´π

ˇ

ˇ(f ^k)(x)
ˇ

ˇ

2
dx

) 1
2
( ż π

´π

ˇ

ˇ(g^k)(x)
ˇ

ˇ

2
dx

) 1
2

=
(

1

2π

ż π

´π

ˇ

ˇf(x)
ˇ

ˇ

2
dx

) 1
2
(

1

2π

ż π

´π

ˇ

ˇg(x)
ˇ

ˇ

2
dx

) 1
2
= }f}L2(T)}g}L2(T) ă 8 ;

thus the definition of the inner product x¨, ¨y given above is well-defined. The norm induced
by the inner product above is denoted by } ¨ }L2(T).

For k P Z, define ek : [´π, π] Ñ C by ek(x) = eikx. Then teku8
k=´8 is an orthonormal

set in L2(T) since

xek, eℓy =
1

2π

ż π

´π
eikxe´iℓx dx =

1

2π

ż π

´π
ei(k´ℓ)x dx =

"

1 if k = ℓ ,
0 if k ‰ ℓ .

Let Vn = span(e´n, e´n+1, ¨ ¨ ¨ , e0, e1, ¨ ¨ ¨ , en) =
! n

ř

k=´n

akek
ˇ

ˇ

ˇ
takunk=´n Ď C

)

. For each

vector f P L2(T), the orthogonal projection of f onto Vn is, conceptually, given by
n
ÿ

k=´n

xf, eky ek =
n
ÿ

k=´n

(
1

2π

ż π

´π
f(x)e´ikx dx

)
ek =

n
ÿ

k=´n

pfkek .

By the definition of ek, we obtain that the orthogonal projection of f on Vn is exactly sn(f, ¨).
We also note that Vn = Pn(T).

Now we prove that sn(f, ¨) is exactly the orthogonal projection of f onto Vn = Pn(T).

Proposition 8.27. Let f P L2(T). Then

xf ´ sn(f, ¨), py = 0 @ p P Pn(T) .

Proof. Let p P Pn(T). Then p = sn(p, ¨); thus

xf ´ sn(f, ¨), py = xf, py ´ xsn(f, ¨), py =
@

f,
n
ÿ

k=´n

ppkek
D

´ x

n
ÿ

k=´n

pfkek, py

=
n
ÿ

k=´n

ppkxf, eky ´

n
ÿ

k=´n

pfkxp, eky =
n
ÿ

k=´n

ppk pfk ´

n
ÿ

k=´n

pfkppk = 0 . ˝



276 CHAPTER 8. Fourier Series

Theorem 8.28. Let f P L2(T). Then

}f ´ p}2L2(T) = }f ´ sn(f, ¨)}
2
L2(T) + }sn(f, ¨) ´ p}2L2(T) @ p P Pn(T) . (8.5.1)

Proof. By Proposition 8.27, if p P Pn(T), sn(f, ¨) ´ p = sn(f ´ p, ¨) P Pn(T); thus

}f ´ p}2L2(T) = xf ´ p, f ´ py = xf ´ sn(f, ¨) + sn(f, ¨) ´ p, f ´ sn(f, ¨) + sn(f, ¨) ´ py

=
›

›f ´ sn(f, ¨)
›

›

2

L2(T) + 2Re
(
xf ´ sn(f, ¨), sn(f, ¨) ´ py

)
+
›

›sn(f, ¨) ´ p
›

›

2

L2(T)

=
›

›f ´ sn(f, ¨)
›

›

2

L2(T) +
›

›sn(f, ¨) ´ p
›

›

2

L2(T)

which concludes the proposition. ˝

We note that (8.5.1) implies that

}f ´ sn(f, ¨)}L2(T) ď }f ´ p}L2(T) @ p P Pn(T) . (8.5.2)

Since sn(f, ¨) P Pn(T), we conclude that

}f ´ sn(f, ¨)}L2(T) = inf
pPPn(T)

}f ´ p}L2(T) .

Moreover, letting p = 0 in (8.5.1) we establish the famous Bessel’s inequality.

Corollary 8.29. Let f P L2(T). Then for all n P N,

}sn(f, ¨)}L2(T) ď }f}L2(T) . (8.5.3)

In particular,
8
ÿ

k=´8

ˇ

ˇ pfk|2 ď
1

2π

ż π

´π

ˇ

ˇf(x)
ˇ

ˇ

2
dx . (Bessel’s inequality)

Remark 8.30. When f P L2(T) and f is real-valued, then

8
ÿ

k=´8

ˇ

ˇ pfk|2 =
c20
4
+

1

2

8
ÿ

k=1

(c2k + s2k) ;

thus in this case the Bessel inequality can also be written as

c20
4
+

1

2

8
ÿ

k=1

(c2k + s2k) ď
1

2π

ż π

´π

ˇ

ˇf(x)
ˇ

ˇ

2
dx .
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Next, we prove that the Bessel inequality is in fact an equality, called the Parseval
identity. Using (8.5.1), it is equivalent to that

␣

sn(f, ¨)
(8

n=1
converges to f in the sense of

L2-norm; that is,
lim
nÑ8

›

›sn(f, ¨) ´ f
›

›

L2(T) = 0 @ f P L2(T) .

Before proceeding, we first prove that every f P L2(T) can be approximated by a sequence
tgnu8

n=1 Ď C (T) in the sense of L2-norm.

Proposition 8.31. Let f P L2(T). Then for all ε ą 0 there exists g P C (T) (here C (T)
denotes the collections of 2π-periodic complex-valued continuous functions on R) such that

}f ´ g}L2(T) ă ε .

In other words, C (T) is dense in
(
L2(T), } ¨ }L2(T)

)
.

Proof. W.L.O.G., we can assume that f is real-valued and non-zero. Let ε ą 0 be given.
Since f P L2(T), the monotone convergence theorem (Corollary 6.105) implies that

lim
kÑ8

}f ´ (´k)_ (f ^k)}2L2(T) = lim
kÑ8

ż π

´π

1t|f(x)|ąku(x)|f(x)|
2 dx = 0 ;

thus there exists N ą 0 such that

}f ´ (´k)_ (f ^k)}L2(T) ă
ε

2
@ k ě N .

Let h = (´N)_ (f ^N). Then h is bounded and Riemann measurable; thus h is Riemann
integrable on [´π, π]. Therefore, there exists a partition P = t´π = x0 ă x1 ă ¨ ¨ ¨ ă xn =

πu of [´π, π] such that U(h,P) ´ L(h,P) ă
πε2

8N
. Define

S(x) =
n´1
ÿ

k=0

sup
ξP[xk,xk+1]

h(ξ)1[xk,xk+1](x) and s(x) =
n´1
ÿ

k=0

inf
ξP[xk,xk+1]

h(ξ)1[xk,xk+1](x) ,

where 1A denotes the characteristic/indicator function of set A. Then

1. ´N ď s ď h ď S ď N on [´π, π]ztx1, x2, ¨ ¨ ¨ , xn´1u;

2.
ż π

´π
S(x) dx = U(h,P); 3.

ż π

´π
s(x) dx = L(h,P).

The properties above show that
ż π

´π

ˇ

ˇh(x) ´ s(x)
ˇ

ˇ dx =

ż π

´π

h(x) ´ s(x) dx ď

ż π

´π

(
S(x) ´ s(x)

)
dx

= U(h,P) ´ L(h,P) ă
πε2

8N
.
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Now, similar to the construction of g and h in the proof of Lemma 6.63, for the step function
s defined on [´π, π] we can always find a continuous function g P C (T) such that

1. }g}L8(T) ď N . 2.
ż π

´π

ˇ

ˇs(x) ´ g(x)
ˇ

ˇ dx ă
πε2

8N
.

Therefore,
ż π

´π

ˇ

ˇh(x) ´ g(x)
ˇ

ˇ dx ď

ż π

´π

ˇ

ˇh(x) ´ s(x)
ˇ

ˇ dx+

ż π

´π

ˇ

ˇs(x) ´ g(x)
ˇ

ˇ dx ă
πε2

4N

which implies that

1

2π

ż π

´π

ˇ

ˇh(x) ´ g(x)
ˇ

ˇ

2
dx ď

N

π

ż

[´π,π]

ˇ

ˇh(x) ´ g(x)
ˇ

ˇ dx ă
ε2

4
;

thus }h ´ g}L2(T) ă
ε

2
. The proposition is then concluded by the triangle inequality. ˝

Theorem 8.32. Let f P L2(T). Then

lim
nÑ8

›

›f ´ sn(f, ¨)
›

›

L2(T) = 0 (8.5.4)

and
1

2π

ż π

´π

ˇ

ˇf(x)
ˇ

ˇ

2
dx =

8
ÿ

k=´8

| pfk|2 . (Parseval’s identity)

Proof. Let ε ą 0 be given. By Proposition 8.31 there exists g P C (T) such that

}f ´ g}L2(T) ă
ε

3
.

By the denseness of the trigonometric polynomials in C (T), there exists h P P(T) such
that sup

xPR

ˇ

ˇg(x) ´ h(x)
ˇ

ˇ ă
ε

3
. Suppose that h P PN(T). Using (8.5.2),

›

›g ´ sN(g, ¨)
›

›

2

L2(T) ď }g ´ h}2L2(T) =
1

2π

ż π

´π

ˇ

ˇg(x) ´ h(x)
ˇ

ˇ

2
dx ď

1

2π

ż π

´π

ε2

9
dx =

ε2

9
.

Since sN(g, ¨) P Pn(T) if n ě N , using (8.5.2) again we must have
›

›g ´ sn(g, ¨)
›

›

L2(T) ď
›

›g ´ sN(g, ¨)
›

›

L2(T) ď
ε

3
@n ě N .

Therefore, for n ě N , inequality (8.5.3) and the triangle inequality yield that
›

›f ´ sn(f, ¨)
›

›

L2(T) ď }f ´ g}L2(T) + }g ´ sn(g, ¨)}L2(T) + }sn(g ´ f, ¨)}L2(T)

ď 2}f ´ g}L2(T) + }g ´ sn(g, ¨)}L2(T) ă ε ;
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thus (8.5.4) is concluded. Finally, using (8.5.1) with p = 0 we obtain that
ż π

´π

ˇ

ˇf(x)
ˇ

ˇ

2
dx =

ż π

´π

ˇ

ˇsn(f, x)
ˇ

ˇ

2
dx+

ż π

´π

ˇ

ˇf(x) ´ sn(f, x)
ˇ

ˇ

2
dx .

Using the fact that 1

2π

ż π

´π

ˇ

ˇsn(f, x)
ˇ

ˇ

2
dx =

n
ř

k=´n

ˇ

ˇ pfk
ˇ

ˇ

2 and passing to the limit as n Ñ 8, we

conclude the Parseval identity. ˝

Example 8.33. Example 8.6 provides that
ż π

´π
x2 dx = π

8
ř

k=1

4

k2
; thus

8
ř

k=1

1

k2
=

π2

6
.

Remark 8.34. The Parseval identity implies that

xf, gyL2(T) =
8
ÿ

k=´8

pfkpgk @ f, g P L2(T) (8.5.5)

since the polarization identity shows that

xf, gyL2(T) =
1

4

[
}f + g}2L2(T) ´ }f ´ g}2L2(T) + i}f + ig}2L2(T) ´ i}f ´ ig}2L2(T)

]
=

1

4

8
ÿ

k=´8

[
| pfk + pgk|2 ´ | pfk ´ pgk|2 + i| pfk + ipgk|2 ´ i| pfk ´ ipgk|2

]
=

1

4

8
ÿ

k=´8

[(
| pfk|2 + 2Re( pfkpgk) + |pgk|2

)
´
(
| pfk|2 ´ 2Re( pfkpgk + |pgk|2

)
+ i

(
| pfk|2 + 2Im( pfkpgk) + |pgk|2

)
´ i

(
| pfk|2 ´ 2Im( pfkpgk) + |pgk|2

)]
=

8
ÿ

k=´8

[
Re( pfkpgk) + iIm( pfkpgk)

]
=

8
ÿ

k=´8

pfkpgk .

8.6 The Discrete Fourier “Transform” and the Fast
Fourier “Transform”

Let f : R Ñ R be a periodic function with period L and f is bounded Riemann integrable
on [0, L). Similar to Remark 8.2, the Fourier series of f , defined in Remark 8.3, can be
written as

s(f, x) =
8
ÿ

k=´8

pfke
2πikx

L ,
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where pfk =
1

L

ż L

0
f(y)e

´2πiky
L dy; thus pfk can be approximated by the Riemann sum

1

L

N´1
ÿ

ℓ=0

f
(Lℓ
N

)
e

´2πikℓ
N

L

N
=

1

N

N´1
ÿ

ℓ=0

f
(Lℓ
N

)
e

´2πikℓ
N .

In other words, the values of f at N evenly distributed points can be used to determine an
approximation of the Fourier coefficients of f .

There is another point of view of finding the sum 1

N

N´1
ř

ℓ=0

f
(Lℓ
N

)
e

´2πikℓ
N . Even though

sn(f, x) will be a good approximation of s(f, x) for large n, the computation of the ex-
act Fourier coefficients will be expensive (and probably impossible). Therefore, instead of
compute the exact Fourier coefficients, we look for a Fourier-like series of the form

1

N

N´1
ÿ

k=0

Xke
2πikx

L .

so that it agrees with the value of f at points
!

Lj

N

)N´1

j=0
. Therefore, we look for tXkuN´1

k=0

satisfying that

1

N


1 1 1 ¨ ¨ ¨ 1

1 e
2πi
N e

4πi
N ¨ ¨ ¨ e

2π(N´1)i
N

1 e
4πi
N e

8πi
N ¨ ¨ ¨ e

4π(N´1)i
N

... . . . ...
1 e

2π(N´1)i
N e

4π(N´1)i
N ¨ ¨ ¨ e

2π(N´1)2i
N




X0

X1

X2
...

XN´1

 =


f(0)

f
( L

N

)
...

f
( (N ´ 1)L

N

)

 .

Let vk =
[
v
(1)
k , v

(2)
k , ¨ ¨ ¨ , v

(N)
k

]T denote the k-th column of the N ˆ N matrix F on the
left-hand side of the equation above. Then v

(j)
k = e

2π(k´1)(j´1)i
N so that

vℓ ¨ vk = v˚
kvℓ =

N
ÿ

j=1

e
´2π(j´1)(k´1)i

N e
2π(j´1)(ℓ´1)i

N =
N
ÿ

j=1

e
2π(j´1)(ℓ´k)i

N

=
N´1
ÿ

j=0

cos 2πj(ℓ ´ k)

N
+ i

N´1
ÿ

j=0

sin 2πj(ℓ ´ k)i

N

which shows that

vℓ ¨ vk =
"

N if k = ℓ ,

0 if k ‰ ℓ .
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Therefore, F ˚F = NINˆN ; thus
X0

X1

X2
...

XN´1

 =


1 1 1 ¨ ¨ ¨ 1

1 e´ 2πi
N e´ 4πi

N ¨ ¨ ¨ e´
2π(N´1)i

N

1 e´ 4πi
N e´ 8πi

N ¨ ¨ ¨ e´
4π(N´1)i

N

... . . . ...
1 e´

2π(N´1)i
N e´

4π(N´1)i
N ¨ ¨ ¨ e´

2π(N´1)2i
N




f(0)

f
( L

N

)
...

f
( (N ´ 1)L

N

)

 .

The discussions above induce the following

Definition 8.35. The discrete Fourier transform, symbolized by DFT, of a sequence
of N complex numbers tx0, x1, ¨ ¨ ¨ , xN´1u is a sequence tXkukPZ defined by

Xk =
N´1
ÿ

ℓ=0

xℓe
´2πikℓ

N @ k P Z .

We note that the sequence tXkukPZ is N -periodic; that is, Xk+N = Xk for all k P

Z. Therefore, often time we only focus on one of the following N consecutive terms
tX0, X1, ¨ ¨ ¨ , XN´1u of the DFT.

Example 8.36. The DFT of the sequence tx0, x1u is tx0 + x1, x0 ´ x1u.

8.6.1 The inversion formula

Let tXkuN´1
k=0 be the discrete Fourier transform of the sequence txℓu

N´1
ℓ=0 . Then txℓu

N´1
ℓ=0 can

be recovered given tXkuN´1
k=0 by the inversion formula

xℓ =
1

N

N´1
ÿ

k=0

Xke
2πikℓ
N . (8.6.1)

To see this, we compute
N´1
ř

k=0

(N´1
ř

j=0

xje
´2πikj

N

)
e

2πikℓ
N and obtain that

N´1
ÿ

k=0

(N´1
ÿ

j=0

xje
´2πikj

N

)
e

2πikℓ
N =

N´1
ÿ

j=0

(
xj

N´1
ÿ

k=0

e
2πik(ℓ´j)

N

)
= Nxℓ +

N´1
ÿ

j=0
j‰ℓ

(
xj

N´1
ÿ

k=0

e
2πik(ℓ´j)

N

)

= Nxℓ +
N´1
ÿ

j=0
j‰ℓ

(
xj
e2πi(ℓ´j) ´ 1

e
2πi(ℓ´j)

N ´ 1

)
= Nxℓ .

The map from tXkuN´1
k=0 to txℓu

N´1
ℓ=0 is called the discrete inverse Fourier transform.
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We note that the inversion formula (8.6.1) is an analogy of

f(x) =
8
ÿ

k=´8

pfke
ikx

for all piecewise constant function f and x P R at which f is continuous.

Remark 8.37. Given a sample data [x0, x1, ¨ ¨ ¨ , xN´1] which is the values of a function f on
N evenly distributed points on [0, L) (for some unknown L ą 0), the DFT [X0, X1, ¨ ¨ ¨ , XN´1]

can be thought as Fourier coefficients which provides the approximation

f(x) «

N´1
ÿ

k=0

Xke
2πikx

L =
´1
ÿ

k=´[N
2
]

Xk+Ne
2πikx

L +

[N´1
2

]
ÿ

k=0

Xke
2πikx

L ,

where « becomes = if x =
Lℓ

N
, 0 ď ℓ ď N ´ 1. Therefore, for 0 ď k ď

[N ´ 1

2

]
each Xk is

the coefficient associated with the wave with frequency k

L
. To determine L, we introduce

the sampling frequency Fs which is the number of samples per unit time/length. Then
Fs =

N

L
so that Xk is the coefficient associated with the wave with frequency Fs

N
k.

8.6.2 The fast Fourier transform

Let M = [mkℓ] be an N ˆ N matrix with entry mkℓ defined by

mkℓ = e
´2πikℓ

N 0 ď k, ℓ ď N ´ 1 ,

and write x = [x0, x1, ¨ ¨ ¨ , xN´1]
T and X = [X0, ¨ ¨ ¨ , XN´1]

T. Then X =Mx and it requires
N2 multiplications to compute X. The fast Fourier transform, symbolized by FFT, is
a much faster way to compute X. In the following, we show that when N = 2γ for some
γ P N, then there is a way to compute the DFT with at most N log2N multiplications.

With N = 2γ, suppose that (x0, ¨ ¨ ¨ , xN´1) is a given sequence, and tXkuN´1
k=0 is the DFT

of txkuN´1
k=0 . Let ω = e´ 2πi

N , and

xeven =
[
x0 x2 x4 ¨ ¨ ¨ xN´2

]
and xodd =

[
x1 x3 x5 ¨ ¨ ¨ xN´1

]
Then

Xj =
N´1
ÿ

ℓ=0

xℓ ω
jℓ =

ÿ

0ďℓďN´1
ℓ is even

xℓω
jℓ + ωj

ÿ

0ďℓďN´1
ℓ is odd

xℓ ω
j(ℓ´1)

= xeven ¨
[
ω0 ω2j ω4j ¨ ¨ ¨ ωj(N´2)

]
+ ωjxodd ¨

[
ω0 ω2j ω4j ¨ ¨ ¨ ωj(N´2)

]
.
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In particular, for 0 ď j ď
N

2
´ 1,

XN
2
+j = xeven ¨

[
ω0 ω2(N

2
+j) ω4(N

2
+j) ¨ ¨ ¨ ω(N

2
+j)(N´2)

]
+ ω

N
2
+jxodd ¨

[
ω0 ω2(N

2
+j) ω4(N

2
+j) ¨ ¨ ¨ ω(N

2
+j)(N´2)

]
= xeven ¨

[
ω0 ω2j ω4j ¨ ¨ ¨ ωj(N´2)

]
´ ωjxodd ¨

[
ω0 ω2j ω4j ¨ ¨ ¨ ωj(N´2)

]
,

where we have used the fact that ωN
2 = ´1 to conclude the equality. We note that

!

xeven ¨
[
ω0 ω2j ω4j ¨ ¨ ¨ ωj(N´2)]

)N/2

j=0

is exactly the DFT of the sequence tx0, x2, ¨ ¨ ¨ , xN´2u and
!

xodd ¨
[
ω0 ω2j ω4j ¨ ¨ ¨ ωj(N´1)

])N/2

j=0

is exactly the DFT of the sequence tx1, x3, ¨ ¨ ¨ , xN´1u. In other words, to compute the
DFT of tx0, ¨ ¨ ¨ , xN´1u, where N = 2γ, it suffices to compute the DFTs of the sequence
tx0, x2, ¨ ¨ ¨ , xN´2u and tx1, x3, ¨ ¨ ¨ , xN´1u. If the DFTs of the sequences tx0, x2, ¨ ¨ ¨ , xN´2u

and tx1, x3, ¨ ¨ ¨ , xN´1u are known, it requires another N

2
multiplications to compute the

DFT of tx0, x1, ¨ ¨ ¨ , xN´1u.
Now we compute the total multiplications it requires to compute the DFT of the sequence

txku2
γ´1
k=0 using the procedure above. Suppose that to compute the DFT of txku2

γ´1
k=0 requires

f(γ) multiplications. Then
f(γ) = 2f(γ ´ 1) + 2γ´1 .

It is easy to see that it requires no multiplication to compute the DFT of tx0, x1u since it is
simply tx0+x1, x0 ´x1u; thus f(1) = 0. Solving the iteration relation above, we obtain that
f(γ) = 2γ´1(γ ´ 1) which implies the total multiplications requires to compute the DFT of
txkuN´1

k=0 , where N = 2γ, is N

2
(log2N ´ 1).

Example 8.38. To compute the DFT of tx0, x1, ¨ ¨ ¨ , x7u, we first compute the DFT of
tx0, x2, x4, x6u and tx1, x3, x5, x7u, and it requires another 4 multiplications (to compute
the multiplication of ωj and the j-th term of the DFT of tx1, x3, x5, x7u for 0 ď j ď 3).
Nevertheless, instead of computing the DFT of tx0, x2, x4, x6u and tx1, x3, x5, x7u directly
using matrix multiplication X =Mx, we again divide the sequence of length 4 into further
shorter sequence tx0, x4u, tx2, x6u, tx1, x5u and tx3, x7u. Once the DFT of those sequence of
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length 2 are computed, it requires another 2ˆ2 = 4 multiplications to compute the DFT of
tx0, x2, x4, x6u and tx1, x3, x5, x7u. By Example 8.36, it does not require any multiplications
to compute the DFT of sequences of length 2; thus the total multiplications required to
compute the DFT of tx0, x1, ¨ ¨ ¨ , x7u is 4 + 4 = 8.

8.7 Fourier Series for Functions of Two Variables
In this section we briefly introduce the Fourier series of complex-valued functions defined
on Ω ” [´L1, L1] ˆ [´L2, L2]. Let

L2(Ω) =
!

f : Ω Ñ C
ˇ

ˇ

ˇ

ż

Ω

ˇ

ˇf(x1, x2)
ˇ

ˇ

2
d(x2, x2) ă 8

)/
„

equipped with the inner product

xf, gy ”
1

ν(Ω)

ż

Ω

f(x1, x2)g(x1, x2) d(x1, x2) ,

where ν(Ω) denotes the area of Ω and „ again denotes the equivalence relation defined by
f „ g if and only if f ´ g = 0 except on a set of measure zero. Let ekℓ(x) = e

iπ( k
L1
, ℓ
L2

)¨x,
here x = (x1, x2). Then tekℓuk,ℓPZ is a complete orthonormal set in L2(Ω); that is, for each
f P L2(Ω), by defining the partial sum

sn,m(f, x) =
n
ÿ

k=´n

m
ÿ

ℓ=´m

xf, ekℓy ekℓ(x)

we have
lim

n,mÑ8

›

›f ´ sn,m(f, ¨)
›

›

L2(Ω)
= 0 ,

where } ¨ }L2(Ω) is the norm induced by the inner product x¨, ¨y. The limit of sn,m(f, ¨), as
n,m Ñ 8, in the inner product space

(
L2(Ω), x¨, ¨y

)
is denoted by

s(f, ¨) =
8
ÿ

k=´8

8
ÿ

ℓ=´8

xf, ekℓy ekℓ

and is called the Fourier series of f .
Given a collection of data txmnu0ďnďM´1,0ďnďN´1, the discrete Fourier transform (or

simply DFT) of txmnu0ďnďM´1,0ďnďN´1 is a double sequence tXkℓuk,ℓPZ defined by

Xkℓ =
M´1
ÿ

m=0

N´1
ÿ

n=0

xmn ω
mk
M
ωnℓ

N
,
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where ω
M
= e´ 2πi

M and ω
N
= e´ 2πi

N . The double sequence tXkℓuk,ℓPZ is doubly periodic satisfy-
ing Xk+M,ℓ+N for all k, ℓ P Z; thus we usually only focus on the terms tXkℓu0ďkďM´1,0ďℓďN´1.
The discrete inverse Fourier transform of a double sequence tXkℓu0ďkďM´1,0ďℓďN´1 is a dou-
ble sequence txmnum,nPZ defined by

xmn =
1

MN

M´1
ÿ

k=0

N´1
ÿ

ℓ=0

Xkℓ ĎωM

mk
Ďω
N

nℓ ,

where Ďω
M

and Ďω
N

are complex conjugate of ω
M

and ω
N

defined above.



Chapter 9

Fourier Transforms

Before introducing the Fourier transform, let us “motivate” the idea a little bit. In Section
8.5 we show that tenu8

n=´8, where en(x) = einx, is a complete orthonormal set in L2(T).
Similarly, let L2([´K,K]) denote the inner-product space

L2([´K,K]) =
␣

f : [´K,K] Ñ C
ˇ

ˇ f is square integrable
(/

„

equipped with the inner product

xf, gy =
1

2K

ż K

´K

f(x)g(x) dx ,

where „ denotes the equivalence relation f „ g if and only if f ´ g = 0 except on a
set of measure zero. Then the set

!

exp
( inπx

K

))8

n=´8
is a complete orthonormal set in

L2([´K,K]); that is, any functions f P L2([´K,K]) can be expressed as

f(x) =
8
ÿ

n=´8

pf(n)e
inπx
K , where pf(n) =

1

2K

ż K

´K

f(y)e´
inπy
K dy . (9.0.1)

Moreover,
8
ř

n=´8

| pf(n)|2 =
1

2K

ż K

´K
|f(x)|2 dx. In other words, there is a one-to-one correspon-

dence between f P L2([´K,K]) and pf P ℓ2, where ℓ2 is the collection of square summable
sequences; that is,

ℓ2 =
!

tanu8
n=´8

ˇ

ˇ

ˇ

8
ÿ

n=´8

|an|2 ă 8

)

.

We look for a space X so that there is also a one-to-one correspondence between the square
integrable functions on R and X. Intuitively, we can check what “might” happen by letting
K Ñ 8 in (9.0.1).

286
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Suppose that K " 1 and K P N. Making use of the Riemann sum to approximate the
integral (by partition [´Kπ,Kπ] into 2K2 intervals), we find that

f(x) =
1

2K

8
ÿ

n=´8

ż K

´K

f(y)e
inπ(x´y)

K dy «
1

2K

K2´1
ÿ

n=´K2

ż K

´K

f(y) exp
[
i
nπ

K
(x ´ y)

]
dy

=
1

2π

ż K

´K

( K2´1
ÿ

n=´K2

f(y) exp
[
i
nπ

K
(x ´ y)

] π
K

)
dy

«
1

2π

ż K

´K

(ż Kπ

´Kπ

f(y) exp
(
iξ(x ´ y)

)
dξ
)
dy =

1

2π

ż Kπ

´Kπ

( ż K

´K

f(y)eiξ(x´y) dy
)
dξ

«
1

?
2π

ż 8

´8

[ 1
?
2π

ż 8

´8

f(y)e´iξydy
]
eiξxdξ .

Therefore, if we define pf(ξ) =
1

?
2π

ż

R
f(y)e´iyξ dy, then the formal computation above

suggests that

f(x) =
1

?
2π

ż

R

pf(ξ)eiξxdξ . (9.0.2)

In the rest of this chapter, we are going to verify the identity above rigorously (for functions
f with certain properties).

9.1 The Definition of the Fourier Transform

For notational convenience, we abuse the following notion from real analysis.

Definition 9.1. The space L1(Rn) consists of all complex-valued functions that are inte-
grable on Rn and whose integrals are absolutely convergent. In other words,

L1(Rn) =
!

f : Rn Ñ C
ˇ

ˇ

ˇ

ż

Rn

|f(x)| dx ă 8

)

;

that is, f P L1(Rn) if the limit lim
RÑ8

ż

B(0,R)

ˇ

ˇf(x)
ˇ

ˇ dx = }f}L1(Rn) exists.

Remark 9.2. Even though we have not defined the integral for complex-valued function,
the definition of L1(Rn) should be clear: when f is complex-valued function, the absolute
integrability of f is equivalent to that the real part and the imaginary part of f are both
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absolutely integrable, and
ż

Rn

f(x) dx =

ż

Rn

Re(f)(x) dx+ i

ż

Rn

Im(f)(x) dx

=

ż

Rn

f(x) + f(x)

2
dx+

ż

Rn

f(x) ´ f(x)

2
dx ,

where f(x) is the complex conjugate of f(x).

Definition 9.3. For all f P L1(Rn), the Fourier transform of f , denoted by Ff or pf , is a
function defined by

(Ff)(ξ) = pf(ξ) =
1

?
2π

n

ż

Rn

f(x)e´ix¨ξdx @ ξ P Rn ,

where x ¨ ξ = x1ξ1 + x2ξ2 + ¨ ¨ ¨ + xnξn.

9.2 Some Properties of the Fourier Transform
Proposition 9.4. F : L1(Rn) Ñ Cb(Rn;C), and

}Ff}8 ” sup
ξPRn

ˇ

ˇ(Ff)(ξ)
ˇ

ˇ ď }f}L1(Rn) . (9.2.1)

Proof. Let ξ P Rn, and tξku8
k=1 be a sequence converging to ξ. Define

gk(x) =
1

?
2π

nf(x)e
ix¨ξk and g(x) =

1
?
2π

nf(x)e
ix¨ξ .

Then tgk(x)u
8
k=1 converges to g(x) for all

␣

x P Rn
ˇ

ˇ

ˇ

ˇg(x)
ˇ

ˇ ă 8
(

, and for each k P N, gk
is integrable and |gk| ď |f |; thus the Dominated Convergence Theorem (Theorem 6.102)
implies that

(Ff)(ξ) =

ż

Rn

g(x) dx = lim
kÑ8

ż

Rn

gk(x) dx = lim
kÑ8

(Ff)(ξk) .

Therefore, (Ff) is continuous on Rn. The validity of (9.2.1) should be clear, and is left as
an exercise. ˝

Definition 9.5. A function f on Rn is said to have rapid decrease/decay if for all integers
N ě 0, there exists aN such that

|x|N |f(x)| ď aN as x Ñ 8 .
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Definition 9.6. The Schwartz space S (Rn) is the collection of all (complex-valued) smooth
functions f on Rn such that f and all of its derivatives have rapid decrease. In other words,

S (Rn) =
␣

u P C 8(Rn)
ˇ

ˇ | ¨ |NDku is bounded for all k,N P N Y t0u
(

.

Elements in S (Rn) are called Schwartz functions.

The reader is encouraged to verify the following basic properties of S (Rn):

1. S (Rn) is a vector space.

2. S (Rn) is an algebra under the pointwise product of functions.

3. pu P S (Rn) for all u P S (Rn) and all polynomial functions p.

4. S (Rn) is closed under differentiation.

5. S (Rn) is closed under translations and multiplication by complex exponentials eix¨ξ.

Remark 9.7. Let Ω Ď Rn be an open set, and C 8
c (Ω) denote the collection of all smooth

functions with compact support in Ω (or equivalently, compactly supported in Ω); that is,

C 8
c (Ω) ”

␣

u P C 8(Ω)
ˇ

ˇ tx P Ω | f(x) ‰ 0uĂĂΩ
(

,

then C 8
c (Rn) Ď S (Rn) . The set cl

(␣
x P Ω

ˇ

ˇ f(x) ‰ 0
()

, where the closure is taken in the
metric space (Ω, | ¨ |), is called the support of f and is denoted by supp(f).

The prototype element of S (Rn) is e´|x|2 which is not compactly supported, but has
rapidly decreasing derivatives.

The following lemma allows us to take the Fourier transform of Schwartz functions.

Lemma 9.8. If f P S (Rn), then f P L1(Rn).

Proof. If f P S (Rn), then (1 + |x|)n+1|f(x)| ď C for some C ą 0. Therefore, with ωn´1

denoting the the surface area of the (n ´ 1)-dimensional unit sphere,
ż

Rn

ˇ

ˇf(x)
ˇ

ˇ dx ď

ż

Rn

C

(1 + |x|)n+1
dx =

ż

Sn´1

ż 8

0

C

(1 + r)n+1
rn´1drdS

ď Cωn´1

ż 8

0

(1 + r)´2dr = Cωn´1

which is a finite number. ˝
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Next we show that pf is differentiable if f P S (Rn). Note that if f P S (Rn), then the
function yj = xjf(x) belongs to S (Rn) for all 1 ď j ď n.

Lemma 9.9. If f P S (Rn), then pf is differentiable, and for each j P t1, ¨ ¨ ¨ , nu, B pf

Bξj
is

given by
B pf

Bξj
(ξ) =

1
?
2π

n

ż

Rn

(´ixj)f(x)e
´ix¨ξdx = Fx

[1
i
xjf(x)

]
(ξ) . (9.2.2)

Proof. Let ξ P Rn and 1 ď j ď n be given, and thku8
k=1 be a non-zero sequence converging

to 0. Define

gk(x) =
1

?
2π

nf(x)
eix¨(ξ+hkej) ´ eix¨ξ

hk
=

1
?
2π

nf(x)e
´ix¨ξ e

´ixjhk ´ 1

hk
.

Note that the mean value theorem implies that

ˇ

ˇ

ˇ

e´ixjhk ´ 1

hk

ˇ

ˇ

ˇ
=
ˇ

ˇ

ˇ

cos(xjhk) ´ cos 0
hk

´ i
sin(xjhk)

hk

ˇ

ˇ

ˇ
ď 2|xj| ;

thus
ˇ

ˇgk(x)
ˇ

ˇ ď
2

?
2π

n

ˇ

ˇxjf(x)
ˇ

ˇ @x P Rn and k P N .

Moreover, the fact that f P S (Rn) implies that the function y =
2

?
2π

n

ˇ

ˇxjf(x)
ˇ

ˇ is integrable
on Rn. Therefore, by the fact that

ż

Rn

gk(x) dx =
pf(ξ + hjek) ´ pf(ξ)

hj
and lim

kÑ8
gk(x) =

1
?
2π

n (´ixj)f(x)e
´ix¨ξ ,

we conclude from the Dominated Convergence Theorem (Theorem 6.102) that

lim
kÑ8

pf(ξ + hjek) ´ pf(ξ)

hj
= lim

kÑ8

ż

Rn

gk(x) dx =

ż

Rn

1
?
2π

n (´ixj)f(x)e
´ix¨ξ dx . ˝

Corollary 9.10. If f P S (Rn), then pf P C 8(Rn). Moreover, if α = (α1, ¨ ¨ ¨ , αn) is a
multi-index,

Dα
ξ
pf(ξ) =

1

i|α|
Fx

[
xα1
1 ¨ ¨ ¨xαn

n f(x)
]
(ξ) .

Lemma 9.11. If f P S (Rn), then for j P t1, 2, ¨ ¨ ¨ , nu, Fx

[
1

i

Bf

Bxj
(x)

]
(ξ) = ξj pf(ξ) .
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Proof. W.L.O.G., we assume that j = n. Write x = (x1, xn). Since f P S (Rn), there exists
C ą 0 such that

(1 + |x1|)n|xn|
ˇ

ˇf(x1, xn)
ˇ

ˇ ď C @x = (x1, xn) P Rn .

Then

1. For each x1 P Rn´1, f(x1,˘R) Ñ 0 as R Ñ 8.

2. The function g : Rn´1 Ñ R defined by g(x1) =
1

(1 + |x1|)n
is integrable on Rn´1 (see

the proof of Lemma 9.8), and
ˇ

ˇf(x1,˘R)
ˇ

ˇ ď g(x1) for each x1 P Rn´1 and R ą 1.

Therefore, the Dominated Convergence Theorem (Theorem 6.102) implies that

lim
RÑ8

ż

[´R,R]n´1

f(x1,˘R)e´i(x1,R)¨ξ dx1 = 0 ;

thus Fubini’s Theorem and integrating by parts formula imply that

F
[1
i

Bf

Bxn
(x)

]
(ξ) =

1

i

1
?
2π

n lim
RÑ8

ż

[´R,R]n

Bf

Bxn
(x)e´ix¨ξdx

=
1

i

1
?
2π

n lim
RÑ8

ż

[´R,R]n´1

( ż R

´R

Bf

Bxn
(x)e´ix¨ξdxn

)
dx1

=
1

i

1
?
2π

n lim
RÑ8

[( ż
[´R,R]n´1

f(x1, xn)e
´i(x1,xn)¨ξ dx1

)ˇ
ˇ

ˇ

xn=R

xn=´R
+ iξn

ż

[´R,R]n
f(x)e´ix¨ξdx

]
= ξn

1
?
2π

n lim
RÑ8

ż

[´R,R]n
f(x)e´ix¨ξdx = ξk pf(ξ) . ˝

Corollary 9.12. P(ξ1, ¨ ¨ ¨ , ξn) pf(ξ) = Fx

[
P
(
1

i

B

Bx1
, ¨ ¨ ¨ ,

1

i

B

Bxn

)
f(x)

]
(ξ) for all f P S (Rn)

and polynomial P.

Corollary 9.13. The Fourier transform of a Schwartz function is a Schwartz function; that
is, F : S (Rn) Ñ S (Rn).

Proof. Let P be a polynomial and α = (α1, ¨ ¨ ¨ , αn) be a multi-index. By Corollary 9.10
and 9.12,

P(ξ)Dα
pf(ξ) ” P(ξ1, ¨ ¨ ¨ , ξn)

B|α|
pf

Bξα1
1 ¨ ¨ ¨ Bξαn

n

(ξ)

=
1

i|α|
Fx

[
P
(1
i

B

Bx1
, ¨ ¨ ¨ ,

1

i

B

Bxn

)[
xα1
1 x

α2
2 ¨ ¨ ¨xαn

n f(x)
]]
(ξ) ;
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thus PDα
pf is the Fourier transform of a Schwartz function g defined by

g(x) =
1

i|α|
P
(1
i

B

Bx1
, ¨ ¨ ¨ ,

1

i

B

Bxn

)[
xα1
1 x

α2
2 ¨ ¨ ¨xαn

n f(x)
]
.

By Proposition 9.4 and Lemma 9.8, PDα
pf is bounded. ˝

Remark 9.14. There exists a duality under ^ between differentiability and rapid decrease:
the more differentiability f possesses, the more rapid decrease pf has and vice versa.

Definition 9.15. For all f P L1(Rn), we define operator F ˚ by

(F ˚f)(x) =
1

?
2π

n

ż

Rn

f(ξ)eix¨ξdξ .

The function F ˚f sometimes is also denoted by qf .

The operator F ˚, indicated implicitly by the way it is written, is the formal adjoint of
F . To be more precise, we have the following

Lemma 9.16. xFu, vyL2(Rn) = xu,F ˚vyL2(Rn) for all u, v P S (Rn), where x¨, ¨yL2(Rn) is an
inner product on S (Rn) given by

xu, vyL2(Rn) =

ż

Rn

u(x)v(x) dx .

Proof. Let u, v P S (Rn) be given, and define f(x, y) = u(x)v(y)e´ix¨y. By Tonelli’s Theorem
(Theorem 6.106), f is absolutely integrable on Rn ˆ Rn; thus Fubini’s Theorem (Theorem
6.107) implies that

xFu, vyL2(Rn) =
1

?
2π

n

ż

Rn

( ż
Rn

u(x)e´ix¨ξdx
)
v(ξ) dξ

=
1

?
2π

n

ż

Rn

ż

Rn

u(x)eix¨ξv(ξ) dξ dx

=
1

?
2π

n

ż

Rn

u(x)

ż

Rn

eix¨ξv(ξ) dξ dx = xu,F ˚vyL2(Rn) . ˝

9.3 The Fourier Inversion Formula
We remind the readers that our goal is to prove (9.0.2), while having introduced operators
F and F ˚, it is the same as showing that F and F ˚ are inverse to each other; that is, we
want to show that

FF ˚ = F ˚F = Id on S (Rn) .
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For a given t ą 0, let Pt : R Ñ R be defined by Pt(x) =
1

?
t

exp
(

´
x2

2t

)
. Note that

Pt P S (R) for all t ą 0, and Pt is normalized so that

1
?
2π

ż 8

´8

Pt(x) dx = 1 .

Now we compute the Fourier transform of Pt. By Lemma 9.9, we find that

d pPt
dξ

(ξ) =
´i

?
2πt

ż

R
xPt(x)e

´ixξ dx

=
´i

?
2πt

ż

R
xPt(x) cos(ξx) dx ´

1
?
2πt

ż

R
xPt(x) sin(ξx) dx .

Since the functions y = xPt(x) is absolutely integrable on R for each fixed t ą 0, the integral
ż

R
xPt(x) cos(ξx) dx converges absolutely; thus by the fact that x cos(ξx) are odd functions

in x, we have
ż

R
xPt(x) cos(ξx) dx = lim

RÑ8

ż R

´R

xPt(x) cos(ξx) dx = 0 .

As a consequence,
d pPt
dξ

(ξ) = ´
1

?
2πt

ż

R
xe´x2

2t sin(xξ)dx .

Integrating by parts,

d pPt
dξ

(ξ)=´
1

?
2πt

ż

R
xe´x2

2t sin(xξ)dx = ´
1

?
2πt

lim
RÑ8

ż R

´R

xe´x2

2t sin(xξ)dx

=´
1

?
2πt

lim
RÑ8

[
´ te´x2

2t sin(xξ)
ˇ

ˇ

ˇ

x=R

x=´R
+

ż R

´R

ξte´x2

2t cos(xξ) dx
]

=´
ξt

?
2πt

lim
RÑ8

ż R

´R

e´x2

2t cos(xξ) dx=´
ξt

?
2πt

lim
RÑ8

ż R

´R

e´x2

2t

[
cos(xξ) ´ i sin(xξ)

]
dx

=´
ξt

?
2πt

ż

R
e´x2

2t e´ixξdx = ´ξt pPt(ξ) ,

thus pPt(ξ) = Ce´
tξ2

2 . By the fact that pPt(0) =
1

?
2π

ż

R
Pt(x)dx = 1, we must have

pPt(ξ) = e´ 1
2
tξ2 . (9.3.1)

For x P Rn, if we define Pt(x) =
n
ś

k=1

Pt(xk) =
(

1
?
t

)n
e´

|x|2

2t , then (9.3.1) and Fubini’s
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Theorem imply that pPt(ξ) = e´ 1
2
t|ξ|2 . Therefore,

pPt(ξ) =
( 1

?
t

)n
P 1

t
(ξ)

which, together with the fact that qf(x) = pf(´x), further shows that

q

pPt(x) =
( 1

?
t

)n
xP 1

t
(´x) =

( 1
?
t

)n( 1
?
t´1

)n
Pt(´x) = Pt(x) .

Similarly, p

qPt(ξ) = Pt(ξ), so we establish that

F ˚F (Pt) = FF ˚(Pt) = Pt . (9.3.2)

The proof of the following lemma is similar to that of Theorem 8.20.

Lemma 9.17. If g P S (Rn), then Pt › g Ñ g uniformly on Rn as t Ñ 0+, where the
convolution operator › is given by

(Pt › g)(x) =
1

?
2π

n

ż

Rn

Pt(x ´ y)g(y) dy =
1

?
2π

n

ż

Rn

Pt(y)g(x ´ y) dy . (9.3.3)

Proof. Let ε ą 0 be given. Since g P S (Rn), g is uniformly continuous; thus there exists
δ ą 0 such that

ˇ

ˇg(x) ´ g(y)
ˇ

ˇ ă
ε

2
whenever |x ´ y| ă δ .

Since 1
?
2π

n

ż

Rn

Pt(x) dx = 1, for all x P Rn we have

ˇ

ˇ(Pt › g)(x) ´ g(x)
ˇ

ˇ =
1

?
2π

n

ˇ

ˇ

ˇ

ż

Rn

g(x ´ y)Pt(y) dy ´

ż

Rn

g(x)Pt(y) dy
ˇ

ˇ

ˇ

=
1

?
2π

n

ˇ

ˇ

ˇ

ż

Rn

[
(g(x ´ y) ´ g(x)

]
Pt(y) dy

ˇ

ˇ

ˇ

ď
ε

2

1
?
2π

n

ż

|y|ăδ

Pt(y) dy +
2}g}8
?
2π

n

ż

|y|ěδ

Pt(y) dy ,

so we obtain that

sup
xPRn

ˇ

ˇ(Pt › g)(x) ´ g(x)
ˇ

ˇ ď
ε

2
+

2}g}8
?
2π

n

ż

|y|ěδ

Pt(y) dy .

Note that
ż

|y|ąδ

Pt(y) dy =
1

?
t
n

ż

|y|ąδ

e´
|y|2

2t dy =

ż

|z|ą δ?
t

e´
|z|2

2 dz =

ż

Rn

1B[0, δ?
t
]A(z)e

´
|z|2

2 dz



§9.3 The Fourier Inversion Formula 295

which, by the Dominated Convergence Theorem, approaches 0 as t Ñ 0+; thus there exists
h ą 0 such that if 0 ă t ă h,

2}g}8
?
2π

n

ż

|y|ěδ

Pt(y) dy ă
ε

2
.

Therefore, we conclude that

sup
xPRn

ˇ

ˇ(Pt › g)(x) ´ g(x)
ˇ

ˇ ă ε whenever 0 ă t ă h

which shows that Pt › g Ñ g uniformly as t Ñ 0+. ˝

Lemma 9.18. If f and g P S (Rn), then

( qf › g)(x) =
1

?
2π

n

ż

Rn

f(ξ)eix¨ξ
pg(ξ) dξ .

Proof. By definition of qf and the convolution,

( qf › g)(x) =
1

?
2π

n

ż

Rn

qf(x ´ y)g(y) dy =
( 1

2π

)n ż
Rn

( ż
Rn

f(ξ)ei(x´y)¨ξg(y) dξ
)
dy .

By Tonelli’s Theorem (Theorem 6.106), the function h(ξ, y) = f(ξ)g(y)ei(x´y)¨ξ is absolutely
integrable on Rn ˆ Rn; thus Fubini’s Theorem (Theorem 6.107) implies that

( qf › g)(x) =
( 1

2π

)nż
Rn

( ż
Rn

f(ξ)eix¨ξe´iy¨ξg(y) dy
)
dξ

=
1

?
2π

n

ż

Rn

f(ξ)eix¨ξ
( 1

?
2π

n

ż

Rn

e´iy¨ξg(y) dy
)
dξ=

1
?
2π

n

ż

Rn

f(ξ)eix¨ξ
pg(ξ) dξ . ˝

Theorem 9.19 (Fourier Inversion Formula). If g P S (Rn), then q

pg(ξ) = p

qg(ξ) = g(ξ). In
other words, FF ˚ = F ˚F = Id.

Proof. Applying Lemma 9.18 with f(ξ) = pPt(ξ) = e´ 1
2
t|ξ|2 and using (9.3.2), we find that

(Pt › g)(x) = ( qf › g)(x) =
1

?
2π

n

ż

Rn

e´ 1
2
t|ξ|2eix¨ξ

pg(ξ)dξ .

Passing to the limit as t Ñ 0+, by Lemma 9.17 and Dominated Convergence Theorem
(Theorem 6.102) we obtain that

g(x) =
1

?
2π

n

ż

Rn

pg(ξ)eix¨ξdξ = q

pg(x) .
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Let r denote the reflection operator given by rf(x) = f(´x). Then the change of variable
formula implies that

qg(ξ) =
1

?
2π

n

ż

Rn

g(x)eix¨ξdx =
1

?
2π

n

ż

Rn

g(x)e´i(´x)¨ξdx

=
1

?
2π

n

ż

Rn

g(´x)e´ix¨ξdx = p

rg(ξ) .

On the other hand,

qg(ξ) =
1

?
2π

n

ż

Rn

g(x)e´ix¨(´ξ)dx = pg(´ξ) = r

pg(ξ) ;

thus pqg(ξ) = p

r

pg(ξ) = q

pg(ξ) = g(ξ). ˝

Corollary 9.20. F : S (Rn) Ñ S (Rn) is a bijection.

Remark 9.21. In view of the Fourier Inversion Formula (Theorem 9.19), F ˚ sometimes is
written as F ´1, and is called the inverse Fourier transform.

Remark 9.22. In most of the engineering applications the Fourier transform of a function
f is defined by

F [f ](ξ) =

ż

Rn

f(x)e´ix¨ξ dx .

In this case, the corresponding inverse Fourier transform F ´1 and the adjoint Fourier trans-
form F ˚ are given by

F ´1[f ](ξ) =
1

(2π)n

ż

Rn

f(x)eix¨ξ dx and F ˚[f ](ξ) =

ż

Rn

f(x)eix¨ξ dx

so that F ´1 ‰ F ˚. In some applied fields such as the signal processing the Fourier transform
of a function f is defined by

F [f ](ξ) =

ż

Rn

f(x)e´2πix¨ξ dx .

In such a case, the inverse Fourier transform and the adjoint Fourier transform are identical
and are given by

F ´1[f ](ξ) = F ˚[f ](ξ) =

ż

Rn

f(x)e2πix¨ξ dx .

The proof of this fact is left as an exercise.
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Theorem 9.23 (Plancherel formula for S (Rn)). If f , g P S (Rn), then

xf, gyL2(Rn) = x pf, pgyL2(Rn) .

Proof. Recall that xf, gyL2(Rn) =
ż

Rn

f(x)g(x) dx. By Fubini’s theorem,

x qf, gyL2(Rn) =

ż

Rn

qf(x)g(x) dx =

ż

Rn

[
1

?
2π

n

ż

Rn

f(ξ)eix¨ξdξ
]
g(x) dx

=

ż

Rn

f(ξ)
[

1
?
2π

n

ż

Rn

g(x)e´ix¨ξdx
]
dξ = xf, pgyL2(Rn) .

Therefore, xf, gyL2(Rn) = x
q

pf, gyL2(Rn) = x pf, pgyL2(Rn). ˝

Remark 9.24. The Plancherel formula is a “generalization” of the Parseval identity in the
following sense. Define the ℓ2 space as the collection of all square summable (complex)
sequences; that is,

ℓ2 =
!

taku8
k=´8 Ď C

ˇ

ˇ

ˇ

8
ÿ

k=´8

|ak|2 ă 8

)

with inner product
@

taku8
k=´8, tbku8

k=´8

D

ℓ2
=

8
ÿ

k=´8

akbk .

Define F : L2(T) Ñ ℓ2 by F(f) = t pfku8
k=´8. Then (8.5.5) shows that

xf, gyL2(T) = xF(f),F(g)yℓ2 @ f, g P L2(T)

so that we obtain an identity similar to the Plancherel formula.

Remark 9.25. Even though in general an square integrable function might not be in-
tegrable, using the Plancherel formula the Fourier transform of L2-functions can still be
defined. Note that the Plancherel formula provides that

}f}L2(Rn) = } pf}L2(Rn) @ f P S (Rn) . (9.3.4)

If f P L2(Rn); that is, |f | is square integrable, by the fact that S (Rn) is dense in L2(Rn),
there exists a sequence tfku8

k=1 Ď S (Rn) such that lim
kÑ8

}fk ´ f}L2(Rn) = 0. Then tfku8
k=1 is

a Cauchy sequence in L2(Rn); thus (9.3.4) implies that t pfku8
k=1 is also a Cauchy sequence
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in L2(Rn). By the completeness of L2(Rn) (which we did not cover in this lecture), there
exists g P L2(Rn) such that

lim
kÑ8

} pfk ´ g}L2(Rn) = 0 .

We note that such a limit g is independent of the choice of sequence tfku8
k=1 used to ap-

proximate f ; thus we can denote this limit g as pf . In other words, F : L2(Rn) Ñ L2(Rn).
Moreover, by that fk Ñ f and pfk Ñ pf in L2(Rn) as k Ñ 8, we find that

}f}L2(Rn) = } pf}L2(Rn) @ f P L2(Rn) ,

and the parallelogram law further implies that xf, gyL2(Rn) = x pf, pgyL2(Rn) for all f, g P L2(Rn).
Similar argument applies to the case of inverse transform of L2-functions; thus we conclude
that

xf, gyL2(Rn) = x pf, pgyL2(Rn) = x qf, qgyL2(Rn) @ f, g P L2(Rn) . (9.3.5)

We will talk about how to define the Fourier transform of L2-functions in another way in
Section 9.4.

Theorem 9.26. If f, g P S (Rn), then F (f › g) = pf pg. In particular, f › g P S (Rn) if
f, g P S (Rn).

Proof. By the definition of the Fourier transform and the convolution,

zf › g(ξ) =
1

?
2π

nF
( ż

Rn

f(¨ ´ y)g(y) dy
)
(ξ)

=
1

(2π)n

ż

Rn

[ ż
Rn

f(x ´ y)g(y) dy
]
e´ix¨ξdx

=
1

(2π)n

ż

Rn

g(y)
( ż

Rn

f(x)e´i(x+y)¨ξdx
)
dy

=
( 1

?
2π

n

ż

Rn

f(x)e´ix¨ξdx
)( 1

?
2π

n

ż

Rn

g(y)e´iy¨ξdy
)

which concludes the theorem. ˝

Corollary 9.27. F ˚(f › g) = qf qg, F (fg) = pf › pg and F ˚(fg) = qf › qg for all f, g P S (Rn).

We have established the Fourier inversion formula for Schwartz class functions. Our
goal next is to show that the Fourier inversion formula holds for a larger class of functions.
Motivated by the Fourier inversion formula, we would like to show, if possible, that

q

pf =
p

qf = f @ f P L1(Rn) such that pf P L1(Rn).
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The above assertion cannot be true since p

qf and q

pf are both continuous (by Proposition 9.4)
while f P L1(Rn) which is not necessary continuous. However, we will prove that the identity
above holds at points of continuity of f .

Before proceeding, we establish a lemma which is very similar to Lemma 9.16.

Lemma 9.28. Let f P L1(Rn) and g P S (Rn). Then x pf, gy = xf, pgy and x qf, gy = xf, qgy,
where xf, gy =

ż

Rn

f(x)g(x) dx.

Proof. We only prove x pf, gy = xf, pgy if f P L1(Rn) and g P S (Rn). By Proposition 9.4, pf

is bounded and continuous on Rn; thus pfg is an absolutely integrable continuous function.
By Fubini’s Theorem,

x pf, gy =

ż

Rn

( 1
?
2π

n

ż

Rn

f(x)e´ix¨ξdx
)
g(ξ)dξ =

1
?
2π

n

ż

Rn

( ż
Rn

f(x)g(ξ)e´ix¨ξdx
)
dξ

=
1

?
2π

n

ż

Rn

( ż
Rn

f(x)g(ξ)e´ix¨ξdξ
)
dx =

ż

Rn

f(x)
( 1

?
2π

n

ż

Rn

g(ξ)e´ix¨ξdξ
)
dx

which is exactly xf, pgy. ˝

Recall that our goal is to show that

if f, pf P L1(Rn), then q

pf(x) =
p

qf(x) = f(x) whenever f is continuous at x.

This amounts to treat q

pf and f in the same vector space and check if q

pf ´f is the zero vector
in that vector space. This underlying vector space is introduced in the following

Definition 9.29. The space L1
loc(Rn) consists of all functions (defined on Rn) that are

absolutely integrable on all bounded open balls of Rn. In other words,

L1
loc(Rn)=

!

f : RnÑ C
ˇ

ˇ

ˇ

ż

B(a,r)
f(x) dx is absolutely convergent for all a P Rn and r ą 0

)

.

Again, we emphasize that we abuse the notation L1
loc(Rn) which in fact stands for a

larger class of functions. We also note that L1(Rn) Ď L1
loc(Rn) and Cb(Rn;C) Ď L1

loc(Rn).

How do we determine if an locally integrable function h is the zero vector in L1
loc(Rn)?

Our goal is to establish an equivalent condition of that h ” 0 (or to be more precisely,
h(x) = 0 if h is continuous at x) stated briefly as follows (the precise statement is given in
Lemma 9.35):

If h P L1
loc(Rn), then h ” 0 if and only if xh, gy = 0 for all g P S (Rn). (9.3.6)
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We note that the difficulty here is that h and g belongs to different space so that we cannot
simply let g = sh to conclude that

ż

Rn

|h(x)|2 dx = 0.

A special class of functions that will be used as the role of g in (9.3.6) is called the
standard mollifiers. Let ζ : R Ñ R be a smooth function defined by

ζ(x) =

#

exp
( 1

x2 ´ 1

)
if |x| ă 1 ,

0 if |x| ě 1 .

For x P Rn, define η1(x) = Cζ(|x|), where C is chosen so that
ż

Rn

η1(x) dx = 1. The change

of variables formula then implies that ηε(x) ” ε´nη1(x/ε) has integral 1. We remark that
ηε is smooth and ηε(x) ‰ 0 if and only if x P B(0, ε); thus ηε P S (Rn) for all ε ą 0.

Definition 9.30. The collection of functions tηεuεą0 is called the standard mollifiers.

Definition 9.31. Let f, g be functions defined on Rn. The convolution of f and g, denoted
by f ˙ g, is a function defined on Rn given by

(f ˙ g)(x) =

ż

Rn

f(x ´ y)g(y) dy

whenever the integral makes sense for all x P Rn.

We note that the change of variables formula implies that f ˙ g = g ˙ f whenever the
convolution makes sense.

Remark 9.32. Let tηεuεą0 be the standard mollifiers.

1. Since ηε(y) ‰ 0 if and only if y P B(0, ε), for each x P Rn,

(ηε ˙ f)(x) =

ż

Rn

ηε(x ´ y)f(y) dy =

ż

B(x,ε)

ηε(x ´ y)f(y) dy

and the integral exists if f P L1
loc(Rn).

2. By the fact that ηε is smooth, the Dominated Convergence Theorem (Theorem 6.102)
shows that ηε ˙ f is smooth for each ε ą 0, and

Dα(ηε ˙ f)(x) =

ż

Rn

(Dαη)(x ´ y)f(y) dy ,

where α = (α1, ¨ ¨ ¨ , αn) is a multi-index. The detail proof is left as an exercise.
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Example 9.33. Let f = 1[a,b], the characteristic/indicator function of the closed interval
[a, b]. Then for ε ! 1, the function ηε ˙ f is smooth and has the property that

(ηε ˙ f)(x) =

"

1 if x P [a+ ε, b ´ ε] ,

0 if x P [a ´ ε, b+ ε]A,

and 0 ď f ď 1. Moreover, ηε ˙ f converges pointwise to f on Rzta, bu.

The following lemma shows that ηε ˙ f converges to f at points of continuity of f if
f P L1

loc(Rn).

Lemma 9.34. Let f P L1
loc(Rn) and x0 be a continuity of f . Then

lim
εÑ0+

(ηε ˙ f)(x0) = f(x0) .

Proof. Let ϵ ą 0 be given. Since f is continuous at x0, there exists δ ą 0 such that
ˇ

ˇf(y) ´ f(x0)
ˇ

ˇ ă
ϵ

2
whenever |y ´ x0| ă δ .

Therefore, by the fact that
ż

Rn

ηε(y) dy = 1, for 0 ă ε ă δ we find that

ˇ

ˇ(ηε ˙ f)(x0) ´ f(x0)
ˇ

ˇ =
ˇ

ˇ

ˇ

ż

Rn

ηε(y)f(x0 ´ y) dy ´

ż

Rn

ηε(y)f(x0) dy
ˇ

ˇ

ˇ

ď

ż

B(0,ε)

ηε(y)
ˇ

ˇf(x0 ´ y) ´ f(x0)
ˇ

ˇ dy ď
ϵ

2

ż

B(0,ε)

ηε(y) dy ă ϵ . ˝

Lemma 9.35. Let f P L1
loc(Rn). If xf, gy = 0 for all g P S (Rn), then f(x0) = 0 whenever

f is continuous at x0.

Proof. Let tηεuεą0 be the standard mollifiers, and x0 be a point of continuity of f . Then
for all ε ą 0,

(ηε ˙ f)(x0) =

ż

Rn

ηε(x0 ´ y)f(y) dy =

ż

Rn

f(y)ηε(y ´ x0) dy = xf, τx0ηεy ,

where τx0 is the translation operator defined by (τx0ϕ)(y) = ϕ(y ´ x0). Since ηε P S (Rn)

for all ε ą 0, the function τx0ηε P S (Rn) for all ε ą 0; thus (ηε ˙ f)(x0) = 0 for all ε ą 0.
By Lemma 9.34, we conclude that

f(x0) = lim
εÑ0

(ηε ˙ f)(x) = 0 . ˝
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Remark 9.36. The reverse statement of Lemma 9.35 is also true: if f P L1
loc(Rn) has the

property that f(x0) = 0 whenever f is continuous at x0, then xf, gy = 0 for all g P S (Rn)

since if f P L1
loc(Rn), the collection of discontinuities of f has measure zero which shows

that f(x) ‰ 0 only on a set of measure zero. Therefore, xf, gy = 0 for all g P S (Rn). In
other words, if f P L1

loc(Rn), then

xf, gy = 0 for all g P S (Rn) if and only if f(x0) = 0 whenever f is continuous at x0.

Lemma 9.35 establishes the non-trival direction “ñ”.

Now we are in position of showing the Fourier inversion formula for functions of more
general class.

Theorem 9.37 (Fourier Inversion Formula). Let f P L1(Rn) such that pf P L1(Rn). Then

q

pf(x) =
p

qf(x) = f(x) whenever f is continuous at x.

Proof. Let f : Rn Ñ C be such that f, pf P L1(Rn). By the fact that qf(ξ) = pf(´ξ) for all
ξ P Rn, the change of variables formula implies that qf P L1(Rn).

Let g P S (Rn) be given. By Lemma 9.28 and the Fourier inversion formula for Schwartz
class functions (Theorem 9.19),

x
q

pf, gy = x pf, qgy = xf, pqgy = xf, gy and x
p

qf, gy = x qf, pgy = xf, qpgy = xf, gy .

In other words, if f, pf P L1(Rn),

x
q

pf ´ f, gy = x
p

qf ´ f, gy = 0 @ g P S (Rn) .

By Proposition 9.4, q

pf,
p

qf P Cb(Rn;C); thus the collection of points of continuities of q

pf ´ f

and p

qf ´ f is identical to the collection of points of continuities of f ; that is,

f is continuous at x if and only if q

pf ´ f and p

qf ´ f are continuous at x.

Moreover, by the fact that Cb(Rn;C) Ď L1
loc(Rn) and L1(Rn) Ď L1

loc(Rn) we find that
q

pf ´ f,
p

qf ´ f P L1
loc(Rn). Therefore, the theorem is concluded by Lemma 9.35. ˝

Remark 9.38. Since an integrable function f : Rn Ñ R must be continuous almost
everywhere on Rn, Theorem 9.37 implies that if f : Rn Ñ R is a function such that f ,
pf P L1(Rn), then q

pf =
p

qf = f almost everywhere.
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9.4 The Fourier Transform of Generalized Functions
It is often required to consider the Fourier transform of functions which do not belong to
L1(Rn). For example, the normalized sinc function sinc : R Ñ R defined by

sinc(x) =

$

&

%

sin(πx)
πx

if x ‰ 0 ,

1 if x = 0 ,
(9.4.1)

does not belong to L1(R) but it is a very important function in the study of signal processing.

Figure 9.1: The graphs of unnormalized and normalized sinc functions (from wiki)

Moreover, there are “functions” that are not even functions in the traditional sense. For
example, in physics and engineering applications the Dirac delta “function” δ is defined as
the “function” which validates the relation

ż

Rn

δ(x)ϕ(x) dx = ϕ(0) @ϕ P C (Rn)

In fact, there is no function (in the traditional sense) satisfying the property given above
(reasoning later). Can we take the Fourier transform of those “functions” as well? To
understand this topic better, it is required to study the theory of generalized functions/
distributions.

To understand the meaning of distributions, let us turn to a situation in physics: measur-
ing the temperature. To measure the temperature T at a point x, instead of outputting the
exact value of T (x) the thermometer instead outputs the overall value of the temperature
near x. In other words, the reading of the temperature is determined by a pairing of the
temperature distribution with the thermometer.



304 CHAPTER 9. Fourier Transforms

In mathematical point of views, to evaluate the function value of a locally integrable
function f at a point of continuity x0, we apply Lemma 9.34 and obtain that

f(x0) = lim
εÑ0+

(ηε ˙ f)(x0) = lim
εÑ0+

@

f, τx0ηε
D

, (9.4.2)

where τx0 is the translation operator given by (τx0ϕ)(x) = ϕ(x´x0). Here ηε can be viewed as
a meter that can measure the function value of locally integrable functions, ε is a parameter
that corresponds to the accuracy of this meter, and τx0ηε is a meter that locates at position
x0. Nevertheless, for f P L1

loc(Rn), the “pairing” xf, ϕy is defined not only on functions of
the form ϕ = τx0ηε but also on ϕ P D(Rn), where

D(Rn) ”
␣

ϕ : Rn Ñ C
ˇ

ˇϕ P C 8(Rn) and supp(ϕ) ” tx P Rn ϕ(x) ‰ 0u is compact
(

.

This pairing induced a (continuous) linear functional Tf : D(Rn) Ñ C defined by

Tf (ϕ) = xf, ϕy . (9.4.3)

Moreover, if T : D(Rn) Ñ C is a continuous linear functional, and there exists f P L1
loc(Rn)

such that T (ϕ) = xf, ϕy for all ϕ P D(Rn), then f is uniquely determined except perhaps
on a set of measure zero (or to be more precise, f is uniquely determined at all points of
continuity of f). Therefore, with D(Rn)1 denoting the collection of all (continuous) linear
functionals defined on D(Rn), there is a natural injection ι : L1

loc(Rn) Ñ D(Rn)1 (given by
ι(f) = Tf ).

On the other hand, a (continuous) linear functional defined on D(Rn) might not take
the form of (9.4.3). For example, there exists no locally integrable function f such that

T (ϕ) =

ż

Rn

f(y)ϕ(y) dy = ϕ(0) @ϕ P D(Rn) . (9.4.4)

To see this, suppose the contrary that there exists f P L1
loc(Rn) such that (9.4.4) holds.

Then
(ηε ˙ f)(x) =

ż

Rn

f(y)(τxηε)(y) dy = ηε(x)

which vanishes if x R B(0, ε). This implies that f = 0 almost everywhere so that xf, ϕy = 0

for all ϕ P D(Rn), a contradiction. Therefore, ι : L1
loc(Rn) Ñ D(Rn)1 (given by ι(f) = Tf ) is

not surjective; thus (continuous) linear functionals on D(Rn) defines more “functions” than
L1

loc(Rn). Such kind of linear functionals are called generalized functions or distributions.
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The Fourier transform can be defined on a smaller class of generalized functions, the
space of tempered distributions. A tempered distribution is a continuous linear functional
on S (Rn). In other words, T is a tempered distribution if

T : S (Rn) Ñ C, T (cϕ+ ψ) = cT (ϕ) + T (ψ) for all c P C and ϕ, ψ P S (Rn),
and lim

jÑ8
T (ϕj) = T (ϕ) if tϕju

8
j=1 Ď S (Rn) and ϕj Ñ ϕ in S (Rn).

The convergence in S (Rn) is described by semi-norms, and is given in the following

Definition 9.39 (Convergence in S (Rn)). For each k P N Y t0u, define the semi-norm

pk(ϕ) = sup
xPRn,|α|ďk

xxyk|Dαϕ(x)| ,

where xxy = (1 + |x|2)
1
2 . A sequence tϕju

8
j=1 Ď S (Rn) is said to converge to ϕ in S (Rn) if

pk(ϕj ´ ϕ) Ñ 0 as j Ñ 8 for all k P N Y t0u.

We note that pk(ϕ) ď pk+1(ϕ), so tϕju
8
j=1 Ď S (Rn) converges to ϕ in S (Rn) whenever

pk(ϕj ´ ϕ) Ñ 0 as j Ñ 8 for k " 1. We also note that if tϕju
8
j=1 converge to ϕ in S (Rn),

then tϕju
8
j=1 converges uniformly to ϕ on Rn.

Definition 9.40 (Tempered Distributions). A linear map T : S (Rn) Ñ C is continuous if
there exists N P N such that for each k ě N , there exists a constant Ck such that

ˇ

ˇT (ϕ)
ˇ

ˇ ď Ckpk(ϕ) @ϕ P S (Rn) .

The collection of continuous linear functionals on S (Rn) is denoted by S (Rn)1. Elements
of S (Rn)1 are called tempered distributions.

Example 9.41. For 1 ď p ă 8, let Lp(Rn) denote the collection of Riemann measurable
functions whose p-th power is integrable; that is,

Lp(Rn) =
!

f : Rn Ñ C
ˇ

ˇ

ˇ
f is Riemann measurable and

ż

Rn

ˇ

ˇf(x)
ˇ

ˇ

p
dx ă 8

)

,

and let L8(Rn) denote the collection of bounded Riemann measurable functions. Every
Lp-function f : Rn Ñ C can be viewed as a tempered distribution for all p P [1,8]. In fact,
the tempered distribution Tf associated with f is defined by

Tf (ϕ) =

ż

Rn

f(x)ϕ(x) dx @ϕ P S (Rn) . (9.4.5)
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Now we show that Tf given by (9.4.5) is indeed a tempered distribution. Let ϕ P S (Rn)

be given. Then }ϕ}L8(Rn) ď pk(ϕ) for all k P N, while for 1 ď q ă 8 and k ą
n

q
,

}ϕ}Lq(Rn) ”

( ż
Rn

ˇ

ˇϕ(x)
ˇ

ˇ

q
dx

) 1
q
=

( ż
Rn

xxy´kq
[
xxyk|ϕ(x)|

]q
dx

) 1
q

ď

( ż
Rn

xxy´kq dx
) 1

q
pk(ϕ)

ď

(
ωn´1

ż 8

0

(1 + r2)´
kq
2 rn´1dr

) 1
q
pk(ϕ) .

Note that
ż 8

0
(1 + r2)´

kq
2 rn´1dr ă 8 if k ą

n

q
; thus for all q P [1,8], there exists Ck,q,n ą 0

such that
}ϕ}Lq(Rn) ď Ck,q,npk(ϕ) @ k " 1 . (9.4.6)

Therefore, if f P Lp(Rn), by the Hölder inequality we have
ˇ

ˇxf, ϕy
ˇ

ˇ ď }f}Lp(Rn)}ϕ}Lp1 (Rn) ď Ck,p 1,n}f}Lp(Rn)pk(ϕ) @ k " 1 ,

where p 1 P [1,8] is the Hölder conjugate of p satisfying 1

p
+

1

p 1
= 1; thus Tf P S (Rn)1 if

f P Lp(Rn). Note that the sinc function belongs to L2(R) so that Tsinc P S (R)1.

Example 9.42. Let f : R Ñ R be a 2π-periodic, Riemann measurable function such that
ż π

´π
|f(x)| dx ă 8, and ϕ P S (R). By the definition of the pk semi-norm,

|x|2
ˇ

ˇϕ(x)
ˇ

ˇ ď p2(ϕ) @ϕ P S (Rn) and x P Rn .

Therefore,

ˇ

ˇxf, ϕy
ˇ

ˇ =
ˇ

ˇ

ˇ

8
ÿ

k=´8

ż π+2kπ

´π+2kπ

f(x)ϕ(x) dx
ˇ

ˇ

ˇ
ď

8
ÿ

k=´8

ż π

´π

ˇ

ˇf(x)
ˇ

ˇ

ˇ

ˇϕ(x+ 2kπ)
ˇ

ˇ dx

=

ż π

´π

ˇ

ˇf(x)
ˇ

ˇ

ˇ

ˇϕ(x)
ˇ

ˇ dx+
ÿ

|k|ě1

ż π

´π

ˇ

ˇf(x)
ˇ

ˇ

ˇ

ˇϕ(x+ 2kπ)
ˇ

ˇ dx

ď p0(ϕ)

ż π

´π

ˇ

ˇf(x)
ˇ

ˇ dx+
ÿ

|k|ě1

ż π

´π

ˇ

ˇf(x)
ˇ

ˇ

1

|x+ 2kπ|2
p2(ϕ) dx

ď

( ż π

´π

ˇ

ˇf(x)
ˇ

ˇ dx
)(

1 + 2
8
ÿ

k=1

1

(2k ´ 1)2

)
p2(ϕ)

which implies that Tf is a tempered distribution. In particular, Tc P S (R)1 for all constant
c P R.
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From now on, we identify f with the tempered distribution Tf if f is an ordinary function
(or a function defined pointwise). In other words, if T P S (Rn)1 and f : Rn Ñ C is a function,
we say that T = f in S (Rn)1 if T = Tf , where Tf is the tempered distribution associated
with the function f . Moreover, if T P S (Rn)1 and ϕ P S (Rn), T (ϕ) is also expressed as
xT, ϕy.

Example 9.43 (Dirac delta function). Consider the map δ : C (Rn) Ñ R defined by δ(ϕ) =
ϕ(0). Then

ˇ

ˇδ(ϕ)
ˇ

ˇ ď p0(ϕ) ď pk(ϕ) for all ϕ P S (Rn) and k P N Y t0u; thus δ P S (Rn)1.
Therefore, we also write δ(ϕ) as xδ, ϕy. This explains why the Dirac delta function has the
property that

ż

Rn

δ(x)ϕ(x) dx = ϕ(0)

since the integral above is an informal expression of xδ, ϕy.
Similarly, the Dirac delta function at a point ω defined by xδω, ϕy = ϕ(ω) is also a

tempered distribution.

Remark 9.44. Not all ordinary functions are tempered distributions. For example, the
function f(x) = ex

4 is locally integrable (since it is continuous), but
ż

R
f(x)e´x2 dx = 8.

Therefore, being in L1
loc(Rn) is not good enough to generate elements in S (Rn)1, and it

requires that |f(x)| ď C(1 + |x|N) for any N P N. In such a case, Tf P S (Rn)1 is well-
defined.

As shown in the example above, a tempered distribution might not be defined in the
pointwise sense. Therefore, how to define usual operations such as translation, dilation, and
reflection on generalized functions should be answered prior to define the Fourier transform
of tempered distributions. For completeness, let us start from providing the definitions of
translation, dilation and reflection operators.

Definition 9.45 (Translation, dilation, and reflection). Let f : Rn Ñ C be a function.

1. For h P Rn, the translation operator τh maps f to τhf given by (τhf)(x) = f(x ´ h).

2. For λ ą 0, the dilation operator dλ : S (Rn) Ñ S (Rn) maps f to dλf given by
(dλf)(x) = f(λ´1x).

3. The reflection operator r maps f to rf given by rf(x) = f(´x).
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Now suppose that T P S (Rn)1. We expect that τhT , dλT and rT are also tempered
distributions, so we need to provide the values of xτhT, ϕy, xdλT, ϕy and xrT , ϕy for all ϕ P

S (Rn). If T = Tf is the tempered distribution associated with f P L1(Rn), then for
g P S (Rn), the change of variable formula implies that

xτhf, gy =

ż

Rn

f(x ´ h)g(x) dx =

ż

Rn

f(x)g(x+ h) dx = xf, τ´hgy ,

xdλf, gy =

ż

Rn

f(λ´1x)g(x) dx =

ż

Rn

f(x)g(λx)λn dx = xf, λndλ´1gy ,

x rf, gy =

ż

Rn

f(´x)g(x) dx =

ż

Rn

f(x)g(´x) dx = xf, rgy .

The computations above motivate the following

Definition 9.46. Let h P Rn, λ ą 0, and τh and dλ be the translation and dilation operator
given in Definition 9.45. For T P S (Rn)1, τhT , dλT and rT are the tempered distributions
defined by

xτhT, ϕy = xT, τ´hϕy , xdλT, ϕy = xT, λndλ´1ϕy and xrT , ϕy = xT, rϕy @ϕ P S (Rn) .

We note that τhT , dλT and rT are tempered distributions since

pk(τ´hϕ) ď sup
xPRn,|α|ďk

xxyk
ˇ

ˇDαϕ(x ´ h)
ˇ

ˇ ď sup
xPRn,|α|ďk

xx+ hyk
ˇ

ˇDαϕ(x)
ˇ

ˇ

ď

(
sup
xPRn

xx+ hy2

xxy2

) k
2
pk(ϕ) ď (1 + |h|)kpk(ϕ) ,

pk(λ
ndλ´1ϕ) ď λn sup

xPRn,|α|ďk

xxykλ|α|
ˇ

ˇ(Dαϕ)(λx)
ˇ

ˇ ď λn maxtλk, λ´kupk(ϕ) ,

pk(rϕ) = pk(ϕ)

so that by the fact that
ˇ

ˇxT, ϕy
ˇ

ˇ ď Ckpk(ϕ) for k " 1, for all ϕ P S (Rn) we have
ˇ

ˇxτhT, ϕy
ˇ

ˇ =
ˇ

ˇxT, τ´hϕy
ˇ

ˇ ď Ck(1 + |h|)kpk(ϕ) = rCkpk(ϕ) ,
ˇ

ˇxdλT, ϕy
ˇ

ˇ =
ˇ

ˇxT, λndλ´1ϕy
ˇ

ˇ ď Ckλ
n maxtλk, λ´kupk(ϕ) = rCkpk(ϕ) ,

ˇ

ˇxrT , ϕy
ˇ

ˇ =
ˇ

ˇxT, rϕy
ˇ

ˇ ď Ckpk(ϕ) .

Example 9.47. Let ω, h P Rn and λ ą 0.

1. τhδω = δω+h since if ϕ P S (Rn), xτhδω, ϕy = xδω, τ´hϕy = ϕ(ω + h) = xδω+h, ϕy .
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2. dλδω = λnδλω since if ϕ P S (Rn), xdλδω, ϕy = xδω, λ
nd1/λϕy = λnϕ(λω) = xλnδλω, ϕy .

3. rδω = δ´ω since if ϕ P S (Rn), x rδω, ϕy = xδω, rϕy = ϕ(´ω) = xδ´ω, ϕy .

From the experience of defining the translation, dilation and reflection of tempered distri-
butions, now we can talk about how to defined Fourier transform of tempered distributions.
Recall that in Lemma 9.28 we have established that

x pf, gy = xf, pgy and x qf, gy = xf, qgy @ f, g P L1(Rn) .

Since the identities above hold for all L1-functions f (and L1-functions corresponds to tem-
pered distributions Tf through (9.4.5)), we expect that the Fourier transform of tempered
distributions has to satisfy the identities above as well. Let T P S (Rn)1 be given, and define
pT : S (Rn) Ñ C by

pT (ϕ) = x pT , ϕy ” xT, pϕy @ϕ P S (Rn) . (9.4.7)

Let k ě 2 and k is a multiple of 4. Then

pk(pϕ) = sup
ξPRn,|α|ďk

xξyk
ˇ

ˇDα
pϕ(ξ)

ˇ

ˇ = sup
ξPRn,|α|ďk

xξyk
ˇ

ˇ

ˇ
Fx

[
xαϕ(x)

]
(ξ)

ˇ

ˇ

ˇ

ď sup
ξPRn,|α|ďk

(n+ 1)
k
2

´1
(
1 + |ξ1|

k + ¨ ¨ ¨ + |ξn|k
)ˇ
ˇ

ˇ
Fx

[
xαϕ(x)

]
(ξ)

ˇ

ˇ

ˇ

ď (n+ 1)
k
2

´1 sup
ξPRn,|α|ďk

ˇ

ˇ

ˇ
Fx

[
(1 + Bkx1 + ¨ ¨ ¨ + Bkxn)

(
xαϕ(x)

)]
(ξ)

ˇ

ˇ

ˇ
.

Since

sup
ξPRn,|α|ďk

ˇ

ˇ

ˇ
Fx

[
xαϕ(x)

]
(ξ)

ˇ

ˇ

ˇ
ď sup

|α|ďk

ż

Rn

ˇ

ˇxαϕ(x)
ˇ

ˇ dx ď

ż

Rn

xxyk
ˇ

ˇϕ(x)
ˇ

ˇ dx

ď
›

›x¨y´n´1
›

›

L1(Rn)
sup
xPRn

xxyn+k+1
ˇ

ˇϕ(x)
ˇ

ˇ ď
›

›x¨y´n´1
›

›

L1(Rn)
pn+k+1(ϕ)

and for 1 ď j ď n,

sup
ξPRn,|α|ďk

ˇ

ˇ

ˇ
Fx

[
Bkxj(x

αϕ(x)
]
(ξ)

ˇ

ˇ

ˇ
ď

k
ÿ

ℓ=0

Ck
ℓ sup
ξPRn,|α|ďk

ˇ

ˇ

ˇ
Fx

[
(Bk´ℓ
xj

xα)Bℓxjϕ(x)
]
(ξ)

ˇ

ˇ

ˇ

ď

k
ÿ

ℓ=0

Ck
ℓ sup

|α|ďk

ż

Rn

ˇ

ˇ(Bk´ℓ
xj

xα)Bℓxjϕ(x)
ˇ

ˇ dx ď

k
ÿ

ℓ=0

Ck
ℓ sup

|α|ďk

|α|!
›

›x¨y|α|´k+ℓBℓxjϕ(¨)
›

›

L1(Rn)

ď

k
ÿ

ℓ=0

Ck
ℓ k! sup

|β|=ℓ

›

›x¨yℓDβϕ(¨)
›

›

L1(Rn)
ď k!

k
ÿ

ℓ=0

Ck
ℓ

›

›x¨y´n´1
›

›

L1(Rn)
pn+ℓ+1(ϕ)

ď k!
›

›x¨y´n´1
›

›

L1(Rn)
pn+k+1(ϕ)

k
ÿ

ℓ=0

Ck
ℓ = k!2k

›

›x¨y´n´1
›

›

L1(Rn)
pn+k+1(ϕ) ,
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we conclude that

pk(pϕ) ď (n+ 1)
k
2

´1(1 + nk!2k)
›

›x¨y´n´1
›

›

L1(Rn)
pn+k+1(ϕ) = sC(n, k)pn+k+1(ϕ) . (9.4.8)

Therefore,
ˇ

ˇx pT , ϕy
ˇ

ˇ =
ˇ

ˇxT, pϕy
ˇ

ˇ ď Ckpk(pϕ) ď Ck sC(n, k)pk+n+1(ϕ) @ k " 1 (9.4.9)

which shows that pT defined by (9.4.7) is a tempered distribution. Similarly, qT : S (Rn) Ñ C
defined by x qT , ϕy = xT, qϕy for all ϕ P S (Rn) is also a tempered distribution. The discussion
above leads to the following

Definition 9.48. Let T P S (Rn)1. The Fourier transform of T and the Fourier ˚ transform
of T , denoted by pT and qT respectively, are tempered distributions given by

x pT , ϕy = xT, pϕy and x qT , ϕy = xT, qϕy @ϕ P S (Rn) .

In other words, if T P S (Rn)1, then pT , qT P S (Rn)1 as well and the actions of pT , qT on
ϕ P S (Rn) are given in the relations above.

Example 9.49 (The Fourier transform of the Dirac delta function). Consider the Dirac
delta function δ : S (Rn) Ñ C defined in Example 9.43. Then for ϕ P S (Rn),

xδ, pϕy = pϕ(0) =
1

?
2π

n

ż

Rn

ϕ(x)e´ix¨0 dx =
1

?
2π

n

ż

Rn

ϕ(x) dx = x
1

?
2π

n , ϕy ;

thus the Fourier transform of the Dirac delta function is a constant function and pδ(ξ) =
1

?
2π

n . Similarly, qδ(ξ) = 1
?
2π

n , so pδ = qδ.

Next we consider the Fourier transform of δω, the Dirac delta function at point ω P Rn.
Note that for ϕ P S (Rn),

xδω, pϕy = pϕ(ω) =
1

?
2π

n

ż

Rn

ϕ(x)e´ix¨ω dx =
A

e´ix¨ω

?
2π

n , ϕ
E

” x pδω, ϕy ;

thus the Fourier transform of the Dirac delta function at point ω is the function pδω(ξ) =
e´iξ¨ω

?
2π

n . The inverse Fourier transform of δω can be computed in the same fashion and we

have qδω(ξ) =
eiξ¨ω

?
2π

n . We note that qδω =
r

pδω =
p

rδω.

Symbolically, “assuming” that xδω, ϕy = ϕ(ω) for all continuous function ϕ,

pδω(ξ) =
1

?
2π

n

ż

Rn

δω(x)e
´ix¨ξ dx =

1
?
2π

n e
´ix¨ξ

ˇ

ˇ

ˇ

x=ω
=

e´iξ¨ω

?
2π

n
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and
qδω(ξ) =

1
?
2π

n

ż

Rn

δω(x)e
ix¨ξ dx =

1
?
2π

n e
ix¨ξ

ˇ

ˇ

ˇ

x=ω
=

eiξ¨ω

?
2π

n .

Example 9.50 (The Fourier transform of eix¨ω). By “definition” and the Fourier inversion
formula, for ϕ P S (Rn) we have

xeix¨ω, pϕy =

ż

Rn

eix¨ω
pϕ(x) dx =

?
2π

n
¨

1
?
2π

n

ż

Rn

pϕ(x)eix¨ω dx =
?
2π

n
q

pϕ(ω) =
?
2π

n
ϕ(ω) ;

thus
xeix¨ω, pϕ y =

?
2π

n
ϕ(ω) = x

?
2π

n
δω, ϕy .

Therefore, the Fourier transform of the function s(x) = eix¨ω is
?
2π

n
δω, where δω is the

Dirac delta function at point ω introduced in Example 9.49. We note that this result also
implies that

p

qδω = δω @ω P Rn .

Similarly, q

pδω = δω for all ω P Rn; thus the Fourier inversion formula is also valid for the
Dirac δ function.

Example 9.51 (The Fourier Transform of the Sine function). Let s(x) = sinωx, where ω
denotes the frequency of this sine wave. Since sinωx =

eiωx ´ e´iωx

2i
, we conclude that the

Fourier transform of s(x) = sinωx is
?
2π

2i

(
δω ´ δ´ω

)
since if T1, T2 are tempered distributions, then T = T1 + T2 satisfies

x pT , ϕy = xT1 + T2, pϕy = xT1, pϕy + xT2, pϕy = x pT1, ϕy + x pT2, ϕy = x pT1 + pT2, ϕy @ϕ P S (Rn)

which shows that pT = pT1 + pT2.

Theorem 9.52. Let T P S (Rn)1. Then q

pT =
p

qT = T .

Proof. To see that q

pT and T are the same tempered distribution, we need to show that
x
q

pT , ϕy = xT, ϕy for all ϕ P S (Rn). Nevertheless, by the definition of the Fourier transform
and the inverse Fourier transform of tempered distributions,

x
q

pT , ϕy = x pT , qϕy = xT,
p

qϕy = xT, ϕy @ϕ P S (Rn) .

The identity p

qT = T can be proved in the same fashion. ˝
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Example 9.53 (The Fourier Transform of the sinc function). The rect/rectangle function,
also called the gate function or windows function, is a function Π : R Ñ R defined by

Π(x) =

"

1 if |x| ă 1 ,

0 if |x| ě 1 .

Since Π P L1(R), we can compute its (inverse) Fourier transform in the usual way, and we
have

pΠ(ξ) =
1

?
2π

ż

R
Π(x)e´ixξ dx =

1
?
2π

ż 1

´1

e´ixξ dx =
1

?
2π

e´ixξ

´iξ

ˇ

ˇ

ˇ

x=1

x=´1
=

c

2

π

sin ξ
ξ

@ ξ ‰ 0

and pΠ(0) =

c

2

π
. Define the unnormalized sinc function sinc(x) =

# sinx

x
if x ‰ 0 ,

1 if x = 0 .

Then pΠ(ξ) =

c

2

π
sinc(ξ). Similar computation shows that qΠ(ξ) = pΠ(ξ) =

c

2

π
sinc(ξ).

Even though the sinc function is not integrable, we can apply Theorem 9.52 and see that

ysinc(ξ) = }sinc(ξ) =
c

π

2
Π(ξ) @ ξ P R .

Theorem 9.54. Let T P S (Rn)1. Then

xyτhT , ϕy = x pT (ξ), ϕ(ξ)e´iξ¨hy , xydλT , ϕy = x pT , dλϕy and x
p

rT , ϕy = x qT , ϕy @ϕ P S (Rn) .

A short-hand notation for identities above are yτhT (ξ) = pT (ξ)e´iξ¨h, ydλT (ξ) = λn pT (λξ), and
p

rT (ξ) = qT (ξ).

Proof. Let ϕ P S (Rn). For h P Rn, define ϕh(x) = ϕ(x)e´ix¨h. Then

(τ´h
pϕ)(ξ) = pϕ(ξ + h) =

1
?
2π

n

ż

Rn

ϕ(x)e´ix¨(ξ+h) dx =
1

?
2π

n

ż

Rn

ϕ(x)e´ix¨he´ix¨ξ dx = xϕh(ξ) .

By the definition of the Fourier transform of tempered distribution and the translation
operator,

xyτhT , ϕy = xT, τ´h
pϕy = xT,xϕhy = x pT (x), ϕ(x)e´ix¨hy = x pT (ξ), ϕ(ξ)e´iξ¨hy .

On the other hand, for λ ą 0,

(dλ´1 pϕ)(ξ) = pϕ(λξ) =
1

?
2π

n

ż

Rn

ϕ(x)e´ix¨(λξ) dx= λ´n 1
?
2π

n

ż

Rn

ϕ
(x
λ
)e´ix¨ξ dx= λ´n

ydλϕ(ξ) .
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Therefore,

xydλT , ϕy = xT, λndλ´1 pϕy = xT,ydλϕy = x pT , dλϕy = xλndλ´1 pT , ϕy .

The identity x
p

rT , ϕy = x qT , ϕy follows from that r

pϕ = qϕ, and the detail proof is left to the
readers. ˝

Remark 9.55. One can check easily that yτhf(ξ) = pf(ξ)e´iξ¨h and ydλf(ξ) = λn pf(λξ) if
f P L1(Rn).

Next we define the convolution of a tempered distribution and a Schwartz function.
Before proceeding, we note that if f, g, ϕ P S (Rn), then the Fubini Theorem implies that

xf ˙ g, ϕy =

ż

Rn

(f ˙ g)(x)ϕ(x) dx =

ż

Rn

( ż
Rn

f(y)g(x ´ y) dy
)
ϕ(x) dx

=

ż

Rn

f(y)
( ż

Rn

g(x ´ y)ϕ(x) dx
)
dy

=

ż

Rn

f(y)
( ż

Rn

rg(y ´ x)ϕ(x) dx
)
dy = xf, rg ˙ ϕy .

The change of variable formula further shows that

(rg ˙ ϕ)(y) =
( ż

Rn

rg(x)ϕ(y ´ x) dx =

ż

Rn

rg(´x)ϕ(y + x) dx

=

ż

Rn

g(x)rϕ(´y ´ x) dx = (g ˙ rϕ)(´y) =
Č

g ˙ rϕ(y) ;

thus
xf ˙ g, ϕy = xf, rg ˙ ϕy = xf,

Č

g ˙ rϕy = x rf, g ˙ rϕy @ f, g, ϕ P S (Rn) .

The identity above serves as the origin of the convolution of a tempered distribution and a
Schwartz function.

Definition 9.56 (Convolution). Let T P S (Rn)1 and g P S (Rn). The convolution of T
and g, denoted by T ˙ g, is the tempered distribution given by

xT ˙ g, ϕy = xT, rg ˙ ϕy = x rT , g ˙ rϕy @ϕ P S (Rn) ,

where rT is the tempered distribution given in Definition 9.46.
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Remark 9.57. We will explain why T ˙ g P S (Rn)1 (if T P S (Rn)1 and g P S (Rn))
later in Remark 9.60. For the time being we can temporarily treat the convolution given
above as a “computational” definition (without knowing that if T ˙ g is continuous); that
is, T ˙ g : S (Rn) Ñ C is defined by

(T ˙ g)(ϕ) ” xT, rg ˙ ϕy @ϕ P S (Rn)

since xT, rg ˙ ϕy is well-defined, and xT ˙ g, ϕy is another expression of (T ˙ g)(ϕ).

Example 9.58. Let δω be the Dirac delta function at point ω P Rn, and g P S (Rn). Then
δω ˙ g = τωg since if ϕ P S (Rn),

xδω, rg ˙ ϕy = (rg ˙ ϕ)(ω) =

ż

Rn

rg(y)ϕ(ω ´ y) dy =

ż

Rn

g(z ´ ω)ϕ(z) dz =
@

τωg, ϕ
D

In symbol,
(δω ˙ g)(x) =

ż

Rn

δω(y)g(x ´ y) dy = g(x ´ ω) = (τωg)(x) . (9.4.10)

Similar to Theorem 9.26 and Corollary 9.27, the product and the convolutions of func-
tions are related under Fourier transform.

Theorem 9.59. Let T P S (Rn)1 and g P S (Rn). Then

xT › g, pϕy = x pT , pgϕy and xT › g, qϕy = x qT , qgϕy @ϕ P S (Rn) ,

and
x pT › pg, ϕy = xT, gpϕy and x qT › qg, ϕy = xT, gqϕy @ϕ P S (Rn) ,

where S › h =
1

?
2π

n (S ˙ h) if S P S (Rn)1 and h P S (Rn).

Proof. Note that the “convolution” › also satisfies that

xT › g, ϕy = xT, rg › ϕy = x rT , g › rϕy .

By Theorem 9.26 and Corollary 9.27,

xT › g, pϕy = xT, rg › pϕy = x
q

pT , rg › pϕy = x pT ,F ˚[rg › pϕ]y =
@

pT , qrg
q

pϕ
D

= x pT , pgϕ
D

and by the definition of the convolution of tempered distributions and Schwartz functions,

xT, gpϕy = x
q

pT , gpϕy = x pT ,F ˚(gpϕ)y = x pT , qg › ϕy = x pT , rpg › ϕy = x pT › pg, ϕy .

The counterpart for the inverse Fourier transform can be proved similarly. ˝
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Remark 9.60. Let g, ϕ P S (Rn), and T P S (Rn)1 satisfy
ˇ

ˇxT, uy
ˇ

ˇ ď Ckpk(u) for all
u P S (Rn) and k " 1. By Theorem 9.59, we find that

xT ˙ g, ϕy =
?
2π

n@
T › g,

p

qϕ
D

=
?
2π

n
x pT , pg qϕy .

By the fact that

pk(gh) = sup
xPRn,|α|ďk

xxyk
ˇ

ˇDα(gh)(x)
ˇ

ˇ ď sup
xPRn,|α|ďk

ÿ

0ďβďα

Cα
β xxyk

ˇ

ˇDα´βg(x)Dβh(x)
ˇ

ˇ

ď

(
sup
|α|ďk

ÿ

0ďβďα

Cα
β

)
pk(g)pk(h) ” Mkpk(g)pk(h) @ g, h P S (Rn) ,

we conclude from (9.4.8) and (9.4.9) that for k " 1,

ˇ

ˇxT ˙ g, ϕy
ˇ

ˇ ď
?
2π

n
Ck sC(n, k)pk+n+1

(
pgqϕ

)
ď

?
2π

n
Ck sC(n, k)Mkpk+n+1

(
pg
)
pk+n+1

(
p

rϕ
)

ď
?
2π

n
CkMk

sC(n, k) sC(n, k + n+ 1)2pk+2n+2(g)pk+2n+2

(
rϕ
)

= rC(n, k)pk+2n+2(g)pk+2n+2(ϕ) .

Therefore, T ˙ g is a tempered distribution.

Remark 9.61. For T P S (Rn)1 and g P S (Rn), define gT : S (Rn) Ñ C by

xgT, ϕy = xT, gϕy @ϕ P S (Rn) .

Then the fact that T ˙ g P S (Rn)1 (from Remark 9.60) and Theorem 9.59 show that

x zT › g, ϕy = xpg pT , ϕy and x ~T › g, ϕy = xqg qT , ϕy @ϕ P S (Rn) ,

and
x pT › pg, ϕy = xxgT , ϕy and x qT › qg, ϕy = x|gT , ϕy @ϕ P S (Rn) ,

In other words, we have zT › g = pg pT , ~T › g = qg qT , xgT = pT › pg and |gT = qT › qg in S (Rn)1.
Therefore, Theorem 9.59 can be viewed as the generalization of Theorem 9.26 and Corollary
9.27.

Remark 9.62. If S P S (Rn)1 satisfies that S ˙ ϕ P S (Rn) for all ϕ P S (Rn), we can also
define the convolution of T and S by

xT ˙ S, ϕy = x rT , S ˙ rϕy @ϕ P S (Rn) .
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In other words, it is possible to define the convolution of two tempered distributions.
For example, from Example 9.58 we find that δω ˙ ϕ = τωϕ for all ϕ P S (Rn); thus

δω ˙ ϕ P S (Rn) for all S (Rn) (and ω P Rn). Therefore, if T is a tempered distribution,
T ˙ δω is also a tempered distribution and is given by

xT ˙ δω, ϕy =
@

rT , τωrϕ
D

@ϕ P S (Rn) .

Further computation shows that

xT ˙ δω, ϕy =
@

rT ,Ćτ´ωϕ
D

=
@

T, τ´ωϕ
D

=
@

τωT, ϕ
D

@ϕ P S (Rn) .

The identity above shows that T ˙ δω = τωT for all T P S (Rn)1. This formula agrees with
(9.4.10).
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